Skip to main content

Supercritical Fluid Extraction and Fractionation

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 275 Accesses

Glossary

Carotenoids:

Organic pigments that are generated by plants and algae, as well as several bacteria and fungi

Extraction:

A separation process in which a component is selectively removed from matrix by chemical or physical

Fractionation:

A separation process in which a certain quantity of a mixture

Internal reflux:

The partial condensation of liquid within a distillation column that descends down the column

Matrix:

A solid substance within which another substance is embedded

Raffinate:

The liquid left after a solute has been extracted by solvent extraction

Solubility:

A measure of the ability of a solvent to dissolve a solid to form a solute in a solution at a specified temperature and pressure

Supercritical fluid:

Any substance at a temperature and pressure above its critical point

Definition of the Subject

Supercritical fluid generally was defined as any substance at a temperature and pressure above its critical point. Extraction and fractionation of natural products by using...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lebovka N, Vorobiev E, Chemat F (2012) Enhancing extraction processes in the food industry. Taylor & Francis Group, Boca Raton, pp 18–22

    Google Scholar 

  2. Marr R, Gamse T (2000) Use of supercritical fluids for different processes including new developments–a review. Chem Eng Process 39:19–28

    Article  CAS  Google Scholar 

  3. Lang Q, Wai CM (2001) Supercritical fluid extraction in herbal and natural product studies–a practical review. Talanta 53:771–782

    Article  CAS  Google Scholar 

  4. Meireles A, Angela M (2003) Supercritical extraction from solid: process design data (2001–2003). Curr Opin Solid State Mater Sci 7:321–330

    Article  CAS  Google Scholar 

  5. Ghafoor K, Park J, Choi YH (2010) Optimization of supercritical carbon dioxide extraction of bioactive compounds from grape peel (Vitis labrusca B.) by using response surface methodology. Innovative Food Sci Emerg Technol 11:485–490

    Article  CAS  Google Scholar 

  6. Goto M, Kanda H, Wahyudiono, Machmudah S (2015) Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether. J Supercrit Fluids 96:245–251

    Article  CAS  Google Scholar 

  7. Nerome H, Ito M, Machmudah S, Wahyudiono KH, Goto M (2016) Extraction of phytochemicals from saffron by supercritical carbon dioxide with water and methanol as entrainer. J Supercrit Fluids 107:377–383

    Article  CAS  Google Scholar 

  8. Machmudah S, Widiyastuti, Winardi S, Wahyudiono, Kanda H, Goto M (2017) Sub- and supercritical fluids extraction of phytochemical compounds from Eucheuma cottonii and Gracilaria sp. Chem Eng Trans 56:1291–1296

    Google Scholar 

  9. Ghafoor K, Hui T, Choi YH (2011) Optimization of ultrasound-assisted extraction of total anthocyanins from grape peel. J Food Biochem 35:735–746

    Article  CAS  Google Scholar 

  10. Kimthet C, Wahyudiono, Kanda H, Goto M (2017) Comparison of conventional and ultrasound assisted supercritical carbon dioxide extraction of curcumin from turmeric (Curcuma longa L.). Eng J 21:53–65

    Google Scholar 

  11. Parniakov O, Lebovka NI, Van Hecke E, Vorobiev E (2014) Pulsed electric field assisted pressure extraction and solvent extraction from mushroom (Agaricus Bisporus). Food Bioprocess Technol 7:174–183

    Article  CAS  Google Scholar 

  12. Parniakov O, Barba FJ, Grimi N, Marchal L, Jubeau S, Lebovka N, Vorobiev E (2015) Pulsed electric field assisted extraction of nutritionally valuable compounds from microalgae Nannochloropsis spp. using the binary mixture of organic solvents and water. Innovative Food Sci Emerg Technol 27:79–85

    Article  CAS  Google Scholar 

  13. Pineiro Z, Marrufo-Curtido A, Vela C, Palma M (2017) Microwave-assisted extraction of stilbenes from woody vine material. Food Bioprod Process 103:18–26

    Article  CAS  Google Scholar 

  14. Ferreres F, Grosso C, Gil-Izquierdo A, Valentao P, Mota AT, Andrade PB (2017) Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chem 230:463–474

    Article  CAS  Google Scholar 

  15. Strati IF, Gogou E, Oreopoulou V (2015) Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food Bioprod Process 94:668–674

    Article  CAS  Google Scholar 

  16. Alexandre EMC, Araujo P, Duarte MF, de Freitas V, Pintado M, Saraiva JA (2017) Experimental design, modeling, and optimization of high-pressure-assisted extraction of bioactive compounds from pomegranate peel. Food Bioprocess Technol 10:886–900

    Article  CAS  Google Scholar 

  17. Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33

    Article  Google Scholar 

  18. Conde-Hernandez LA, Espinosa-Victoria JR, Trejo A (2017) CO2-supercritical extraction, hydro distillation and steam distillation of essential oil of rosemary (Rosmarinus officinalis). J Food Eng 200:81–86

    Article  CAS  Google Scholar 

  19. Michalak I, Chojnacka K, Saeid A (2017) Plant growth biostimulants, dietary feed supplements and cosmetics formulated with supercritical CO2 algal extracts. Molecules 22:1–17

    Article  CAS  Google Scholar 

  20. Haynes WM, Lide DR, Bruno TJ (2014) CRC handbook of chemistry and physics, 95th edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  21. Martinez JL (2008) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  22. McKenzie LC, Thompson JE, Sullivan R, Hutchison JE (2004) Green chemical processing in the teaching laboratory: a convenient liquid CO2 extraction of natural products. Green Chem 6:355–358

    Article  CAS  Google Scholar 

  23. Herrero M, Mendiola JA, Cifuentes A, Ibanez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511

    Article  CAS  Google Scholar 

  24. da Silva RPFF, Rocha-Santos TAP, Duarte AC (2016) Supercritical fluid extraction of bioactive compounds. TrAC Trends Anal Chem 76:40–51

    Article  CAS  Google Scholar 

  25. Schutz E (2007) Supercritical fluids and applications: a patent review. Chem Eng Technol 30:685–688

    Article  CAS  Google Scholar 

  26. Duba KS, Fiori L (2015) Extraction of bioactives from food processing residues using techniques performed at high pressures. Curr Opin Food Sci 5:14–22

    Article  Google Scholar 

  27. Salamatin AA (2017) Detection of microscale mass-transport regimes in supercritical fluid extraction. Chem Eng Technol 40:1–10

    Article  CAS  Google Scholar 

  28. Zosel K (1978) Separation with supercritical gases: practical applications. Angew Chem Int Ed Engl 17:702–709

    Article  Google Scholar 

  29. Peter S, Brunner G (1978) The separation of nonvolatile substances by means of compressed gases in countercurrent processes. Angew Chem Int Ed Engl 17:746–750

    Article  Google Scholar 

  30. Bejarano A, Simoes PC, del Valle JM (2016) Fractionation technologies for liquid mixtures using dense carbon dioxide. J Supercrit Fluids 107:321–348

    Article  CAS  Google Scholar 

  31. Francisco JDC, Dey SE (2003) Supercritical fluids as alternative, safe, food-processing media: an overview. Acta Microbiol Pol 52:35–43

    Google Scholar 

  32. Bjorklund E, Sparr-Eskilsson C (2005) Supercritical fluid extraction. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science. Elsevier, Oxford, pp 597–608

    Chapter  Google Scholar 

  33. Ameer K, Shahbaz HM, Kwon JH (2017) Green extraction methods for polyphenols from plant matrices and their byproducts: a review. Compr Rev Food Sci Food Saf 16:295–315

    Article  Google Scholar 

  34. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  35. Diaz-Reinoso B, Moure A, Dominguez H, Parajo JC (2007) Antioxidant extraction by supercritical fluids. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC, Boca Raton, pp 275–303

    Chapter  Google Scholar 

  36. Dapkevicius A, Venskutonis R, van Beek TA, Linssen JP (1998) Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. J Sci Food Agric 77:140–146

    Article  CAS  Google Scholar 

  37. Carvalho RN, Moura LS, Rosa PTV, Meireles MAA (2005) Supercritical fluid extraction from rosemary (Rosmarinus officinalis): kinetic data, extract’s global yield, composition, and antioxidant activity. J Supercrit Fluids 35:197–204

    Article  CAS  Google Scholar 

  38. Mezzomo N, Oliveira DA, Ferreira SRS (2013a) Antioxidant potential of extracts from processing residues from Brazilian food industries. Food Nutr Sci 4:211–218

    CAS  Google Scholar 

  39. Mezzomo N, Martinez J, Maraschin M, Ferreira SR (2013) Pink shrimp (P. brasiliensis and P. paulensis) residue: supercritical fluid extraction of carotenoid fraction. J Supercrit Fluids 74:22–33

    Article  CAS  Google Scholar 

  40. Nguyen U, Frackman G, Evans DA (1991) Process for extracting antioxidants from labiatae herbs. US Patent 5,017,397

    Google Scholar 

  41. Ashraf Khorassani M, Taylor LT (2004) Sequential fractionation of grape seeds into oils, polyphenols, and procyanidins via a single system employing CO2-based fluids. J Agric Food Chem 52:2440–2444

    Article  CAS  Google Scholar 

  42. Correa NCF, da Silva Macedo C, Moraes J d FC, Machado NT, de Franca LF (2012) Characteristics of the extract of Litopenaeus vannamei shrimp obtained from the cephalothorax using pressurized CO2. J Supercrit Fluids 66:176–180

    Article  CAS  Google Scholar 

  43. Simandi B, Oszagyan M, Lemberkovics E, Kery A, Kaszacs J, Thyrion F, Matyas T (1998) Supercritical carbon dioxide extraction and fractionation of oregano oleoresin. Food Res Int 31:723–728

    Article  Google Scholar 

  44. Mukhopadhyay M (2000) Natural extracts using supercritical carbon dioxide. CRC, Boca Raton, pp 189–190

    Book  Google Scholar 

  45. Esquivel MM, Ribeiro MA, Bernardo-Gil MG (1999) Supercritical extraction of savory oil: study of antioxidant activity and extract characterization. J Supercrit Fluids 14:129–138

    Article  CAS  Google Scholar 

  46. del Valle JM, Godoy C, Asencio M, Aguilera JM (2004) Recovery of antioxidants from boldo (Peumusboldus M.) by conventional and supercritical CO2 extraction. Food Res Int 37:695–702

    Article  CAS  Google Scholar 

  47. Opstaele FV, Goiris K, Rouck GD, Aerts G, De Cooman L (2012) Production of novel varietal hop aromas by supercritical fluid extraction of hop pellets–part 2: preparation of single variety floral, citrus, and spicy hop oil essences by density programmed supercritical fluid extraction. J Supercrit Fluids 71:147–161

    Article  CAS  Google Scholar 

  48. Quitain AT, Katoh S, Moriyoshi T (2004) Isolation of antimicrobials and antioxidants from mosobamboo (Phyllostachys Heterocycla) by supercritical CO2 extraction and subsequent hydrothermal treatment of the residues. Ind Eng Chem Res 43:1056–1060

    Article  CAS  Google Scholar 

  49. Cardenas-Toro FP, Forster-Carneiro T, Rostagno MA, Petenate AJ, Maugeri Filho F, Meireles MAA (2014) Integrated supercritical fluid extraction and subcritical water hydrolysis for the recovery of bioactive compounds from pressed palm fiber. J Supercrit Fluids 93:42–48

    Article  CAS  Google Scholar 

  50. Lopez-Sebastian S, Ramos E, Ibanez E, Bueno JM, Ballester L, Tabera J, Reglero G (1998) Dearomatization of antioxidant rosemary extracts by treatment with supercritical carbon dioxide. J Agric Food Chem 46:13–19

    Article  CAS  Google Scholar 

  51. Hadolin M, Hras AR, Bauman D, Knez Z (2004) Isolation and concentration of natural antioxidants with high-pressure extraction. Innovative Food Sci Emerg Technol 5:245–248

    Article  CAS  Google Scholar 

  52. Murga R, Ruiz R, Beltran S, Cabezas JL (2000) Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. J Agric Food Chem 48:3408–3412

    Article  CAS  Google Scholar 

  53. Ribeiro MA, Bernardo-Gil MG, Esquivel MM (2001) Melissa officinalis L.: study of antioxidant activity in supercritical residues. J Supercrit Fluids 21:51–60

    Article  CAS  Google Scholar 

  54. Schieber A, Carle R (2005) Occurrence of carotenoid cis-isomers in foods: technological, analytical, and nutritional implications. Trends Food Sci Technol 16:416–422

    Article  CAS  Google Scholar 

  55. Mezzomo N, Ferreira SR (2016) Carotenoids functionality, sources, and processing by supercritical technology: a review. J Chem 2016:1

    Article  CAS  Google Scholar 

  56. Guglu-Ustundag O, Temelli F (2004) Correlating the solubility behavior of minor lipid components in supercritical carbon dioxide. J Supercrit Fluids 31:235–253

    Article  CAS  Google Scholar 

  57. Vasapollo G, Longo L, Rescio L, Ciurlia L (2004) Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. J Supercrit Fluids 29:87–96

    Article  CAS  Google Scholar 

  58. Reverchon E, De Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166

    Article  CAS  Google Scholar 

  59. Mezzomo N, Mileo BR, Friedrich MT, Martinez J, Ferreira SRS (2010) Supercritical fluid extraction of peach (Prunuspersica) almond oil: process yield and extract composition. Bioresour Technol 101:5622–5632

    Article  CAS  Google Scholar 

  60. Gomez-Prieto MS, Caja MM, Herraiz M, Santa-Maria G (2003) Supercritical fluid extraction of all-trans-lycopene from tomato. J Agric Food Chem 51:3–7

    Article  CAS  Google Scholar 

  61. Nobre BP, Palavra AF, Pessoa FLP, Mendes RL (2009) Supercritical CO2 extraction of trans-lycopene from Portuguese tomato industrial waste. Food Chem 116:680–685

    Article  CAS  Google Scholar 

  62. Konar N, Haspolat I, Poyrazoglu ES, Demir K, Artık N (2012) A review on supercritical fluid extraction (SFE) of lycopene from tomato and tomato products. Karaelmas Sci Eng J 2:69–75

    Article  Google Scholar 

  63. Nobre BP, Gouveia L, Matos PGS, Cristino AF, Palavra AF, Mendes RL (2012) Supercritical extraction of lycopene from tomato industrial wastes with ethane. Molecules 17:8397–8407

    Article  CAS  Google Scholar 

  64. Shi J, Khatri M, Xue SJ, Mittal GS, Ma Y, Li D (2009a) Solubility of lycopene in supercritical CO2 fluid as affected by temperature and pressure. Sep Purif Technol 66:322–328

    Article  CAS  Google Scholar 

  65. Yi C, Shi J, Xue SJ, Jiang Y, Li D (2009) Effects of supercritical fluid extraction parameters on lycopene yield and antioxidant activity. Food Chem 113:1088–1094

    Article  CAS  Google Scholar 

  66. Baysal T, Ersus S, Starmans DAJ (2000) Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. J Agric Food Chem 48:5507–5511

    Article  CAS  Google Scholar 

  67. Ollanketo M, Hartonen K, Riekkola M-L, Holm Y, Hiltunen R (2001) Supercritical carbon dioxide extraction of lycopene in tomato skins. Eur Food Res Technol 212:561–565

    Article  CAS  Google Scholar 

  68. Cadoni E, De Giorgi MR, Medda E, Poma G (2000) Supercritical CO2 extraction of lycopene and β-carotene from ripe tomatoes. Dyes Pigments 44:27–32

    Article  Google Scholar 

  69. Ciurlia L, Bleve M, Rescio L (2009) Supercritical carbon dioxide co-extraction of tomatoes (Lycopersicumesculentum L.) and hazelnuts (Corylusavellana L.): a new procedure in obtaining a source of natural lycopene. J Supercrit Fluids 49:338–344

    Article  CAS  Google Scholar 

  70. Shi J, Yi C, Xue SJ, Jiang Y, Ma Y, Li D (2009) Effects of modifiers on the profile of lycopene extracted from tomato skins by supercritical CO2. J Food Eng 93:431–436

    Article  CAS  Google Scholar 

  71. Rozzi NL, Singh RK, Vierling RA, Watkins BA (2002) Supercritical fluid extraction of lycopene from tomato processing byproducts. J Agric Food Chem 50:2638–2643

    Article  CAS  Google Scholar 

  72. Del Castillo MLR, Gomez-Prieto MS, Herraiz M, Santa-Maria G (2003) Lipid composition in tomato skin supercritical fluid extracts with high lycopene content. J Am Oil Chem Soc 80:271–274

    Article  Google Scholar 

  73. Sabio E, Lozano M, de Espinosa VM, Mendes RL, Pereira AP, Palavra AF, Coelho JA (2003) Lycopene and β-carotene extraction from tomato processing waste using supercritical CO2. Ind Eng Chem Res 42:6641–6646

    Article  CAS  Google Scholar 

  74. De la Fuente JC, Oyarzun B, Quezada N, del Valle JM (2006) Solubility of carotenoid pigments (lycopene and astaxanthin) in supercritical carbon dioxide. Fluid Phase Equilib 247:90–95

    Article  CAS  Google Scholar 

  75. Vaughn KLS, Clausen EC, King JW, Luke RH, Julie CD (2008) Extraction conditions affecting supercritical fluid extraction (SFE) of lycopene from watermelon. Bioresour Technol 99:7835–7841

    Article  CAS  Google Scholar 

  76. Saldana MDA, Temelli F, Guigard SE, Tomberli B, Gray CG (2010) Apparent solubility of lycopene and β-carotene in supercritical CO2, CO2 + ethanol and CO2 + canola oil using dynamic extraction of tomatoes. J Food Eng 99:1–8

    Article  CAS  Google Scholar 

  77. Machmudah S, Zakaria, Winardi S, Sasaki M, Goto M, Kusumoto N, Hayakawa K (2012) Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J Food Eng 108:290–296

    Article  CAS  Google Scholar 

  78. Topal U, Sasaki M, Goto M, Hayakawa K (2006) Extraction of lycopene from tomato skin with supercritical carbon dioxide: effect of operating conditions and solubility analysis. J Agric Food Chem 54:5604–5610

    Article  CAS  Google Scholar 

  79. Machmudah S, Shotipruk A, Goto M, Sasaki M, Hirose T (2006) Extraction of Astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer. Ind Eng Chem Res 45:3652–3657

    Article  CAS  Google Scholar 

  80. Vagi E, Simandi B, Vasarhelyine KP, Daood H, Kery A, Doleschall F, Nagy B (2007) Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products. J Supercrit Fluids 40:218–226

    Article  CAS  Google Scholar 

  81. Filho GL, de Rosso VV, Meireles MAA, Rosa PT, Oliveira AL, Mercadante AZ, Cabral FA (2008) Supercritical CO2 extraction of carotenoids from pitanga fruits (Eugenia uniflora L.). J Supercrit Fluids 46:33–39

    Article  CAS  Google Scholar 

  82. Egydio JA, Moraes AM, Rosa PTV (2010) Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidation activity. J Supercrit Fluids 54:159–164

    Article  CAS  Google Scholar 

  83. Cardoso LC, Serrano CM, Rodriguez MR, de la Ossa EJM, Lubian LM (2012) Extraction of carotenoids and fatty acids from microalgae using supercritical technology. Am J Anal Chem 3:877–883

    Article  CAS  Google Scholar 

  84. Ciftci ON, Calderon J, Temelli F (2012) Supercritical carbon dioxide extraction of corn distiller’s dried grains with solubles: experiments and mathematical modeling. J Agric Food Chem 60:12482–12490

    Article  CAS  Google Scholar 

  85. Guedes AC, Giao MS, Matias AA, Nunes AVM, Pintado ME, Duarte CMM, Malcata FX (2013) Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of Scenedes musobliquus for use in food processing. J Food Eng 116:478–482

    Article  CAS  Google Scholar 

  86. Tai HP, Kim KPT (2014) Supercritical carbon dioxide extraction of Gac oil. J Supercrit Fluids 95:567–571

    Article  CAS  Google Scholar 

  87. Jaime L, Vazquez E, Fornari T, Lopez-Hazas MDC, Garcia-Risco MR, Santoyo S, Reglero G (2015) Extraction of functional ingredients from spinach (Spinacia oleracea L.) using liquid solvent and supercritical CO2 extraction. J Sci Food Agric 95:722–729

    Article  CAS  Google Scholar 

  88. Chougle JA, Bankar SB, Chavan PV, Patravale VB, Singhal RS (2016) Supercritical carbon dioxide extraction of astaxanthin from Paracoccus NBRC 101723: mathematical modelling study. Sep Sci Technol 51:2164–2173

    Article  CAS  Google Scholar 

  89. Hosseini SRP, Tavakoli O, Sarrafzadeh MH (2017) Experimental optimization of SC–CO2 extraction of carotenoids from Dunaliella salina. J Supercrit Fluids 121:89–95

    Article  CAS  Google Scholar 

  90. Wang X, Wang C, Zha X, Mei Y, Xia J, Jiao Z (2017) Supercritical carbon dioxide extraction of β-carotene and α-tocopherol from pumpkin: a Box-Behnken design for extraction variables. Anal Methods 9:294–303

    Article  CAS  Google Scholar 

  91. Kehili M, Kammlott M, Choura S, Zammel A, Zetzl C, Smirnova I, Allouche N, Sayadi S (2017) Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Bioprod Process 102:340–349

    Article  CAS  Google Scholar 

  92. Machmudah S, Kawahito Y, Sasaki M, Goto M (2008) Process optimization and extraction rate analysis of carotenoids extraction from rosehip fruit using supercritical CO2. J Supercrit Fluids 44:308–314

    Article  CAS  Google Scholar 

  93. Ruenngam D, Shotipruk A, Pavasant P, Machmudah S, Goto M (2012) Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2. Chem Eng Technol 35:255–260

    Article  CAS  Google Scholar 

  94. Lamin SK, John S, Gauri SM (2008) Optimization of supercritical fluid extraction of lycopene from tomato skin with central composite rotatable design model. Sep Purif Technol 60:278–284

    Article  CAS  Google Scholar 

  95. Vega PJ, Balaban MO, Sims CA, Okeefe SF, Cornell JA (1996) Supercritical carbon dioxide extraction efficiency for carotenes from carrots by RSM. J Food Sci 61:757–759

    Article  CAS  Google Scholar 

  96. Nobre BP, Villalobos F, Barragan BE, Oliveira AC, Batista AP, Marques PASS, Mendes RL, Sovova H, Palavra AF, Gouveia L (2013) A biorefinery from Nannochloropsis sp. Microalga extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135:128–136

    Article  CAS  Google Scholar 

  97. Sovova H, Stateva RP, Galushko AA (2001) Solubility of β-carotene in supercritical CO2 and the effect of entrainers. J Supercrit Fluids 21:195–203

    Article  CAS  Google Scholar 

  98. Rosa PTV, Meireles MAA (2005) Rapid estimation of the manufacturing cost of extracts obtained by supercritical fluid extraction. J Food Eng 67:235–240

    Article  Google Scholar 

  99. Sanal IS, Guvenc A, Salgin U, Mehmetoglu U, Calimli A (2004) Recycling of apricot pomace by supercritical CO2 extraction. J Supercrit Fluids 32:221–230

    Article  CAS  Google Scholar 

  100. Kha TC, Phan-Tai H, Nguyen MH (2014) Effects of pre-treatments on the yield and carotenoid content of Gac oil using supercritical carbon dioxide extraction. J Food Eng 120:44–49

    Article  CAS  Google Scholar 

  101. Doker O, Salgin U, Sanal I, Mehmetoglu U, Calimli A (2004) Modeling of extraction of β-carotene from apricot bagasse using supercritical CO2 in packed bed extractor. J Supercrit Fluids 28:11–19

    Article  CAS  Google Scholar 

  102. Sun M, Temelli F (2006) Supercritical carbon dioxide extraction of carotenoids from carrot using canola oil as a continuous co-solvent. J Supercrit Fluids 37:397–408

    Article  CAS  Google Scholar 

  103. Brunner G (1994) Gas extraction: an introduction to fundamentals of supercritical fluids and the application to separation processes. Springer, Berlin/Heidelberg, pp 179–247

    Google Scholar 

  104. Louli V, Ragoussis N, Magoulas K (2004) Recovery of phenolic antioxidants from wine industry by-products. Bioresour Technol 92:201–208

    Article  CAS  Google Scholar 

  105. Mukhopadhyay M, Karamta HA (2008) Novel process for supercritical fluid extraction of nutraceuticals enriched with carotenoids. Indian Inst Chem Eng 50:106–121

    CAS  Google Scholar 

  106. Tabera J, Guinda A, Ruiz-Rodriguez A, Senorans FJ, Ibanez E, Albi T, Reglero G (2004) Countercurrent supercritical fluid extraction and fractionation of high-added-value compounds from a hexane extract of olive leaves. J Agric Food Chem 52:4774–4779

    Article  CAS  Google Scholar 

  107. Speight J (2017) Environmental organic chemistry for engineers, 1st edn. Butterworth–Heinemann, Elsevier, Cambridge, p 221

    Google Scholar 

  108. Seader JD, Henley EJ, Keith Roper D (2011) Separation process principles, 3rd edn. Wiley, Hoboken, p 258

    Google Scholar 

  109. Brunner G (2010) Applications of supercritical fluids. Annu Rev Chem Biomol Eng 1:321–342

    Article  CAS  Google Scholar 

  110. De Haan AB, de Graauw J, Schaap JE, Badings HT (1990) Extraction of flavors from milk fat with supercritical carbon dioxide. J Supercrit Fluids 3:15–19

    Article  Google Scholar 

  111. Brunner G, Malchow TH, Struken K (1991) Separation of tocopherol from deodoriser condensates by countercurrent extraction with CO2. J Supercrit Fluids 4:72–80

    Article  CAS  Google Scholar 

  112. Fang T, Goto M, Wang XB, Ding X, Geng J, Sasaki M, Hirose T (2007) Separation of natural tocopherols from soybean oil byproduct with supercritical carbon dioxide. J Supercrit Fluids 40:50–58

    Article  CAS  Google Scholar 

  113. Terada A, Kitajima N, Machmudah S, Tanaka M, Sasaki M, Goto M (2010) Cold-pressed yuzu oil fractionation using countercurrent supercritical CO2 extraction column. Sep Purif Technol 71:107–113

    Article  CAS  Google Scholar 

  114. Diaz MS, Brignole EA (2009) Modeling and optimization of supercritical fluid processes. J Supercrit Fluids 47:52–59

    Article  CAS  Google Scholar 

  115. Schaffner D, Trepp C (1995) Improved mass transfer for supercritical fluid extraction – a new mixer-settler system. J Supercrit Fluids 8:287–294

    Article  CAS  Google Scholar 

  116. Langmaack T, Jaeger PT, Eggers R (1996) The refinement of vegetable oils through countercurrent extraction with compressed carbon dioxide. Fett-Lipid 98:261–267

    Article  CAS  Google Scholar 

  117. Ooi CK, Bhaskar AR, Yener MS, Tuan DQ, Hsu J, Rizvi SSH (1996) Continuous supercritical carbon dioxide processing of palm oil. J Am Oil Chem Soc 73:233–237

    Article  CAS  Google Scholar 

  118. Sahle-Demessie E (1997) Thermal gradient fractionation of glyceride mixtures under supercritical fluid conditions. J Supercrit Fluids 10:127–137

    Article  Google Scholar 

  119. Simoes PC, Carmelo PJ, Pereira PJ, Lopes JA, da Ponte MN, Brunner G (1998) Quality assessment of refined olive oils by gas extraction. J Supercrit Fluids 13:337–341

    Article  CAS  Google Scholar 

  120. Dunford NT, King JW (2001) Thermal gradient deacidification of crude rice bran oil utilizing supercritical carbon dioxide. J Am Oil Chem Soc 78:121–125

    Article  CAS  Google Scholar 

  121. Dunford NT, Teel JA, King JW (2003) A continuous countercurrent supercritical fluid deacidification process for phytosterol ester fortification in rice bran oil. Food Res Int 36:175–181

    Article  CAS  Google Scholar 

  122. Chen CR, Wang CH, Wang LY, Hong ZH, Chen SH, Ho WJ, Chang CMJ (2008) Supercritical carbon dioxide extraction and deacidification of rice bran oil. J Supercrit Fluids 45:322–331

    Article  CAS  Google Scholar 

  123. Ruivo RM, Cebola MJ, Simoes PC (2001) Fractionation of edible oil model mixtures by supercritical carbon dioxide in a packed column. Part I: experimental results. Ind Eng Chem Res 40:1706–1711

    Article  CAS  Google Scholar 

  124. Ibanez E, Hurtado-Benavides AM, Senorans FJ, Reglero G (2002) Concentration of sterols and tocopherols from olive oil with supercritical carbon dioxide. J Am Oil Chem Soc 79:1255–1260

    Article  CAS  Google Scholar 

  125. Gast K, Jungfer M, Saure C, Brunner G (2005) Purification of tocochromanols from edible oil. J Supercrit Fluids 34:17–25

    Article  CAS  Google Scholar 

  126. Chuang MH, Brunner G (2006) Concentration of minor components in crude palm oil. J Supercrit Fluids 37:151–156

    Article  CAS  Google Scholar 

  127. Vazquez L, Torres CF, Fornari T, Grigelmo N, Senorans FJ, Reglero G (2006) Supercritical fluid extract ion of minor lipids from pretreated sunflower oil deodorizer distillates. Eur J Lipid Sci Technol 108:659–665

    Article  CAS  Google Scholar 

  128. Ruivo RM, Paiva A, Simoes PC (2006) Hydrodynamics and mass transfer of a static mixer at high pressure conditions. Chem Eng Process 45:224–231

    Article  CAS  Google Scholar 

  129. Vazquez L, Torres CF, Fornari T, Senorans FJ, Reglero G (2007) Recovery of squalene from vegetable oil sources using countercurrent supercritical carbon dioxide extraction. J Supercrit Fluids 40:59–66

    Article  CAS  Google Scholar 

  130. Torres CF, Fornari T, Torrelo G, Senorans FJ, Reglero G (2009) Production of phytosterol esters from soybean oil deodorizer distillates. Eur J Lipid Sci Technol 111:459–463

    Article  CAS  Google Scholar 

  131. Compton DL, Laszlo JA, Eller FJ, Taylor SL (2008) Purification of 1,2-diacylglycerols from vegetable oils: comparison of molecular distillation and liquid CO2 extraction. Ind Crop Prod 28:113–121

    Article  CAS  Google Scholar 

  132. Eller FJ, Taylor SL, Compton DL, Laszlo JA, Palmquist DE (2008) Countercurrent liquid carbon dioxide purification of a model reaction mixture. J Supercrit Fluids 43:510–514

    Article  CAS  Google Scholar 

  133. Fornari T, Vazquez L, Torres CF, Ibanez E, Senorans FJ, Reglero G (2008) Countercurrent supercritical fluid extraction of different lipid-type materials: experimental and thermodynamic modeling. J Supercrit Fluids 45:206–212

    Article  CAS  Google Scholar 

  134. Ruivo RM, Couto RM, Simoes PC (2008) Supercritical carbon dioxide fractionation of the model mixture squalene/oleic acid in a membrane contactor. Sep Purif Technol 59:231–237

    Article  CAS  Google Scholar 

  135. Vazquez L, Hurtado-Benavides AM, Reglero G, Fornari T, Ibanez E, Senorans FJ (2009) Deacidification of olive oil by countercurrent supercritical carbon dioxide extraction: experimental and thermodynamic modeling. J Food Eng 90:463–470

    Article  CAS  Google Scholar 

  136. Eller FJ, Taylor SL, Laszlo JA, Compton DL, Teel JA (2009) Countercurrent carbon dioxide purification of partially deacylated sunflower oil. J Am Oil Chem Soc 86:277–282

    Article  CAS  Google Scholar 

  137. Rincon J, Martinez F, Rodriguez L, Ancillo V (2011) Recovery of triglycerides from used frying oil by extraction with liquid and supercritical ethane. J Supercrit Fluids 56:72–79

    Article  CAS  Google Scholar 

  138. Compton DL, Eller FJ, Laszlo JA, Evans KO (2012) Purification of 2-monoacylglycerols using liquid CO2 extraction. J Am Oil Chem Soc 89:1529–1536

    Article  CAS  Google Scholar 

  139. Eggers R, Wagner H (1993) Extraction device for high viscous media in a high-turbulent two-phase flow with supercritical CO2. J Supercrit Fluids 6:31–37

    Article  CAS  Google Scholar 

  140. Wagner H, Eggers R (1996) Extraction of spray particles with supercritical fluids in a two-phase flow. AICHE J 42:1901–1910

    Article  CAS  Google Scholar 

  141. Eggers R, Wagner H, Schneider M (1999) Process for high pressure spray extraction of liquids. US Patent No 5,855,786

    Google Scholar 

  142. Eller FJ, Taylor SL, Curren MSS (2004) Use of liquid carbon dioxide to remove hexane from soybean oil. J Am Oil Chem Soc 81:989–992

    Article  CAS  Google Scholar 

  143. Bhaskar AR, Rizvi SSH, Harriott P (1993a) Performance of a packed column for continuous supercritical carbon dioxide processing of anhydrous milk fat. Biotechnol Prog 9:70–74

    Article  CAS  Google Scholar 

  144. Bhaskar AR, Rizvi SSH, Sherbon JW (1993b) Anhydrous milk fat fractionation with continuous countercurrent supercritical carbon dioxide. J Food Sci 58:748–752

    Article  CAS  Google Scholar 

  145. Rizvi SSH, Bhaskar AR (1995) Supercritical fluid processing of milk fat – fractionation, scale-up, and economics. Food Technol 49:55–90

    Google Scholar 

  146. Yu ZR, Bhaskar AR, Rizvi SSH (1995) Modeling of triglyceride distribution and yield of anhydrous milk fat in a continuous supercritical carbon dioxide extraction system. J Food Process Eng 18:71–84

    Article  Google Scholar 

  147. Romero P, Rizvi SSH, Kelly ML, Bauman DE (2000) Short communication: concentration of conjugated linoleic acid from milk fat with a continuous supercritical fluid processing system. J Dairy Sci 83:20–22

    Article  CAS  Google Scholar 

  148. Torres CF, Torrelo G, Senorans FJ, Reglero G (2009) Supercritical fluid fractionation of fatty acid ethyl esters from butter oil. J Dairy Sci 92:1840–1845

    Article  CAS  Google Scholar 

  149. Fleck U, Tiegs C, Brunner G (1998) Fractionation of fatty acid ethyl esters by supercritical CO2: high separation efficiency using an automated countercurrent column. J Supercrit Fluids 14:67–74

    Article  CAS  Google Scholar 

  150. Riha V, Brunner G (2000) Separation of fish oil ethyl esters with supercritical carbon dioxide. J Supercrit Fluids 17:55–64

    Article  CAS  Google Scholar 

  151. Catchpole OJ, Grey JB, Noermark KA (2000) Fractionation of fish oils using supercritical CO2 and CO2 plus ethanol mixtures. J Supercrit Fluids 19:25–37

    Article  CAS  Google Scholar 

  152. Catchpole OJ, Simoes PC, Grey JB, Nogueiro EM, Carmelo PJ, Nunes da Ponte M (2000a) Fractionation of lipids in a static mixer and packed column using supercritical carbon dioxide. Ind Eng Chem Res 39:4820–4827

    Article  CAS  Google Scholar 

  153. Simoes PC, Catchpole OJ (2002) Fractionation of lipid mixtures by subcritical r134a in a packed column. Ind Eng Chem Res 41:267–276

    Article  CAS  Google Scholar 

  154. Vazquez L, Fornari T, Senorans FJ, Reglero G, Torres CF (2008) Supercritical carbon dioxide fractionation of non esterified alkoxyglycerols obtained from shark liver oil. J Agric Food Chem 56:1078–1083

    Article  CAS  Google Scholar 

  155. Rincon J, Canizares P, Garcia MT (2007) Improvement of the waste-oil vacuum-distillation recycling by continuous extraction with dense propane. Ind Eng Chem Res 46:266–272

    Article  CAS  Google Scholar 

  156. Simoes PC, Matos HA, Carmelo PJ, Gomes de Azevedo E, Nunes da Ponte M (1995) Mass transfer in countercurrent packed columns: application to supercritical CO2 extraction of terpenes. Ind Eng Chem Res 34:613–618

    Article  CAS  Google Scholar 

  157. Sato M, Goto M, Hirose T (1995) Fractional extraction with supercritical carbon dioxide for the removal of terpenes from citrus oil. Ind Eng Chem Res 34:3941–3946

    Article  CAS  Google Scholar 

  158. Sato M, Goto M, Hirose T (1996) Supercritical fluid extraction on semibatch mode for the removal of terpene in citrus oil. Ind Eng Chem Res 35:1906–1911

    Article  CAS  Google Scholar 

  159. Goto M, Sato M, Kodama A, Hirose T (1997) Application of supercritical fluid technology to citrus oil processing. Physica B 239:167–170

    Article  CAS  Google Scholar 

  160. Sato M, Kondo M, Goto M (1998) Fractionation of citrus oil by supercritical countercurrent extractor with side-stream withdrawal. J Supercrit Fluids 13:311–317

    Article  CAS  Google Scholar 

  161. Kondo M, Goto M, Kodama A, Hirose T (2000) Fractional extraction by supercritical carbon dioxide for the deterpenation of bergamot oil. Ind Eng Chem Res 39:4745–4748

    Article  CAS  Google Scholar 

  162. Kondo M, Goto M, Kodama A, Hirose T (2002) Separation performance of supercritical carbon dioxide extraction column for the citrus oil processing: observation using simulator. Sep Sci Technol 37:3391–3406

    Article  CAS  Google Scholar 

  163. Budich M, Heilig S, Wesse T, Leibkuchler V, Brunner G (1999) Countercurrent deterpenation of citrus oils with supercritical CO2. J Supercrit Fluids 14:105–114

    Article  CAS  Google Scholar 

  164. Jaubert JNN, Goncalves MM, Barth D (2000) A theoretical model to simulate supercritical fluid extraction: application to the extraction of terpenes by supercritical carbon dioxide. Ind Eng Chem Res 39:4991–5002

    Article  CAS  Google Scholar 

  165. Kondo M, Akgun N, Goto M, Kodama A, Hirose T (2002) Semi-batch operation and countercurrent extraction by supercritical CO2 for the fractionation of lemon oil. J Supercrit Fluids 23:21–27

    Article  CAS  Google Scholar 

  166. Varona S, Martin A, Cocero MJ, Gamse T (2008) Supercritical carbon dioxide fractionation of lavandin essential oil: experiments and modeling. J Supercrit Fluids 45:181–188

    Article  CAS  Google Scholar 

  167. Ganan N, Brignole EA (2011) Fractionation of essential oils with biocidal activity using supercritical CO2-experiments and modeling. J Supercrit Fluids 58:58–67

    Article  CAS  Google Scholar 

  168. Schultz TH, Flath RA, Black DR, Guadagni DG, Schultz WG, Teranishi R (1967) Volatiles from delicious apple essence – extraction methods. J Food Sci 32:279–283

    Article  CAS  Google Scholar 

  169. Schultz WG, Randall JM (1970) Liquid carbon dioxide for selective aroma extraction. Food Technol 24:94–98

    Google Scholar 

  170. Schultz WG, Schultz TH, Carston RA, Hudson JS (1974) Pilot-plant extraction with liquid CO2. Food Technol 28:32–36

    CAS  Google Scholar 

  171. Pietsch A, Eggers R (1999) The mixer–settler principle as a separation unit in supercritical fluid processes. J Supercrit Fluids 14:163–171

    Article  CAS  Google Scholar 

  172. Senorans FJ, Ruiz-Rodriguez A, Cavero S, Cifuentes A, Ibanez E, Reglero G (2001) Isolation of antioxidant compounds from orange juice by using countercurrent supercritical fluid extraction (CC–SFE). J Agric Food Chem 49:6039–6044

    Article  CAS  Google Scholar 

  173. Simo C, Ibanez E, Senorans FJ, Barbas C, Reglero G, Cifuentes A (2002) Analysis of antioxidants from orange juice obtained by countercurrent supercritical fluid extraction, using micellar electro kinetic chromatography and reverse-phase liquid chromatography. J Agric Food Chem 50:6648–6652

    Article  CAS  Google Scholar 

  174. Senorans FJ, Ruiz-Rodriguez A, Ibanez E, Tabera J, Reglero G (2001a) Optimization of countercurrent supercritical fluid extraction conditions for spirits fractionation. J Supercrit Fluids 21:41–49

    Article  CAS  Google Scholar 

  175. Senorans FJ, Ruiz-Rodriguez A, Ibanez E, Tabera J, Reglero G (2001b) Countercurrent supercritical fluid extraction and fractionation of alcoholic beverages. J Agric Food Chem 49:1895–1899

    Article  CAS  Google Scholar 

  176. Senorans FJ, Ruiz-Rodriguez A, Ibanez E, Tabera J, Reglero G (2003) Isolation of brandy aroma by countercurrent supercritical fluid extraction. J Supercrit Fluids 26:129–135

    Article  CAS  Google Scholar 

  177. Macedo S, Fernandes S, Lopes JA, de Sousa HC, Pereira PJ, Carmelo PJ, Menduina C, Simoes PC (2008) Recovery of wine-must aroma compounds by supercritical CO2. Food Bioprocess Technol 1:74–81

    Article  Google Scholar 

  178. Ruiz-Rodriguez A, Fornari T, Hernandez EJ, Senorans FJ, Reglero G (2010) Thermodynamic modeling of dealcoholization of beverages using supercritical CO2: application to wine samples. J Supercrit Fluids 52:183–188

    Article  CAS  Google Scholar 

  179. Bothun GD, Knutson BL, Strobel HJ, Nokes SE, Brignole EA, Diaz S (2003) Compressed solvents for the extraction of fermentation products within a hollow fiber membrane contactor. J Supercrit Fluids 25:119–134

    Article  CAS  Google Scholar 

  180. Bocquet S, Torres A, Sanchez J, Rios GM, Romero J (2005) Modeling the mass transfer in solvent-extraction processes with hollow-fiber membranes. AICHE J 51:1067–1079

    Article  CAS  Google Scholar 

  181. Gabelman A, Hwang ST (2005) Experimental results versus model predictions for dense gas extraction using a hollow fiber membrane contactor. J Supercrit Fluids 35:26–39

    Article  CAS  Google Scholar 

  182. Gabelman A, Hwang ST, Krantz WB (2005) Dense gas extraction using a hollow fiber membrane contactor: experimental results versus model predictions. J Membr Sci 257:11–36

    Article  CAS  Google Scholar 

  183. Gabelman A, Hwang ST (2006) A theoretical study of dense gas extraction using a hollow fiber membrane contactor. J Supercrit Fluids 37:157–172

    Article  CAS  Google Scholar 

  184. Bocquet S, Romero J, Sanchez J, Rios GM (2007) Membrane contactors for the extraction process with subcritical carbon dioxide or propane: simulation of the influence of operating parameters. J Supercrit Fluids 41:246–256

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motonobu Goto .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Machmudah, S., Wahyudiono, Kanda, H., Goto, M. (2018). Supercritical Fluid Extraction and Fractionation. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1006-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1006-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics