Skip to main content

Conversion of Lignin into High Value Chemical Products

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 421 Accesses

Glossary

Cleavage:

The chemical bonds are broken by chemical means

Conversion:

A chemical process in which the bonds of chemicals are cleaved or reorganized to form new chemicals

Degradation:

Conversion of macromolecules or polymers to small molecules by cleaving the chemical bonds

Lignin:

One of the three main components of lignocellulosic biomass, as well as an abundant waste product in the pulp and paper industry

Linkage:

The type of chemical bonding which connects monomers to form polymers

Valorization:

Conversion of low valued chemicals or waste to high valued chemicals

Definition of the Subject

Biomass, being the only renewable organic carbon resource in nature, can be transformed into renewable fuels as well as has unique advantages in producing high-valued chemicals. Lignin is mainly an amorphous tridimensional complex polyphenolic polymer which is the most recalcitrant of the three main components of lignocellulosic biomass. Lignin is also a major renewable biomass waste...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Glenn JC, Florescu E (2015) The millennium project team. http://www.millennium-project.org/millennium/publications.html

  2. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  3. Melero JA, Iglesias J, Garcia A (2012) Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy Environ Sci 5:7393–7420

    Article  CAS  Google Scholar 

  4. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  Google Scholar 

  5. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624

    Article  CAS  Google Scholar 

  6. IRENA (2014) REmap 2030: a renewable energy roadmap, June 2014. IRENA, Abu Dhabi. http://irena.org/remap/

  7. National twelfth five-year plan on biomass energy (2012) Chinese National Energy Administration, Beijing

    Google Scholar 

  8. Sanderson K (2011) A chewy problem. Nature 474:S12

    Article  CAS  Google Scholar 

  9. Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307

    Article  CAS  Google Scholar 

  10. Ralph J, Brunow G, Boerjan W (2007) Lignins. In Encyclopedia of Life Sciences; John Wiley & Sons Ltd: Chichester, U.K.; https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0020104

  11. Kamm B, Gruber PR, Kamm M (2007) Biorefineries-industrial processes and products. Wiley-VCH, Weinheim, p 964

    Google Scholar 

  12. Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43:7485–7500

    Article  CAS  Google Scholar 

  13. Sun R (2010) Cereal straw as a resource for sustainable biomaterials and biofuels chemistry, extractives, lignins, hemicelluloses and cellulose. Elsevier, Oxford, U.K.

    Google Scholar 

  14. Stöcker M (2008) Biofuels and biomass to liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47:9200–9211

    Article  Google Scholar 

  15. Gasser CA, Hommes G, Schäffer A, Corvini PFX (2012) Multi-catalysis reactions: new prospects and challenges of biotechnology to valorize lignin. Appl Microbiol Biotechnol 95:1115–1134

    Article  CAS  Google Scholar 

  16. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  17. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

    Article  Google Scholar 

  18. Zhang Z, Song J, Han B (2016) Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem Rev 117:6834–6880

    Article  Google Scholar 

  19. Zakzeski J, Weckhuysen BM (2011) Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen. ChemSusChem 4:369–378

    Article  CAS  Google Scholar 

  20. Adler E (1977) Lignin chemistry – past, present and future. Wood Sci Technol 11:169–218

    Article  CAS  Google Scholar 

  21. Sannigrahi P, Ragauskas AJ, Miller SJ (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. Bioenergy Res 1:205–214

    Article  Google Scholar 

  22. Ede RM, Ralph J, Torr KM, Dawson BSW (1996) A 2D NMR investigation of the heterogeneity of distribution of diarylpropane structures in extracted Pinus radiata lignins. Holzforschung 50:161–164

    Article  CAS  Google Scholar 

  23. Sedai B, Díaz-Urrutia C, Baker RT, Wu R, Silks LAP, Hanson SK (2013) Aerobic oxidation of β-1 lignin model compounds with copper and oxovanadium catalysts. ACS Catal 3:3111–3122

    Article  CAS  Google Scholar 

  24. Wang M, Li LH, Lu JM, Li HJ, Zhang XC, Liu HF, Luo NC, Wang F (2017) Acid promoted C–C bond oxidative cleavage of β-O-4 and β-1 lignin models to esters over a copper catalyst. Green Chem 19:702–706

    Article  CAS  Google Scholar 

  25. Shimada M, Habe T, Higuchi T, Okamoto T, Panijpan B (1987) Biomimetic approach to lignin degradation II. The mechanism of oxidative C–C bond cleavage reactions of lignin model compounds with natural iron (III) porphyrin chloride as a heme-enzyme model system. Holzforschung 41:277–285

    Article  CAS  Google Scholar 

  26. Zhou Z, Liu M, Li CJ (2017) Selective copper-N-heterocyclic carbene (copper-NHC)-catalyzed aerobic cleavage of β-1 lignin models to aldehydes. ACS Catal 7:3344–3348

    Article  CAS  Google Scholar 

  27. Regalbuto JR (2009) Cellulosic biofuels – got gasoline? Science 325:822–824

    Article  Google Scholar 

  28. Rahimi A, Ulbrich A, Coon JJ, Stahl SS (2014) Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515:249–252

    Article  CAS  Google Scholar 

  29. Son S, Toste FD (2010) Non-oxidative vanadium-catalyzed C–O bond cleavage: application to degradation of lignin model compounds. Angew Chem Int Ed 49:3791–3794

    Article  CAS  Google Scholar 

  30. Nguyen JD, Matsuura BS, Stephenson CRJ (2014) A photochemical strategy for lignin degradation at room temperature. J Am Chem Soc 136:1218–1221

    Article  CAS  Google Scholar 

  31. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton

    Book  Google Scholar 

  32. Jarvis MW, Daily JW, Carstensen HH, Dean AM, Sharma S, Dayton DC, Robichaud DJ, Nimlos MR (2011) Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether. J Phys Chem A 115:428–438

    Article  CAS  Google Scholar 

  33. Sergeev AG, Hartwig JF (2011) Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 332:439–443

    Article  CAS  Google Scholar 

  34. Sergeev AG, Webb JD, Hartwig JF (2012) A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation. J Am Chem Soc 134:20226–20229

    Article  CAS  Google Scholar 

  35. Gao F, Webb JD, Hartwig JF (2016) Chemo- and region-selective hydrogenolysis of diaryl ether C–O bonds by a robust heterogeneous Ni/C catalyst: applications to the cleavage of complex lignin-related fragments. Angew Chem Int Ed 55:1474–1478

    Article  CAS  Google Scholar 

  36. Saper NI, Hartwig JF (2017) Mechanistic investigations of the hydrogenolysis of diaryl ethers catalyzed by nickel complexes of N-heterocyclic carbene ligands. J Am Chem Soc 139:17667–17676

    Article  CAS  Google Scholar 

  37. Ren Y, Yan M, Wang J, Zhang ZC, Yao K (2013) Selective reductive cleavage of inert aryl C–O bonds by an iron catalyst. Angew Chem 125:12906–12910

    Article  Google Scholar 

  38. Meng Q, Hou M, Liu H, Song J, Han B (2017) Synthesis of ketones from biomass-derived feedstock. Nat Commun 8:14190

    Article  Google Scholar 

  39. Wang M, Shi H, Camaioni DM, Lercher JA (2017) Palladium-catalyzed hydrolytic cleavage of aromatic C−O bonds. Angew Chem 129:2142–2146

    Article  Google Scholar 

  40. Wang M, Gutiérrez OY, Camaioni DM, Lercher JA (2018) Palladium-catalyzed reductive insertion of alcohols into aryl ether bonds. Angew Chem Int Ed 57:3747–2751

    Article  CAS  Google Scholar 

  41. He J, Zhao C, Lercher JA (2012) Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J Am Chem Soc 134:20768–20775

    Article  CAS  Google Scholar 

  42. Zhao C, Lercher JA (2012) Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts. ChemCatChem 4:64–68

    Article  CAS  Google Scholar 

  43. Zeng H, Cao D, Qiu Z, Li CJ (2018) Palladium-catalyzed formal cross-coupling of diaryl ethers with amines: Slicing the 4-O-5 linkage in lignin models. Angew Chem Int Ed 57:3752–3757

    Article  CAS  Google Scholar 

  44. Cao D, Zeng H, Li CJ (2018) Formal cross-coupling of diaryl ethers with ammonia by dual C(Ar)–O bond cleavages. ACS Catal 8:8873–8878

    Article  CAS  Google Scholar 

  45. Gosselink RJA, De Jong E, Guran B, Abacherli A (2004) Co-ordination network for lignin–standardisation, production and applications adapted to market requirements. Ind Crop Prod 20:121–129

    Article  CAS  Google Scholar 

  46. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  47. Mullen CA, Boateng AA (2010) Catalytic pyrolysis GC/MS of lignin from several sources. Fuel Process Technol 91:1446–1458

    Article  CAS  Google Scholar 

  48. Barta K, Warner GR, Beach ES, Anastas PT (2014) Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides. Green Chem 16:191–196

    Article  CAS  Google Scholar 

  49. Li C, Zheng M, Wang A, Zhang T (2012) One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ Sci 5:6383–6390

    Article  CAS  Google Scholar 

  50. Song Q, Wang F, Xu J (2012) Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem Commun 48:7019–7021

    Article  CAS  Google Scholar 

  51. Zhang J, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N (2014) A series of NiM (M=Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal 4:1574–1583

    Article  CAS  Google Scholar 

  52. Zhou XF (2014) Selective oxidation of Kraft lignin over zeolite-encapsulated Co(II)[H4] salen and [H2] salen complexes. J Appl Polym Sci 131:40809

    Article  Google Scholar 

  53. Zhang N, Zhou XF (2012) Salen copper (II) complex encapsulated in Y zeolite: an effective heterogeneous catalyst for TCF pulp bleaching using peracetic acid. J Mol Catal A Chem 365:66–72

    Article  CAS  Google Scholar 

  54. Adler E, Pepper JM, Eriksoo E (1957) Action of mineral acid on lignin and model substances of guaiacylglycerol-β-aryl ether type. Ind Eng Chem 49:1391–1392

    Article  CAS  Google Scholar 

  55. Gürbüz EI, Gallo JMR, Alonso DM, Wettstein SG, Lim WY, Dumesic JA (2013) Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone. Angew Chem Int Ed 52:1270–1274

    Article  Google Scholar 

  56. Sturgeon MR, Kim S, Lawrence K, Paton RS, Chmely SC, Nimlos M, Foust TD, Beckham GT (2013) A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain Chem Eng 2:472–485

    Article  Google Scholar 

  57. Long J, Xu Y, Wang T, Yuan Z, Shu R, Zhang Q, Ma L (2015) Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination. Appl Energy 141:70–79

    Article  CAS  Google Scholar 

  58. Yuan Z, Cheng S, Leitch M, Xu CB (2010) Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol. Bioresour Technol 101:9308–9313

    Article  CAS  Google Scholar 

  59. Lavoie JM, Baré W, Bilodeau M (2011) Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour Technol 102:4917–4920

    Article  CAS  Google Scholar 

  60. Mahmood N, Yuan Z, Schmidt J, Xu CC (2013) Production of polyols via direct hydrolysis of Kraft lignin: effect of process parameters. Bioresour Technol 139:13–20

    Article  CAS  Google Scholar 

  61. Yan N, Zhao C, Dyson PJ, Wang C, Liu LT, Kou Y (2008) Selective degradation of wood lignin over noble metal catalysts in a two-step process. ChemSusChem 1:626–629

    Article  CAS  Google Scholar 

  62. Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process. Energy Environ Sci 6:994–1007

    Article  CAS  Google Scholar 

  63. Ferrini P, Rinaldi R (2014) Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions. Angew Chem Int Ed 53:8634

    Article  CAS  Google Scholar 

  64. Barker RS (1966) Preparation of aminated benzenes from hydroxy benzenes. US3272865

    Google Scholar 

  65. Ono Y, Ishida H (1981) Amination of phenols with ammonia over palladium supported on alumina. J Catal 72:121–128

    Article  CAS  Google Scholar 

  66. Hamada H, Yamamoto M, Kuwahara Y, Yasushi K, Takehiko M, Katsuhiko W (1985) The co-amination of phenol and cyclohexanol with palladium-on-carbon catalyst in the liquid phase. An application of a hydrogen-transfer reaction. Bull Chem Soc Jpn 58:1551–1555

    Article  CAS  Google Scholar 

  67. Liu H, Jiang T, Han B, Liang S, Zhou Y (2009) Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. Science 326:1250–1252

    Article  CAS  Google Scholar 

  68. Meng Q, Fan H, Liu H, Zhou H, He Z, Jiang Z, Wu T, Han B (2015) Efficient transformation of anisole into methylated phenols over high-silica HY zeolites under mild conditions. ChemCatChem 7:2831–2835

    Article  CAS  Google Scholar 

  69. Izawa Y, Pun D, Stahl SS (2011) Palladium-catalyzed aerobic dehydrogenation of substituted cyclohexanones to phenols. Science 333:209–213

    Article  CAS  Google Scholar 

  70. Pun D, Diao T, Stahl SS (2013) Aerobic dehydrogenation of cyclohexanone to phenol catalyzed by Pd(TFA)2/2-dimethylaminopyridine: evidence for the role of Pd nanoparticles. J Am Chem Soc 135:8213–8221

    Article  CAS  Google Scholar 

  71. Diao T, Pun D, Stahl SS (2013) Aerobic dehydrogenation of cyclohexanone to cyclohexenone catalyzed by Pd(DMSO)2(TFA)2: evidence for ligand-controlled chemoselectivity. J Am Chem Soc 135:8205–8212

    Article  CAS  Google Scholar 

  72. Izawa Y, Zheng C, Stahl SS (2013) Aerobic oxidative Heck/dehydrogenation reactions of cyclohexenones: efficient access to meta-substituted phenols. Angew Chem Int Ed 52:3672–3675

    Article  CAS  Google Scholar 

  73. Iosub AV, Stahl SS (2016) Palladium-catalyzed aerobic dehydrogenation of cyclic hydrocarbons for the synthesis of substituted aromatics and other unsaturated products. ACS Catal 6:8201–8213

    Article  CAS  Google Scholar 

  74. Zhang J, Jiang Q, Yang D, Zhao X, Dong Y, Liu R (2015) Reaction-activated palladium catalyst for dehydrogenation of substituted cyclohexanones to phenols and H2 without oxidants and hydrogen acceptors. Chem Sci 6:4674–4680

    Article  CAS  Google Scholar 

  75. Liang YF, Song S, Ai L, Li X, Jiao N (2016) A highly efficient metal-free approach to meta-and multiple-substituted phenols via a simple oxidation of cyclohexenones. Green Chem 18:6462–6467

    Article  CAS  Google Scholar 

  76. Simon MO, Girard SA, Li CJ (2012) Catalytic aerobic synthesis of aromatic ethers from non-aromatic precursors. Angew Chem Int Ed 51:7537–7540

    Article  CAS  Google Scholar 

  77. Girard SA, Hu X, Knauber T, Zhou F, Simon MO, Deng GJ, Li CJ (2012) Pd-catalyzed synthesis of aryl amines via oxidative aromatization of cyclic ketones and amines with molecular oxygen. Org Lett 14:5606–5609

    Article  CAS  Google Scholar 

  78. Hajra A, Wei Y, Yoshikai N (2012) Palladium-catalyzed aerobic dehydrogenative aromatization of cyclohexanone imines to arylamines. Org Lett 14:5488–5491

    Article  CAS  Google Scholar 

  79. Sutter M, Duclos MC, Guicheret B, Raoul Y, Métay E, Lemaire M (2013) Straightforward solvent-free heterogeneous palladium-catalyzed synthesis of arylamines from nonaromatic substrates by dehydrogenative alkylation. ACS Sustain Chem Eng 1:1463–1473

    Article  CAS  Google Scholar 

  80. Sutter M, Lafon R, Raoul Y, Métay E, Lemaire M (2013) Heterogeneous palladium-catalyzed synthesis of aromatic ethers by solvent-free dehydrogenative aromatization: mechanism, scope, and limitations under aerobic and non-aerobic conditions. Eur J Org Chem 2013:5902–5916

    Article  CAS  Google Scholar 

  81. Sutter M, Sotto N, Raoul Y, Metay E, Lemaire M (2013) Straightforward heterogeneous palladium catalyzed synthesis of aryl ethers and aryl amines via a solvent free aerobic and non-aerobic dehydrogenative arylation. Green Chem 15:347–352

    Article  CAS  Google Scholar 

  82. Koizumi Y, Taniguchi K, Jin X, Yamaguchi K, Nozaki K, Mizuno N (2017) Formal arylation of NH3 to produce diphenylamines over supported Pd catalysts. Chem Commun 53:10827–10830

    Article  CAS  Google Scholar 

  83. Hong WP, Iosub AV, Stahl SS (2013) Pd-catalyzed Semmler-Wolff reactions for the conversion of substituted cyclohexenone oximes to primary anilines. J Am Chem Soc 135:13664–13667

    Article  CAS  Google Scholar 

  84. Chen Z, Zeng H, Gong H, Wang H, Li CJ (2015) Palladium-catalyzed reductive coupling of phenols with anilines and amines: efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. Chem Sci 6:4174–4178

    Article  CAS  Google Scholar 

  85. Jumde VR, Petricci E, Petrucci C, Santillo N, Taddei M, Vaccaro L (2015) Domino hydrogenation–reductive amination of phenols, a simple process to access substituted cyclohexylamines. Org Lett 17:3990–3993

    Article  CAS  Google Scholar 

  86. Yan L, Liu XX, Fu Y (2016) N-Alkylation of amines with phenols over highly active heterogeneous palladium hydride catalysts. RSC Adv 6:109702–109705

    Article  CAS  Google Scholar 

  87. Chen Z, Zeng H, Girard SA, Wang F, Chen N, Li CJ (2015) Formal direct cross-coupling of phenols with amines. Angew Chem Int Ed 54:14487–14491

    Article  CAS  Google Scholar 

  88. St Amant AH, Frazier CP, Newmeyer B, Fruehauf KR, Read de Alaniz J (2016) Direct synthesis of anilines and nitrosobenzenes from phenols. Org Biomol Chem 14:5520–5524

    Article  CAS  Google Scholar 

  89. Qiu Z, Li JS, Li CJ (2017) Formal aromaticity transfer for palladium-catalyzed coupling between phenols and pyrrolidines/indolines. Chem Sci 8:6954–6958

    Article  CAS  Google Scholar 

  90. Li JS, Qiu Z, Li CJ (2017) Palladium-catalyzed synthesis of N-cyclohexyl anilines from phenols with hydrazine or hydroxylamine via N–N/O cleavage. Adv Synth Catal 359:3648–3653

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Jun Li .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zeng, H., Li, CJ. (2018). Conversion of Lignin into High Value Chemical Products. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1010-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1010-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics