Skip to main content

Gully

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Elongated erosional trench on steep slopes in the middle- to high-latitude region of Mars, usually with theater-shaped erosional alcove and terminal depositional apron, possibly formed by water flow and/or seasonal frost processes.

Synonyms

Alcove–channel–apron; Slope gully

Disambiguation

Although “Linear Gullies (Mars)” are referred to as “gullies” and occur in similar latitudinal bands as gullies, their connection to gullies (if any) remains under debate.

Description

On Mars,gullies are erosional features generally characterized by an alcove–channel–debris apron morphology. The theater-shaped alcove can be eroded into the host rock, generally tapers downslope, and may serve as a source region for erosional materials. Channels originate either at the base or within the alcove and are narrow erosional V-shaped features (in cross-section) that are typically 100–500 m long and 5–40 m wide. The debris apron is generally a fan-shaped deposit of accumulated material deposited...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Balme M, Mangold N, Baratoux D, Costard F, Gosselin M, Masson P, Pinet P, Neukum G (2006) Orientation and distribution of recent gullies in the southern hemisphere of Mars: observations from high resolution stereo camera/mars express (HRSC/MEX) and mars orbiter camera/mars global surveyor (MOC/MGS) data. J Geophys Res 111:E05001

    Google Scholar 

  • Bridges NT, Lackner CN (2006) Northern hemisphere Martian gullies and mantled terrain: implications for near-surface water migration in Mars’ recent past. J Geophys Res 111. doi:10.1029/2006JE002702

    Google Scholar 

  • Britton A, Conway SJ, Balme MR (2013) Gullies and the latitude dependant mantle: comparing Terra Cimmeria & Argyre Planitia. EPSC, London

    Google Scholar 

  • Cedillo-Flores Y, Treiman AH, Lasue J, Clifford SM (2011) CO2 gas fluidization in the initiation and formation of Martian polar gullies. Geophys Res Lett 38:L21202. doi:10.1029/2011GL049403

    Google Scholar 

  • Conway SJ, Balme MR, Grindrod PM (2012) Using topographic derivatives of high resolution data on Earth and Mars to determine active processes on Mars. In: European Geosciences Union General Assembly 22-27 Vienna, Austria

    Google Scholar 

  • Conway SJ, Soare RJ (2013) Gully morphometrics as indicators of degradation intensity around the Argyre Basin. 44th Lunar Planet Sci Conf, abstract #2488, Houston

    Google Scholar 

  • Conway SJ, Balme MR, Murray JB, Towner MC, Kim JR (2008) Icelandic debris flows and their relationship to Martian gullies. Workshop on Martian gullies: theories and tests, Houston, #8024

    Google Scholar 

  • Costard F, Forget F, Mangold N, Peulvast JP (2002) Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity. Science 295:110–113

    Article  Google Scholar 

  • Costard F, Forget F, Jomelli V, Mangold N, Peulvast J-P (2007) Debris flows in Greenland and on Mars. In: Chapman M (ed) The geology of Mars: evidence from Earth-based analogs. Cambridge University Press, Cambridge, UK, pp 265–278

    Chapter  Google Scholar 

  • Dickson JL, Head JW, Kreslavsky MA (2007) Martian gullies in the southern midlatitudes of Mars: evidence for climate-controlled formation of young fluvial features based upon local and global topography. Icarus 188:315–323

    Article  Google Scholar 

  • Dickson JL, Head JW, Barbieri L (2013) Martian gullies as stratigraphic markers for latitude-dependent mantle emplacement and removal. 44th Lunar Planet Sci Conf, abstract #1719, Houston

    Google Scholar 

  • Diniega S, Byrne S, Bridges NT, Dundas CM, McEwen AS (2010) Seasonality of present-day Martian dune-gully activity. Geology 38:1047–1050

    Article  Google Scholar 

  • Dundas CM, McEwen AS, Diniega S, Byrne S, Martinez-Alonso S (2010) New and recent gully activity on Mars as seen by HiRISE. Geophys Res Lett 37:L07202

    Google Scholar 

  • Dundas CM, Diniega S, Hansen CJ, Byrne S, McEwen AS (2012) Seasonal activity and morphological changes in Martian gullies. Icarus 220:124–143

    Article  Google Scholar 

  • Edgett KS, Malin MC, Williams RME, Davis DM (2003) Polar- and middle latitude Martian gullies: Aview from MGC MOC after two Mars years in the mapping orbit, Lunar Planet Sci [CDROM], XXXIV, abstract 1038

    Google Scholar 

  • Gaidos EJ (2001) Cryovolcanism and the recent flow of liquid water on Mars. Icarus 153:218–223

    Article  Google Scholar 

  • Gallagher C, Balme MR, Conway SJ, Grindrod PM (2011) Sorted clastic stripes, lobes and associated gullies in high-latitude craters on Mars: landforms indicative of very recent, polycyclic ground-ice thaw and liquid flows. Icarus 211:458–471

    Article  Google Scholar 

  • Gilmore MS, Philips EL (2002) Role of aquicludes in formation of Martian gullies. Geology 30:1107–1110

    Article  Google Scholar 

  • Hansen CJ et al (2011) Seasonal erosion and restoration of Mars’ northern polar dunes. Science 331:575–578

    Article  Google Scholar 

  • Harrison T, Malin MC, Edgett KS (2009a) Present-day gully activity observed by the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX). 41st American astronomical society division for planetary sciences meeting, Abstract 57.03. Bull Am Astron Soc 41(3):1113

    Google Scholar 

  • Harrison T, Malin MC, Edgett KS (2009b) Liquid water on the surface of Mars today: present gully activity observed by the Mars reconnaissance orbiter (MRO) and Mars global surveyor (MGS) and direction for future missions. Eos, Trans Am Geophys Union 90(52). Fall meeting supplement, abstract P43D-1454

    Google Scholar 

  • Hartmann WK (2001) Martian seeps and their relation to youthful geothermal activity. Space Sci Rev 96:405–410

    Article  Google Scholar 

  • Hartmann WK (2002) Comparison of Icelandic and Martian hillside gullies. Proc Lunar Planet Sci Conf 33rd, abstract #1904, Houston

    Google Scholar 

  • Head JW, Marchant DR, Kreslavsky MA (2008) Formation of gullies on Mars: link to recent climate history and insolation microenvironments implicate surface water flow origin. Proc Natl Acad Sci U S A 105(3):13258–13263

    Article  Google Scholar 

  • Heldmann JL, Mellon MT (2004) Observations of Martian gullies and constraints on potential formation mechanisms. Icarus 168:285–304

    Article  Google Scholar 

  • Heldmann JL, Carllson E, Johansson H, Mellon MT, Toon OB (2007) Observations of Martian gullies and constraints on potential formation mechanisms II. The northern hemisphere. Icarus 188:324–344

    Article  Google Scholar 

  • Horgan BHN, Bell JF III (2012) Seasonally active slipface avalanches in the north polar sand sea of Mars: evidence for a wind-related origin. Geophys Res Lett 39:L09201. doi:10.1029/2012GL051329

    Article  Google Scholar 

  • Hugenholtz C (2008) Frosted granular flow: a new hypothesis for mass wasting in Martian gullies. Icarus 197:65–72

    Article  Google Scholar 

  • Ishii T, Miyamoto H, Sasaki S, Tajika E (2006) Constraints on the formation of gullies on Mars: a possibility of the formation of gullies by avalanches of granular CO2 ice particles. Proc 37th Lunar Planet Sci Conf, abstract #1646, Houston

    Google Scholar 

  • Kneissl T, Reiss D, van Gasselt S, Neukum G (2010) Distribution and orientation of northern-hemisphere gullies on Mars from the evaluation of HRSC and MOC-NA data. Earth Planet Sci Lett 294:357–367

    Article  Google Scholar 

  • Kolb KJ, Pelletier JD, McEwen AS, Team HRISE (2010) Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: implications for recent liquid water. Icarus 205:113–137

    Article  Google Scholar 

  • Lanza NL, Meyer GA, Okubo CH, Newsom HE, Wiens RC (2010) Evidence for debris flow gully formation initiated by shallow subsurface water on Mars. Icarus 205:103–112

    Article  Google Scholar 

  • Lee P, McKay, CP, Matthews J (2002) Gullies on Mars: clues to their formation timescale from possible analogs from Devon Island, Nunavut, Arctic Canada. Proc Lunar Planet Sci Conf 33rd, abstract #2050, Houston

    Google Scholar 

  • Levy JS, Head JW, Dickson JL, Fassett CI, Morgan GA, Schon SC (2010) Identification of gully debris flow deposits in Protonilus Mensae, Mars: characterization of a water-bearing, energetic gully-forming process. Earth Planet Sci Lett 294:368–377

    Article  Google Scholar 

  • Malin MC, Edgett KS (2000) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–2335

    Article  Google Scholar 

  • Malin MC, Edgett KS (2001) Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J Geophys Res 106(E10):23,429–23,570

    Article  Google Scholar 

  • Malin MC, Edgett KS, Posiolova LV, McCauley SM, Noe Dobrea EZ (2006) Present-day impact cratering rate and contemporary gully activity on Mars. Science 314:1573–1577. doi:10.1126/science.1135156

    Article  Google Scholar 

  • Mangold N, Mangeney A, Migeon V, Ansan V, Lucas A, Baratoux D, Bouchut F (2010) Sinuous gullies on Mars: frequency, distribution, and implications for flow properties. J Geophys Res 115. doi:10.1029/2009je003540

    Google Scholar 

  • McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC (2011) Seasonal flows on warm Martian slopes. Science 333. doi:10.1126/science.1204816

    Google Scholar 

  • Mellon MT, Phillips RJ (2001) Recent gullies on Mars and the source of liquid water. J. Geophys. Res. 106, 23165–23180, http://dx.doi.org/10.1029/2000JE001424

  • Musselwhite DS, Swindle TD, Lunine JI (2001) Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophys Res Lett 28:1283–1285

    Article  Google Scholar 

  • Reiss D, van Gasselt S. Neukum G, Jaumann R (2004) Absolute dune ages and implications for the time of formation of gullies in Nirgal Vallis, Mars. J Geophys ResPlanet 109. doi:10.1029/2004JE002251

    Google Scholar 

  • Reiss D, Hiesinger H, Hauber E, Gwinner K (2009) Regional differences in gully occurrence on Mars: a comparison between the Hale and Bond craters. Planet Space Sci 57:958–974

    Article  Google Scholar 

  • Reiss D, Hauber E, Hiesinger H, Jaumann R, Trauthan F, Preusker F, Zanetti M, Ulrich M, Johnsson A, Johansson L, Olvmo M, Carlsson E, Johansson HAB, McDaniel S (2011) Terrestrial gullies and debris-flow tracks on Svalbard as planetary analogs for Mars. Geolog Soc Am Sp Paper 483:165–175

    Google Scholar 

  • Schon SC, Head JW (2009) Terraced cutbanks and longitudinal bars in gully channels on Mars: evidence for multiple episodes of Fluvial transport. 40th Lunar Proc Sci Conf, abstract #1691, Houston

    Google Scholar 

  • Schon SC, Head JW (2012) Gasa impact crater, Mars: very young gullies formed from impact into latitude-dependent mantle and debris-covered glacier deposits? Icarus 218(1):459–477

    Article  Google Scholar 

  • Schon SC, Head JW, Fassett CI (2009) Unique chronostratigraphic marker in depositional fan stratigraphy on Mars: evidence for ca. 1.25 Ma gully activity and surficial meltwater origin. Geology 37:207–210

    Article  Google Scholar 

  • Stewart ST, Nimmo F (2002) Surface runoff features on Mars: testing the carbon dioxide formation hypothesis. J Geophys ResPlanet 107. doi:10.1029/2000JE001465

    Google Scholar 

  • Treiman AH (2003) Geologic settings of Martian gullies: implications for their origins. J Geophys Res 108(E4), 8031. doi:10.1029/2002JE001900

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Heldmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Heldmann, J.L., Diniega, S., Kereszturi, Á., Conway, S.J. (2014). Gully. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_184-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_184-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics