Skip to main content

Proton-Exchange Membrane Fuel Cells with Low-Pt Content

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Electrochemically active surface area (ECSA):

The surface area of Pt catalyst that is electrochemically active, requiring access to both protons and electrons. It is generally normalized to Pt mass (e.g., m2/gPt), and is the primary measure of Pt dispersion.

Fuel cell catalyst:

Materials that catalyze the electrochemical reactions. Pt or Pt alloy nanoparticles (3–5 nm in diameter) deposited on carbon blacks are commonly used with the goal of maximizing the available reaction site surface area per Pt mass.

Hydrogen PEMFC vehicle:

Vehicle that uses proton-exchange membrane fuel cell (PEMFC) as its primary power generator, commonly known as fuel cell electric vehicle (FCEV). It uses pure hydrogen gas fuel reacting electrochemically with oxygen gas from the atmosphere to generate electricity and emit only water. Generally requires Pt as electrocatalyst on both anode and cathode.

Ionomer:

Ion conducting polymer is used in the membrane and electrodes. In PEMFCs, the conducted ion is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. Masten DA, Bosco AD (2010) System design for vehicle applications: GM/Opel. In: Handbook of fuel cells. Wiley, Hoboken

    Google Scholar 

  2. Kongkanand A, Mathias MF (2016) The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett 7(7):1127–1137

    Google Scholar 

  3. Gröger O, Gasteiger HA, Suchsland J-P (2015) Review – electromobility: batteries or fuel cells? J Electrochem Soc 162(14):A2605–A2622

    Google Scholar 

  4. Fornalczyk A, Saternus M (2009) Removal of platinum group metals from the used auto catalytic converter. Metalurgija 48(2):133–136

    Google Scholar 

  5. Nguyen T., Andress D.; Howden, K.; Toops, T., Das S (n.d.) Platinum Group Metals (PGM) for light-duty vehicles. https://www.hydrogen.energy.gov/pdfs/16006_pgm_light_duty_vehicles.pdf

  6. Loferski PJ (2014) Minerals yearbook; Platinum-Group Metals. http://minerals.usgs.gov/minerals/pubs/commodity/platinum/myb1-2014-plati.pdf

  7. Bernhart W, Riederle S, Yoon M (n.d.) Fuel cells – a realistic alternative for zero emission? https://www.rolandberger.com/en/Publications/pub_fuel_cells_a_realistic_alternative_for_zero_emission.html

  8. James BD, Moton JM, Colella WG (n.d.) Mass production cost estimation of direct H2 PEM fuel cell systems for transportation applications: 2013 update. Strategic Analysis, Inc. http://energy.gov/sites/prod/files/2014/11/f19/fcto_sa_2013_pemfc_transportation_cost_analysis.pdf

  9. Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet J-P (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416

    Google Scholar 

  10. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443–447

    Google Scholar 

  11. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet J-P, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4(1):114

    Google Scholar 

  12. Banham D, Ye S, Pei K, Ozaki J-I, Kishimoto T, Imashiro Y (2015) A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J Power Sources 285:334

    Google Scholar 

  13. Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5(2):187–200

    Google Scholar 

  14. Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377(1–2):1–35

    Google Scholar 

  15. Yanagi H, Fukuta K (2008) Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs). ECS Trans 16:257–262

    Google Scholar 

  16. Einsla BR, Chempath S, Pratt LR, Boncella JM, Rau J, Macomber C, Pivovar BS (2007) Stability of cations for anion exchange membrane fuel cells. ECS Trans 11:1173–1180

    Google Scholar 

  17. Pan J, Lu S, Li Y, Huang A, Zhuang L, Lu J (2010) High-performance alkaline polymer electrolyte for fuel cell applications. Adv Funct Mater 20(2):312–319

    Google Scholar 

  18. Neyerlin KC, Gu W, Jorne J, Gasteiger HA (2007) Study of the exchange current density for the hydrogen oxidation and evolution reactions. J Electrochem Soc 154(7):B631

    Google Scholar 

  19. Zhang J, Yang H, Fang J, Zou S (2010) Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra. Nano Lett 10(2):638–644

    Google Scholar 

  20. Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H (2010) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J Am Chem Soc 132(14):4984–4985

    Google Scholar 

  21. Carpenter MK, Moylan TE, Kukreja RS, Atwan MH, Tessema MM (2012) Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J Am Chem Soc 134(20):8535–8542

    Google Scholar 

  22. Choi SI, Xie S, Shao M, Odell JH, Lu N, Peng H-C, Protsailo L, Guerrero S, Park J, Xia X, Wang J, Kim MJ, Xia Y (2013) Synthesis and characterization of 9 Nm Pt – Ni octahedra with a record high activity of 3.3 A/mg. Nano Lett 13:3420–3425

    Google Scholar 

  23. Gan L, Cui C, Heggen M, Dionigi F, Rudi S, Strasser P (2014) Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 346(6216):1502–1506

    Google Scholar 

  24. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343(6177):1339–1343

    Google Scholar 

  25. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction:  Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(30):10955–10964

    Google Scholar 

  26. Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chemie Int Ed 49(46):8602–8607

    Google Scholar 

  27. Kongkanand A, Subramanian NP, Yu Y, Liu Z, Igarashi H, Muller DA (2016) Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core–shell catalyst. ACS Catal 6(3):1578–1583

    Google Scholar 

  28. Oezaslan M, Heggen M, Strasser P (2012) Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J Am Chem Soc 134(1):514–524

    Google Scholar 

  29. Jia Q, Caldwell K, Ziegelbauer JM, Kongkanand A, Wagner FT, Mukerjee S, Ramaker DE (2014) The role of OOH binding site and Pt surface structure on ORR activities. J Electrochem Soc 161(14):F1323–F1329

    Google Scholar 

  30. Caldwell KM, Ramaker DE, Jia Q, Mukerjee S, Ziegelbauer JM, Kukreja RS, Kongkanand A (2015) Spectroscopic in situ measurements of the relative Pt skin thicknesses and porosities of dealloyed PtMn (Ni, Co) electrocatalysts. J Phys Chem C 119(1):757–765

    Google Scholar 

  31. Han B, Carlton CE, Kongkanand A, Kukreja RS, Theobald BR, Gan L, O’Malley R, Strasser P, Wagner FT, Shao-Horn Y (2015) Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ Sci 8(1):258–266

    Google Scholar 

  32. Kongkanand A (n.d.) DOE final report: high-activity dealloyed catalysts. http://www.osti.gov/scitech/servlets/purl/1262711

  33. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35

    Google Scholar 

  34. Gu W, Baker DR, Liu Y, Gasteiger HA (2009) Proton exchange membrane fuel cell (PEMFC) down-the-channel performance model. In: Vielstich W, Gasteiger HA, Lamm A, Yokokawa H (eds) Handbook of fuel cells: fundamentals, technology and applications. Wiley, Hoboken

    Google Scholar 

  35. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88(1–2):1–24

    Google Scholar 

  36. Yu PT, Gu W, Makharia R, Wagner FT, Gasteiger HA (2006) The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation. ECS Trans 3:797–809

    Google Scholar 

  37. Tuaev X, Rudi S, Strasser P (2016) The impact of the morphology of the carbon support on the activity and stability of nanoparticle fuel cell catalysts. Cat Sci Technol 6(23):8276–8288

    Google Scholar 

  38. Park YC, Tokiwa H, Kakinuma K, Watanabe M, Uchida M (2016) Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J Power Sources 315:179–191

    Google Scholar 

  39. Kongkanand A, Yarlagadda V, Garrick T, Moylan TE, Gu W (2016) Electrochemical diagnostics and modeling in developing the PEMFC cathode. ECS Trans 75(14):25

    Google Scholar 

  40. Ito T, Matsuwaki U, Otsuka Y, Hatta M, Hayakawa K, Matsutani K, Tada T, Jinnai H (2011) Three-dimensional spatial distributions of Pt catalyst nanoparticles on carbon substrates in polymer electrolyte fuel cells. Electrochemistry 79(5):374–376

    Google Scholar 

  41. Jinnai H, Spontak RJ, Nishi T (2010) Transmission electron microtomography and polymer nanostructures. Macromolecules 43(4):1675

    Google Scholar 

  42. Ohma A, Mashio T, Sato K, Iden H, Ono Y, Sakai K, Akizuki K, Takaichi S, Shinohara K (2011) Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan. Electrochim Acta 56(28):10832–10841

    Google Scholar 

  43. Iden H, Mashio T, Ohma A (2013) Gas transport inside and outside carbon supports of catalyst layers for PEM fuel cells. J Electroanal Chem 708:87–94

    Google Scholar 

  44. Shinozaki K, Yamada H, Morimoto Y (2011) Relative humidity dependence of Pt utilization in polymer electrolyte fuel cell electrodes: effects of electrode thickness, ionomer-to-carbon ratio, ionomer equivalent weight, and carbon support. J Electrochem Soc 158(5):B467

    Google Scholar 

  45. Weber AZ, Borup RL, Darling RM, Das PK, Dursch TJ, Gu W, Harvey D, Kusoglu A, Litster S, Mench MM, Mukundan R, Owejan JP, Pharoah JG, Secanell M, Zenyuk IV (2014) A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J Electrochem Soc 161(12):F1254–F1299

    Google Scholar 

  46. Zenyuk IV, Litster S (2012) Spatially resolved modeling of electric double layers and surface chemistry for the hydrogen oxidation reaction in water-filled platinum-carbon electrodes. J Phys Chem C 116(18):9862–9875

    Google Scholar 

  47. Zenyuk IV, Litster S (2014) Modeling ion conduction and electrochemical reactions in water films on thin-film metal electrodes with application to low temperature fuel cells. Electrochim Acta 146:194–206

    Google Scholar 

  48. Nouri-Khorasani A, Malek K, Malek A, Mashio T, Wilkinson DP, Eikerling MH (2016) Molecular modeling of the proton density distribution in a water-filled slab-like nanopore bounded by Pt oxide and ionomer. Catal Today 262:133–140

    Google Scholar 

  49. Nonoyama N, Okazaki S, Weber AZ, Ikogi Y, Yoshida T (2011) Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J Electrochem Soc 158(4):B416

    Google Scholar 

  50. Sadeghi E, Eikerling M, Putz A (2013) Hierarchical model of reaction rate distributions and effectiveness factors in catalyst layers of polymer electrolyte fuel cells. J Electrochem Soc 160(10):F1159–F1169

    Google Scholar 

  51. Ahluwalia RK, Wang X, Steinbach AJ (2016) Performance of advanced automotive fuel cell systems with heat rejection constraint. J Power Sources 309:178

    Google Scholar 

  52. Greszler TA, Caulk D, Sinha P (2012) The impact of platinum loading on oxygen transport resistance. J Electrochem Soc 159(12):F831–F840

    Google Scholar 

  53. Epting WK, Litster S (2012) Effects of an agglomerate size distribution on the PEFC agglomerate model. Int J Hydrog Energy 37(10):8505–8511

    Google Scholar 

  54. Murata S, Imanishi M, Hasegawa S, Namba R (2014) Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells. J Power Sources 253:104–113

    Google Scholar 

  55. Kongkanand A (2017) Highly accessible catalysts for durable high-power performance. Annual merit review DOE hydrogen and fuel cells and vehicle technologies programs. Washington, DC. https://www.hydrogen.energy.gov/pdfs/review17/fc144_kongkanand_2017_o.pdf

  56. Neyerlin KC, Christ JM, Zack JW, Gu W, Kumaraguru S, Kongkanand A, Kocha SS (2016) New insights from electrochemical diagnostics pertaining to the high current density performance of Pt-based catalysts. Meet Abstr MA2016-02(38):2492

    Google Scholar 

  57. Lopez-Haro M, Guétaz L, Printemps T, Morin A, Escribano S, Jouneau P-H, Bayle-Guillemaud P, Chandezon F, Gebel G (2014) Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat Commun 5:5229

    Google Scholar 

  58. Cullen DA, Koestner R, Kukreja RS, Liu ZY, Minko S, Trotsenko O, Tokarev A, Guetaz L, Meyer HM, Parish CM, More KL (2014) Imaging and microanalysis of thin ionomer layers by scanning transmission electron microscopy. J Electrochem Soc 161(10):F1111–F1117

    Google Scholar 

  59. Iden H, Sato K, Ohma A, Shinohara K (2011) Relationship among microstructure, ionomer property and proton transport in pseudo catalyst layers. J Electrochem Soc 158(8):B987

    Google Scholar 

  60. Baker DR, Caulk DA, Neyerlin KC, Murphy MW (2009) Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods. J Electrochem Soc 156(9):B991

    Google Scholar 

  61. Makharia R (2010) Challenges associated with high current density performance of low Pt-loading cathodes in proton exchange membrane (PEM) fuel cells. In: ASME 8th international fuel cell science, engineering & technology conference, Brooklyn, 2010

    Google Scholar 

  62. Debe MK (2012) Effect of electrode surface area distribution on high current density performance of PEM fuel cells. J Electrochem Soc 159(1):B54

    Google Scholar 

  63. Sinha PK, Gu W, Kongkanand A, Thompson E (2011) Performance of nano structured thin film (NSTF) electrodes under partially-humidified conditions. J Electrochem Soc 158(7):B831

    Google Scholar 

  64. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51

    Google Scholar 

  65. Kongkanand A, Owejan JE, Moose S, Dioguardi M, Biradar M, Makharia R (2012) Development of dispersed-catalyst/NSTF hybrid electrode. J Electrochem Soc F676–F682

    Google Scholar 

  66. Kongkanand A, Zhang J, Liu Z, Lai Y-H, Sinha P, Thompson EL, Makharia R (2014) Degradation of PEMFC observed on NSTF electrodes. J Electrochem Soc 161(6):F744–F753

    Google Scholar 

  67. Gierke TD, Munn GE, Wilson FC (1981) The morphology in Nafion perfluorinated membrane products, as determined by wide- and small- angle X-ray studies. J Polym Sci Polym Phys Ed 19(11):1687–1704

    Google Scholar 

  68. Schmidt-Rohr K, Chen Q (2008) Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat Mater 7(1):75–83

    Google Scholar 

  69. Kreuer K-D, Paddison SJ, Spohr E, Schuster M (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104(10):4637–4678

    Google Scholar 

  70. Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117(3):987

    Google Scholar 

  71. Dura JA, Murthi VS, Hartman M, Satija SK, Majkrzak CF (2009) Multilamellar interface structures in Nafion. Macromolecules 42(13):4769

    Google Scholar 

  72. Eastman SASA, Kim S, Page KAKA, Rowe BWBW, Kang S, Soles CLCL, Yager KGKG (2012) Effect of confinement on structure, water solubility, and water transport in Nafion thin films. Macromolecules 45(19):7920–7930

    Google Scholar 

  73. Modestino MA, Paul DK, Dishari S, Petrina SA, Allen FI, Hickner MA, Karan K, Segalman RA, Weber AZ (2013) Self-assembly and transport limitations in confined Nafion films. Macromolecules 46(3):867

    Google Scholar 

  74. Kusoglu A, Kushner D, Paul DKDK, Karan K, Hickner MAMA, Weber AZAZ (2014) Impact of substrate and processing on confinement of Nafion thin films. Adv Funct Mater 24(30):4763–4774

    Google Scholar 

  75. Bass M, Berman A, Singh A, Konovalov O, Freger V (2011) Surface-induced micelle orientation in Nafion films. Macromolecules 44(8):2893–2899

    Google Scholar 

  76. Kusoglu A, Dursch TJ, Weber AZ (2016) Nanostructure/swelling relationships of bulk and thin-film PFSA ionomers. Adv Funct Mater 26(27):4961

    Google Scholar 

  77. Page KA, Kusoglu A, Stafford CM, Kim S, Kline RJ, Weber AZ (2014) Confinement-driven increase in ionomer thin-film modulus. Nano Lett 14(5):2299–2304

    Google Scholar 

  78. Ohira A, Kuroda S, Mohamed HFM, Tavernier B (2013) Effect of interface on surface morphology and proton conduction of polymer electrolyte thin films. Phys Chem Chem Phys 15(27):11494–11500

    Google Scholar 

  79. Kongkanand A (2011) Interfacial water transport measurements in Nafion thin films using a quartz-crystal microbalance. J Phys Chem C 115(22):11318–11325

    Google Scholar 

  80. Siroma Z, Kakitsubo R, Fujiwara N, Ioroi T, Yamazaki SI, Yasuda K (2009) Depression of proton conductivity in recast Nafion film measured on flat substrate. J Power Sources 189(2):994–998

    Google Scholar 

  81. Mohamed HFM, Kuroda S, Kobayashi Y, Oshima N, Suzuki R, Ohira A (2013) Possible Presence of hydrophilic SO3H nanoclusters on the surface of dry ultrathin Nafion® films: a positron annihilation study. Phys Chem Chem Phys 15(5):1518–1525

    Google Scholar 

  82. Paul DK, Giorgi JB, Karan K (2013) Chemical and ionic conductivity degradation of ultra-thin ionomer film by X-ray beam exposure. J Electrochem Soc 160(4):F824

    Google Scholar 

  83. Paul DK, Karan K, Docoslis A, Giorgi JB, Pearce J (2013) Characteristics of self-assembled ultrathin Nafion films. Macromolecules 46(9):3461

    Google Scholar 

  84. Subbaraman R, Strmcnik D, Paulikas AP, Stamenkovic VR, Markovic NM (2010) Oxygen reduction reaction at three-phase interfaces. Chem Phys Chem 11(13):2825–2833

    Google Scholar 

  85. Kocha SS, Zack JW, Alia SM, Neyerlin KC, Pivovar BS (2012) Influence of ink composition on the electrochemical properties of Pt/C electrocatalysts. ECS Trans 50(2):1475–1485

    Google Scholar 

  86. Masuda T, Ikeda K, Uosaki K (2013) Potential-dependent adsorption/desorption behavior of perfluorosulfonated ionomer on a gold electrode surface studied by cyclic voltammetry, electrochemical quartz microbalance, and electrochemical atomic force microscopy. Langmuir 29(7):2420–2426

    Google Scholar 

  87. Kunimatsu K, Yoda T, Tryk DA, Uchida H, Watanabe M (2010) In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface. Phys Chem Chem Phys 12(3):621–629

    Google Scholar 

  88. Ayato Y, Kunimatsu K, Osawa M, Okada T (2006) Study of Pt electrode/Nafion ionomer interface in HClO[sub 4] by in situ surface-enhanced FTIR spectroscopy. J Electrochem Soc 153(2):A203

    Google Scholar 

  89. Ono Y, Ohma A, Shinohara K, Fushinobu K (2013) Influence of equivalent weight of ionomer on local oxygen transport resistance in cathode catalyst layers. J Electrochem Soc 160(8):F779–F787

    Google Scholar 

  90. Kodama K, Shinohara A, Hasegawa N, Shinozaki K, Jinnouchi R, Suzuki T, Hatanaka T, Morimoto Y (2014) Catalyst poisoning property of sulfonimide acid ionomer on Pt (111) surface. J Electrochem Soc 161(5):F649–F652

    Google Scholar 

  91. Snyder J, Livi K, Erlebacher J (2013) Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv Funct Mater 23(44):5494–5501

    Google Scholar 

  92. Jomori S, Komatsubara K, Nonoyama N, Kato M, Yoshida T (2013) An experimental study of the effects of operational history on activity changes in a PEMFC. J Electrochem Soc 160(9):F1067–F1073

    Google Scholar 

  93. Liu H, Epting WK, Litster S (2015) Gas transport resistance in polymer electrolyte thin films on oxygen reduction reaction catalysts. Langmuir 31(36):9853–9858

    Google Scholar 

  94. Jinnouchi R, Kudo K, Kitano N, Morimoto Y (2016) Molecular dynamics simulations on O2 permeation through Nafion ionomer on platinum surface. Electrochim Acta 188:767–776

    Google Scholar 

  95. Béléké AB, Miyatake K, Uchida H, Watanabe M (2007) Gas diffusion electrodes containing sulfonated polyether ionomers for PEFCs. Electrochim Acta 53(4):1972–1978

    Google Scholar 

  96. Omata T, Tanaka M, Miyatake K, Uchida M, Uchida H, Watanabe M (2012) Preparation and fuel cell performance of catalyst layers using sulfonated polyimide ionomers. ACS Appl Mater Interfaces 4(2):730–737

    Google Scholar 

  97. Dru D, Baranton S, Bigarré J, Buvat P, Coutanceau C (2016) Fluorine-free Pt nanocomposites for three-phase interfaces in fuel cell electrodes. ACS Catal 6(10):6993–7001

    Google Scholar 

  98. Park J-S, Krishnan P, Park S-H, Park G-G, Yang T-H, Lee W-Y, Kim C-SJ (2008) A study on fabrication of sulfonated poly(ether ether ketone)-based membrane-electrode assemblies for polymer electrolyte membrane fuel cells. J Power Sources 178(2):642–650

    Google Scholar 

  99. Yoon YJ, Kim T-H, Yu DM, Park J-Y, Hong YT (2012) Modification of hydrocarbon structure for polymer electrolyte membrane fuel cell binder application. Int J Hydrog Energy 37(18):13452–13461

    Google Scholar 

  100. Takami M (2013) Ionomers and ionoically conductive compositions for use as one or more electrode of a fuel cell

    Google Scholar 

  101. Fuel Cell Development Progress 2013 Report (n.d.). New Energy and Industrial Technology Development Organization (NEDO). http://www.nedo.go.jp/content/100575921.pdf

  102. Kinoshita S, Tanuma T, Yamada K, Hommura S, Watakabe A, Saito S, Shimohira T (2014) Development of PFSA ionomers for the membrane and the electrodes. ECS Trans 64(3):371–375

    Google Scholar 

  103. Takahashi S, Mashio T, Horibe N, Akizuki K, Ohma A (2015) Analysis of the microstructure formation process and its influence on the performance of polymer electrolyte fuel-cell catalyst layers. Chem Electro Chem 2(10):1560–1567

    Google Scholar 

  104. Kim YS, Welch CF, Mack NH, Hjelm RP, Orler EB, Hawley ME, Lee KS, Yim S-D, Johnston CM (2014) Highly durable fuel cell electrodes based on ionomers dispersed in glycerol. Phys Chem Chem Phys 16(13):5927–5932

    Google Scholar 

  105. Amemiya, K.; Kobayashi, N.; Yoshida, T (2013) Fabrication process and its microscopic structure characteristics for high performance PEFC electrodes. In: Japanese society of automotive engineering. p 20135108

    Google Scholar 

  106. Adzic RR (2014) Contiguous platinum monolayer oxygen reduction electrocatalysts on high-stability-low-cost supports. Annual merit review DOE hydrogen and fuel cells and vehicle technologies programs. Washington, DC. https://www.hydrogen.energy.gov/pdfs/review14/fc009_adzic_2014_o.pdf

  107. Steinbach A (2014) High performance, durable, low cost membrane electrode assemblies for transportation applications. Annual merit review DOE hydrogen and fuel cells and vehicle technologies programs. Washington, DC. https://www.hydrogen.energy.gov/pdfs/review14/fc104_steinbach_2014_o.pdf

  108. Konno N, Mizuno S, Nakaji H, Ishikawa Y (2015) Development of compact and high-performance fuel cell stack. SAE Int J Altern Powertrains 4(1):2015-01–1175

    Google Scholar 

  109. Sasaki K, Naohara H, Choi Y, Cai Y, Chen W-F, Liu P, Adzic RR (2012) Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat Commun 3:1115

    Google Scholar 

  110. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-I, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951

    Google Scholar 

  111. St-Pierre J, Zhai Y, Angelo MS (2014) Effect of selected airborne contaminants on PEMFC performance. J Electrochem Soc 161(3):F280

    Google Scholar 

  112. St-Pierre J, Zhai Y, Ge J (2016) Relationships between PEMFC cathode kinetic losses and contaminants’ dipole moment and adsorption energy on Pt. J Electrochem Soc 163(3):F247

    Google Scholar 

  113. Teranishi K, Kawata K, Tsushima S, Hirai S (2006) Degradation mechanism of PEMFC under open circuit operation. Electrochem Solid-State Lett 9(10):A475

    Google Scholar 

  114. Ohma A, Yamamoto S, Shinohara K (2008) Membrane degradation mechanism during open-circuit voltage hold test. J Power Sources 182(1):39

    Google Scholar 

  115. Zhang J, Litteer BA, Coms FD, Makharia R (2012) Recoverable performance loss due to membrane chemical degradation in PEM fuel cells. J Electrochem Soc 159(7):F287

    Google Scholar 

  116. Okada T (1999) Theory for water management in membranes for polymer electrolyte fuel cells. Part 2. The effect of impurity ions at the cathode side on the membrane performances. J Electroanal Chem 465(1):18

    Google Scholar 

  117. Cai Y, Kongkanand A, Gu W, Moylan TE (2015) Effects of cobalt cation on low Pt-loaded PEM fuel cell performance. ECS Trans 69(17):1047

    Google Scholar 

  118. Graedel TE, Allwood J, Birat J, Reck BK, Sibley SF, Sonnemann G, Buchert M, Hagelüken C (2011) Recycling rates of metals – a status report. A report of the Working Group on the Global Metal Flows to the International Resource Panel, United Nations Environment Programme, Paris

    Google Scholar 

  119. Hagelüken C (2012) Recycling the platinum group metals: a European perspective. Platin Met Rev 56(1):29–35

    Google Scholar 

Books and Reviews

  • Gu W, Baker DR, Liu Y, Gasteiger HA (2009) Proton exchange membrane fuel cell (PEMFC) down-the-channel performance model. In: Vielstich W, Gasteiger HA, Lamm A, Yokokawa H (eds) Handbook of fuel cells: fundamentals, technology and applications. Wiley, Hoboken

    Chapter  Google Scholar 

  • Kongkanand A, Mathias MF (2016) The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett 7(7):1127–1137

    Article  CAS  Google Scholar 

  • Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117(3):987

    Article  CAS  Google Scholar 

  • Weber AZ, Kusoglu A (2014) Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J Mater Chem A 2(c):17207–17211

    Article  CAS  Google Scholar 

  • Zhang J (2013) PEM fuel cells and platinum-based electrocatalysts. In: Kreuer K-D (ed) Fuel cells: selected entries from the encyclopedia of sustainability science and technology. Springer, New York, pp 305–340

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy under grant DE-EE0007271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anusorn Kongkanand .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC (outside the USA)

About this entry

Cite this entry

Kongkanand, A., Gu, W., Mathias, M.F. (2018). Proton-Exchange Membrane Fuel Cells with Low-Pt Content. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1022-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1022-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics