Skip to main content

Fall

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms
  • 154 Accesses

Definition

A geomorphic process in which the debris units (which can vary widely in size and composition) are transported to their deposition location under only the influence of gravity. No medium transports the material, so the debris units undergo downward motion via free falling, rolling or bouncing on the surface; if there is a horizontal component of velocity, the units will move in ballistic trajectories. Falls may take place on bodies with or without an atmosphere. Each fragment may interact with the slope in periodic collisions, but there is no significant interaction between fragments.

Category

A type of mass wasting

Synonyms

Particle settling

Description

Falls entail a free-falling phase over at least part of the material’s trajectory. For example, it may involve spontaneous movement of regolith down a steep slope such as a cliff, due to physical erosion such as undercutting of a slope by waves, flows, human and animal action, freeze-thaw action, seismic activity, or...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barlow NG, Boyce JM, Costard FM, Craddock RA, Garvin JB, Sakimoto SEH, Kuzmin RO, Roddy DJ, Soderblom LA (2000) Standardizing the nomenclature of Martian impact crater ejecta morphologies. J Geophys Res 105(E11):26733–26738

    Article  Google Scholar 

  • Basilevsky AT, Head JW, Abdrakhimov AM (2004) Impact crater air fall deposits on the surface of Venus: areal distribution, estimated thickness, recognition in surface panoramas, and implications for provenance of sampled surface materials. J Geophys Res 109:E12003. doi:10.1029/2004JE002307

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67(5):441–456

    Article  Google Scholar 

  • Bulmer MH (1994) Small volcanoes in the plains of Venus: with particular reference to the evolution of domes. PhD thesis, University of London, Senate House, 1999

    Google Scholar 

  • Bulmer MH (1998) Comparisons between mass movements on Venus associated with Modified Domes and those from Escarpments. Lunar Planet Sci XXVII:1812, Houston

    Google Scholar 

  • Bulmer MH (2012) Landslides on other planets. In: Clague JJ, Stead D (eds) Part 1. landslide types and mechanisms. Types, mechanisms, and modeling. Cambridge University Press, Cambridge, pp 393–408. ISBN: 9781107002067

    Google Scholar 

  • Bulmer MH, Guest JE (1996) Modified volcanic domes and associated debris aprons on Venus. In:McQuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the Earth and other planets, Geological Society special publication 110. Geological Society, London, pp 349–371

    Google Scholar 

  • Bulmer MH, Zimmerman BA (2005) Reassessing landslide deformation in Ganges Chasma. Mars Geophys Res Lett 32:L06201. doi:10.1029/2004GL022021

    Article  Google Scholar 

  • Collins BD, Stock GM (2012) Lidar-based rock-fall hazard characterization of cliffs. GeoCongress 2012 American Society of Civil Engineers, Oakland, California, pp 3021–3030

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AT, Schuster RL (eds) Landslides – investigation and mitigation. Transportation research board special report no. 247. National Academy Press, Washington, DC, pp 36–75

    Google Scholar 

  • Daubar IJ, McEwen AS, Byrne S, Dundas CM, Keska AL, Amaya GL, Kennedy M, Robinson MS (2011) New Craters on Mars and the Moon. Lunar Planet Sci Conf Abstract 42:2232

    Google Scholar 

  • Dundas CM, McEwen AS (2007) Rays and secondary craters of Tycho. Icarus 186(1):31–40. doi:10.1016/j.icarus.2006.08.011

    Article  Google Scholar 

  • Fell R, Hungr O, Leroueil S, Riemer W (2000) Keynote paper – geotechnical engineering of the stability of natural slopes and cuts and fills in soil. Procs, GeoEng2000, international conference on geotechnical and geological engineering, Melbourne

    Google Scholar 

  • Flageollett JC, Weber D (1996) Fall. In: Dikau R, Brunsden D, Schrott L, Ibsen M-L (eds) Landslide recognition: identification, movement and courses. Wiley, Chichester, pp 13–28

    Google Scholar 

  • Hauber E, van Gasselt S, Chapman MG, Neukum G (2008) Geomorphic evidence for former lobate debris aprons at low latitudes on Mars: indicators of the Martian paleoclimate. J Geophys Res 113:E02007. doi:10.1029/2007JE002897

    Google Scholar 

  • Herkenhoff KE, Byrne S, Milkovich SM, Russell PS and the HiRISE Science Team (2012) MRO HiRISE observations of recent phenomena in the north polar region of Mars. Mars recent climate change workshop, Moffett Field

    Google Scholar 

  • Highland LM, Bobrowsky P (2008) The landslide handbook – a guide to understanding landslides. USGS circular 1325. U.S. Geological Survey, Reston, Virginia

    Google Scholar 

  • Hsu KJ (1975) Catastrophic debris streams (Sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:128–140

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis M, Hutchinson JN (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci VII:221–238

    Google Scholar 

  • Hunter RE (1977) Basic types of stratification in small eolian dunes. Sedimentology 24:361–387

    Article  Google Scholar 

  • Malin MC (1992) Mass movements on Venus: preliminary results from the Magellan cycle 1 observations. J Geophys Res 97(E10):16337–16352. doi:10.1029/92JE01343

    Article  Google Scholar 

  • McEwen AS, Preblich BS, Turtle EP, Atemiava NA, Golombek MP, Hurst M, Kirk RL, Burr DM, Christensen PR (2005) The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus 176:351–381

    Article  Google Scholar 

  • McGovern PJ, Smith JR, Morgan JK, Bulmer MH (2004) Olympus Mons aureole deposits: new evidence for a flank failure origin. J Geophys Res 109:E08008. doi:10.1029/2004JE002258

    Google Scholar 

  • Mouginis-Mark PJ, Garbeil H (2007) Crater geometry and ejecta thickness of the Martian impact crater tooting. Meteor Planet Sci 42(9):1615–1625

    Article  Google Scholar 

  • Mouginis-Mark PJ, Wilson L, Head JW III (1982) Explosive volcanism on Hecates Tholus, Mars: investigation of eruption conditions. J Geophys Res 87(B12):9890–9904

    Article  Google Scholar 

  • O’Keefe JD, Ahrens TJ (1976) Impact ejecta on the Moon. Proc Lunar Sci Conf 7:3007–3025

    Google Scholar 

  • Richard SM, Matti J, Soller DR (2003) Geoscience terminology development for the National Geologic Map Database. In: Soller DR (ed), Digital mapping techniques ‘03 – workshop proceedings: U.S. geological survey open-file report 03-471. pp 157–168, http://pubs.usgs.gov/of/2003/of03-471/richard1/

  • Roberts GP, Matthews B, Bristow C, Guerrieri L, Vetterlein J (2012) Possible evidence of paleomarsquakes from fallen boulder populations, Cerberus Fossae, Mars. J Geophys Res 117:E02009

    Google Scholar 

  • Rosser N, Dunning SA, Lim M, Petley DN (2005) Terrestrial laser scanning for quantitative rockfall hazard assessment. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Balkema, Amsterdam

    Google Scholar 

  • Rosser NJ, Lim M, Petley DN, Dunning S, Allison RJ (2007) Patterns of precursory rockfall prior to slope failure. J Geophys Res Earth Surface 112:F04014

    Article  Google Scholar 

  • Russell P, Thomas N, Byrne S, Herkenhoff K, Fishbaugh K, Bridges N, Okubo C, Milazzo M, Daubar I, Hansen C, McEwen A (2008) Seasonally active frost-dust avalanches on a north polar scarp of Mars captured by HiRISE. Geophys Res Lett 35, CiteID L23204

    Google Scholar 

  • Russell PS, Byrne S, Dawson LC (2014) Active powder avalanches on the steep north polar scarps of Mars: 4 years of HiRISE observation. 45th Lunar Planet Sci Conf, abstract #2688, Houston

    Google Scholar 

  • Schenk PM, Bulmer MH (1998) Origin of mountains on Io by thrust faulting and large-scale mass movements. Science 279:1514–1517

    Google Scholar 

  • Shaller PJ (1991) Analysis and implications of large Martian and terrestrial landslides. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechETD:etd-08112004-132513

  • Shean DE, Head JW III, Fastook JW, Marchant DR (2007) Recent glaciation at high elevations on Arsia Mons, Mars: implications for the formation and evolution of large tropical mountain glaciers. J Geophys Res 112:E03004. doi:10.1029/2006JE002761

    Google Scholar 

  • Sigurdsson H, Carey S (1989) Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano. Bull Volcanol 51:243–270

    Article  Google Scholar 

  • Singer NS, McKinnon WB, Schenk PM, Moore JM (2012) Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating. Nature Geosci 5:574–578, Supplementary information 23. doi:10.1038/ngeo1526

    Google Scholar 

  • Whalley WB (1974) The mechanics of high magnitude low frequency rock failure and its importance in a mountainous area. Geographical papers 27. Reading University, Reading, p 48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. K. Bulmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Bulmer, M.H.K. (2014). Fall. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_144-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_144-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics