Skip to main content

Water Reclamation System and Micropollutants

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Activated sludge process:

A biological method of wastewater treatment that is performed by a variable and mixed community of microorganisms in an aerobic aquatic environment.

Biodegradation:

The reaction processes mediated by microbial activity.

Endocrine disrupting compounds (EDCs):

An exogenous agent that interferes with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body, which are responsible for the maintenance of homeostasis, reproduction, development, and/or behavior.

Hydrophobicity:

The physical property of a molecule that is repelled from a mass of water.

Membrane bioreactor (MBR):

The combination of a membrane process like microfiltration or ultrafiltration with a suspended growth bioreactor.

Micropollutant:

Pollutant, which exists in very small traces in water.

Sludge retention time (SRT):

An operational parameter, which measures how long the sludge can remain in a reactor.

Sorption:

The action of absorption or...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Michel C (2019) How to regulate endocrine disrupting chemicals? Feedback and future development. Curr Opin Endocr Metabolic Res 7:21–25

    Article  Google Scholar 

  2. Heiger-Bernays WJ, Wegner S, Dix JD (2018) High-throughput in vitro data to inform prioritization of ambient water monitoring and testing for endocrine active chemicals. Environ Sci Technol 52:783–793

    Article  CAS  Google Scholar 

  3. USEPA. 2016. Contaminant Candidate List (CCL) and Regulatory Determination – CCL4. https://www.epa.gov/ccl/contaminant-candidate-list-4-ccl-4-0

  4. Baravalle R, Ciaramella A, Baj F, Nardo GD, Gilardi G (2018) Identification of endocrine disrupting chemicals acting on human aromatase. Biochim Biophys Acta, Proteins Proteomics 1866:88–96

    Article  CAS  Google Scholar 

  5. Connon RE, Geist J, Werner I (2012) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12:12741–12771

    Article  CAS  Google Scholar 

  6. Barreca S, Busetto M, Colzani L, Clerici L, Daverio D, Delavedora P, Balzamo S, Calabretta E, Ubaldi V (2019) Determination of estrogenic endocrine disruptors in water at sub-ngL−1 levels in compliance with decision 2015/495/EU using offline-online solid phase extraction concentration coupled with high performance liquid chromatography-tandem mass spectrometry. Microchem J 147:1186–1191

    Article  CAS  Google Scholar 

  7. Colborn T, Dumanoski D, Myers JP (1996) Our stolen future: are we threatening our fertility, intelligence, and survival? – a scientific detective story. Dutton, New York

    Google Scholar 

  8. Reddy S, Iden CR, Brownawell BJ (2005) Analysis of steroid conjugates in sewage influent and effluent by liquid chromatography-tandem mass spectrometry. Anal Chem 77:7032–7038

    Article  CAS  Google Scholar 

  9. Harris CA, Henttu P, Parker MG, Sumpter JP (1997) The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 105:802–811

    Article  CAS  Google Scholar 

  10. Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW effluent 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32:1549–1558

    Article  CAS  Google Scholar 

  11. Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506

    Article  CAS  Google Scholar 

  12. Preziosi P (1998) Natural and anthropogenic environmental oestrogens: the scientific basis for risk assessment endocrine disrupters as environmental signalers: an introduction. Pure Appl Chem 70:1617–1631

    Article  CAS  Google Scholar 

  13. Holm L, Berg C, Brunstrom B, Ridderstrale Y, Brandt I (2001) Disrupted carbonic anhydrase distribution in the avian shell gland following in ovo exposure to estrogen. Arch Toxicol 75:362–368

    Article  CAS  Google Scholar 

  14. Chilvers C, Pike MC, Forman D, Fogelman K, Wadsworth ME (1984) Apparent doubling of frequency of undescended testicles in England and Wales 1962–81. Lancet 2:330–332

    Article  CAS  Google Scholar 

  15. Kimmel CA (1993) Approaches to evaluating reproductive hazards and risks. Environ Health Perspect 101:137–143

    Google Scholar 

  16. Rajpert-De Meyts E, Skakkeboek NE (1993) The possible role of sex hormones in the development of testicular cancer. Eur Urol 23:54–61

    Article  CAS  Google Scholar 

  17. UK Environment Agency (1997) The identification and assessment of oestrogenic substances in sewage treatment works effluents. UK Environment Agency, Bristol

    Google Scholar 

  18. Purdom CE, Hardiman PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP (1994) Oestrogenic effects of effluents from sewage treatment works. Chem Ecol 8:275–285

    Article  CAS  Google Scholar 

  19. Routledge EJ, Sheahan D, Desbrow C, Brighty GC, Waldock M, Sumpter JP (1998) Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ Sci Technol 32:1559–1565

    Article  CAS  Google Scholar 

  20. Jobling S, Sheahan D, Osborne JA, Matthiessen P, Sumpter JP (1996) Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem 15:194–202

    Article  CAS  Google Scholar 

  21. Länge R, Hutchinson TH, Croudace C, Siegmund F, Schweinfurth H, Hampe P, Panter GH, Sumpter JP (2001) Effects of the synthetic estrogen 17α-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20:1216–1227

    Article  Google Scholar 

  22. Jobling S, Sumpter JP (1993) Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 27:361–372

    Article  CAS  Google Scholar 

  23. Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Samperi R (2000) Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ Sci Technol 34:5059–5066

    Article  CAS  Google Scholar 

  24. Huang CH, Sedlak DL (2001) Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environ Toxicol Chem 20:133–139

    Article  CAS  Google Scholar 

  25. Snyder S, Villeneuve DL, Snyder E, Giesy JP (2001) Identification and quantification of estrogen receptor agonists in wastewater effluents. Environ Sci Technol 35:3620–3625

    Article  CAS  Google Scholar 

  26. Spengler P, Körner W, Metzger JW (2001) Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. 1. Chemical analysis. Environ Toxicol Chem 20:2133–2141

    Article  CAS  Google Scholar 

  27. Körner W, Bolz U, Submuth W, Hiller G, Schuller W, Hanf V, Hagenmaier H (2000) Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere 40:1131–1142

    Article  Google Scholar 

  28. Holbrook RD, Novak JT, Grizzard TJ, Love NG (2002) Estrogen receptor agonist fate during wastewater and biosolids treatment process: a mass balance analysis. Environ Sci Technol 36:4533–4539

    Article  CAS  Google Scholar 

  29. Smith CW, Di Gregorio D, Talcott RM (1969) The use of ultrafiltration membrane for activated sludge separation. In: Proceedings of the 24th annual Purdue industrial waste conference. Purdue University, West Lafayette, pp 1300–1310

    Google Scholar 

  30. Stephenson T, Judd S, Jefferson B, Brindle K (2000) Membrane bioreactors for wastewater treatment. IWA, London

    Google Scholar 

  31. Visvanathan C, Ben Aim R, Parameshwaran K (2000) Membrane separation bioreactors for wastewater treatment. Crit Rev Environ Sci Technol 30(1):1–48

    Article  CAS  Google Scholar 

  32. Teske SS, Arnold RG (2008) Removal of natural and xeno-estrogens during conventional wastewater treatment. Rev Environ Sci Biotechnol 7:107–124

    Article  CAS  Google Scholar 

  33. Matsui S, Takigami H, Matsuda T, Taniguchi N, Adachi J, Kawami H, Shimizu Y (2000) Estrogen and estrogens mimics contamination in water and the role of sewage treatment. Water Sci Technol 42(12):173–179

    Article  CAS  Google Scholar 

  34. Chistianshen BL, Winther-Nielsen M, Helweg C (2002) Feminization of fish: the effect of estrogenic compounds and their fate in sewage treatment plants and nature. Environmental project no. 729, Danish Environmental Protection Agency, Denmark, 184 pp

    Google Scholar 

  35. Jürgens MD, Holthaus KIE, Johnson AC, Smith JJL, Hetheridge M, Williams RJ (2002) The potential for estradiol and ethinylestradiol degradation in English rivers. Environ Toxicol Chem 21:480–488

    Article  Google Scholar 

  36. López de Alda MJ, Barceló D (2001) Review of analytical methods for the determination of estrogens and progestogens in wastewaters. Fresenius J Anal Chem 371:437–447

    Article  CAS  Google Scholar 

  37. Li MH, Wang ZR (2005) Effect of nonylphenol on plasma vitellogenin of male adult guppies (Poecilia reticulata). Environ Toxicol 20:53–59

    Article  CAS  Google Scholar 

  38. Nozaka T, Abe T, Matsuura T, Sakamoto T, Nakano N, Maeda M, Kobayashi K (2004) Development of vitellogenin assay for endocrine disrupters using medaka (Oryzias latipes). Environ Sci 11:99–121

    CAS  Google Scholar 

  39. Paulozzi LJ (1999) International trends in rates of hypospadias and cryptorchidism. Environ Health Perspect 107:297–302

    Article  CAS  Google Scholar 

  40. Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Bisphenol A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132:2279–2286

    Article  CAS  Google Scholar 

  41. Gaido KW, Leonard LS, Lovell S, Gould JC, Babai D, Portier CJ, McDonnell DP (1997) Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol 143:205–212

    Article  CAS  Google Scholar 

  42. Kuiper G, Carlson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptor α and β. Endocrinology 132:2279–2286

    Google Scholar 

  43. Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248

    Article  CAS  Google Scholar 

  44. Belfroid AC, Van der Horst A, Vethaak AD, Schäfer AJ, Rijs GBJ, Wegener J (1999) Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in the Netherlands. Sci Total Environ 225:101–108

    Article  CAS  Google Scholar 

  45. Swartz CH, Reddy S, Benotti SJ, Yin H, Barber LB, Brownawell BJ, Rudel RA (2006) Steroid estrogens, nonylphenol ethoxylate metabolites and other wastewater contaminants in ground water affected by a residential septic system on Cape Cod, MA. Environ Sci Technol 40:4894–4902

    Article  CAS  Google Scholar 

  46. Kuch HM, Ballschmiter K (2001) Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the pictogram per liter range. Environ Sci Technol 35:3201–3206

    Article  CAS  Google Scholar 

  47. D’Ascenzo G, Corcia AD, Gentili A, Mancini R, Nazzari RMM, Samperi R (2003) Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci Total Environ 302:199–209

    Article  Google Scholar 

  48. Isobe T, Shiraishi H, Yasuda M, Shinoda A, Suzuki H, Morita M (2003) Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry. J Chromatogr A 984:195–202

    Article  CAS  Google Scholar 

  49. Fine DD, Breidenbach GP, Price TL, Hutchins SR (2003) Quantitation of estrogens in ground water and swine lagoon samples using solid-phase extraction, pentafluorobenzyl/trimethylsilyl derivatizations and gas chromatography-negative ion chemical ionization tandem mass spectrometry. J Chromatogr A 1017:167–185

    Article  CAS  Google Scholar 

  50. Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005) The solids retention time-a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39:97–106

    Article  CAS  Google Scholar 

  51. Vethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GB, Gerritsen A (2005) An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of the Netherlands. Chemosphere 59:511–524

    Article  CAS  Google Scholar 

  52. Hohenblum P, Gans O, Moche W, Scharf S, Lorbeer G (2004) Monitoring of selected estrogenic hormones and industrial chemicals in groundwaters and surface waters in Austria. Sci Total Environ 333:185–193

    Article  CAS  Google Scholar 

  53. Servos MR, Bennie DT, Burnison BK, Jurkovic A, McInnis R, Neheli T, Schnell A, Seto P, Smyth SA, Ternes TA (2005) Distribution of estrogens, 17β-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci Total Environ 336:155–170

    Article  CAS  Google Scholar 

  54. Laganà A, Bacaloni A, Leva ID, Faberi A, Fago G, Marino A (2004) Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Anal Chim Acta 501:79–88

    Article  CAS  Google Scholar 

  55. Kolok AS, Snow DD, Kohno S, Sellin MK, Guillette JLJ (2007) Occurrence and biological effect of exogenous steroids in the Elkhorn river, Nebraska, USA. Sci Total Environ 388:104–115

    Article  CAS  Google Scholar 

  56. Tan BL (2006) Chemical and biological analyses of selected endocrine disruptors in wastewater treatment plants in south East Queensland, Australia. Doctor dissertation. Griffith University, Queensland

    Google Scholar 

  57. Kolodziej EP, Sedlak DL (2007) Rangeland grazing as a source of steroid hormones to surface waters. Environ Sci Technol 41:3514–3520

    Article  CAS  Google Scholar 

  58. Robert FC, Rominder PSS, Fu HX (2007) Free synthetic and natural estrogen hormones in influent and effluent of three municipal wastewater treatment plants. Water Environ Res 79:969–974

    Article  CAS  Google Scholar 

  59. Morteani G, Moller P, Fuganti A, Paces T (2006) Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic). Environ Geochem Health 28:257–264

    Article  CAS  Google Scholar 

  60. Fernandez MP, Ikonomou MG, Buchanan I (2007) An assessment of estrogenic organic contaminant in Canadian wastewaters. Sci Total Environ 373:250–269

    Article  CAS  Google Scholar 

  61. Liu ZH, Ito M, Kanjo Y, Yamamoto A (2009) Profile and removal of endocrine disrupting chemicals by using an ER/AR competitive ligand binding assay and chemical analyses. J Environ Sci 21:900–906

    Article  CAS  Google Scholar 

  62. Cargouet M, Perdiz D, Asmaa MS, Sara TK, Levi Y (2004) Assessment of river contamination by estrogenic compounds in Paris area (France). Sci Total Environ 334:55–66

    Article  CAS  Google Scholar 

  63. Peterson EW, Davis PK, Orndorff HA (2000) 17β-estradiol as an indicator of animal waste contamination in mantled karst aquifers. J Environ Qual 29:826–834

    Article  CAS  Google Scholar 

  64. Roefer P, Snyder S, Zegers RE, Rexing DJ, Fronk JL (2000) Endocrine-disrupting chemicals in a source water. J Am Water Works Assoc 92(8):52–58

    Article  CAS  Google Scholar 

  65. Nghiem LD, Manis A, Soldenhoff K, Schäfer AI (2004) Estrogenic hormone removal from wastewater using NF/RO membranes. J Membr Sci 242:37–45

    Article  CAS  Google Scholar 

  66. Wicks C, Kelley C, Peterson E (2004) Estrogen in a karstic aquifer ground water. Ground Water 42:384–389

    Article  CAS  Google Scholar 

  67. Campbell CG, Borglin SE, Green FB, Grason A, Wozei E, Stringfellow WT (2006) Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: a review. Chemosphere 65:1265–1280

    Article  CAS  Google Scholar 

  68. Braga O, Smythe GA, Schäfer AI, Feitz AJ (2005) Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants. Environ Sci Technol 39:3351–3359

    Article  CAS  Google Scholar 

  69. Shen JH, Gutendorf B, Vahl HH, Shen L, Westendorf J (2001) Toxicological profile of pollutants in surface water from an area in Taihu Lake, Yangtze Delta. Toxicology 166:71–78

    Article  CAS  Google Scholar 

  70. Xiao XY, McCalley DV, McEvoy J (2001) Analysis of estrogens in river water and effluents using solid-phase extraction and gas chromatography-negative chemical ionisation mass spectrometry of the pentafluorobenzoyl derivatives. J Chromatogr A 923:195–204

    Article  CAS  Google Scholar 

  71. Drewes JE, Hemming J, Ladenburger SJ, Schaauer J, Sonzogni W (2005) An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements. Water Environ Res 77:12–23

    Article  CAS  Google Scholar 

  72. Rodriguez-Mozaz S, López de Alda MJ, Barceló D (2004) Monitoring of estrogens, pesticides and bisphenol a in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography mass spectrometry. J Chromatogr A 1045:85–92

    Article  CAS  Google Scholar 

  73. Beck IC, Bruhn R, Gandrass J, Ruck W (2005) Liquid chromatography-tandem mass spectrometry analysis of estrogenic compounds in coastal surface water of the Baltic Sea. J Chromatogr A 1090:98–106

    Article  CAS  Google Scholar 

  74. Joss A, Andersen H, Ternes T, Richle PR, Siegrist H (2004) Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environ Sci Technol 38:3047–3055

    Article  CAS  Google Scholar 

  75. Johnson AC, Williams RJ, Simpson P, Kanda R (2007) What difference might sewage treatment performance make to endocrine disruption in rivers? Environ Pollut 147:194–202

    Article  CAS  Google Scholar 

  76. Liu ZH, Kanjo Y, Mizutani S (2009) Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment – physical means, biodegradation, and chemical advanced oxidation: a review. Sci Total Environ 407:731–748

    Article  CAS  Google Scholar 

  77. Körner W, Hanf V, Schuller W, Kempter C, Metzger J, Hagenmaier H (1999) Development of a sensitive E-screen assay for quantitative analysis of estrogenic activity in municipal sewage effluents. Sci Total Environ 225:33–48

    Article  Google Scholar 

  78. Isidori M, Cangiano M, Palermo FA, Parrella A (2010) E-screen and vitellogenin assay for the detection of the estrogenic activity of alkylphenols and trace elements. Comp Biochem Physiol C Toxicol Pharmacol 152:51–56

    Article  CAS  Google Scholar 

  79. Johnson AC, Sumpter JP (2001) Removal of endocrine disrupting chemicals in activated sludge treatment works. Environ Sci Technol 35:4697–4703

    Article  CAS  Google Scholar 

  80. Johnson AC, Belfroid A, Di Corcia A (2000) Estimating steroid estrogen input into activated sludge treatment works and observation on their removal from the effluent. Sci Total Environ 256:163–173

    Article  CAS  Google Scholar 

  81. Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken R-D, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants-I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90

    Article  CAS  Google Scholar 

  82. Andersen H, Segrist H, Hlling-Sorensen B, Trnes TA (2003) Fate of estrogens in a municipal sewage treatment plant. Environ Sci Technol 37:4021–4026

    Article  CAS  Google Scholar 

  83. Ternes TA, Kreckel P, Mueller J (1999) Behaviour and occurrence of estrogens in municipal sewage treatment plants-II. Aerobic batch experiments with activated sludge. Sci Total Environ 225:91–99

    Article  CAS  Google Scholar 

  84. Carballa M, Omil F, Lema JM, Llompart M, Garcia-Jares C, Rodriguez I, Gomez M, Ternes T (2004) Behaviour of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926

    Article  CAS  Google Scholar 

  85. Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797–4807

    Article  CAS  Google Scholar 

  86. Panter GH, Thompson RS, Beresford N, Sumpter JP (1999) Transformation of a non-oestrogenic steroid metabolite to an oestrogenically active substance by minimal bacterial activity. Chemosphere 38:3579–3596

    Article  CAS  Google Scholar 

  87. Semião AJC, Schäfer AI (2010) Xenobiotics removal by membrane technology: an overview. In: Fatta-Kassinos D, Bester K, Kümmerer K (eds) Environmental pollution, vol 16. Springer, Dordrecht, pp 307–338

    Google Scholar 

  88. Ben Aim RM, Semmens MJ (2002) Membrane bioreactors for wastewater treatment and reuse: a success story. Water Sci Technol 47(1):1–5

    Article  Google Scholar 

  89. Manem J, Sanderson R (1996) Membrane bioreactors. In: Malleviale J, Odendaal PE, Wiesner MR (eds) Water treatment membrane processes. McGraw-Hill, New York, pp 17.1–17.31

    Google Scholar 

  90. Galil NI, Sheidorf C, Stahl N, Tenenbaum A, Levinsky Y (2003) Membrane bioreactors for final treatment of wastewater. Water Sci Technol 48(8):103–110

    Article  CAS  Google Scholar 

  91. Cirja M, Ivashechkin P, Schäffer A, Corvini PFX (2008) Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Rev Environ Sci Biotechnol 7:61–78

    Article  CAS  Google Scholar 

  92. Abegglen C, Joss A, McArdell CS, Fink G, Schlüsener MP, Ternes TA, Siegrist H (2009) The fate of selected micropollutants in a single-house MBR. Water Res 43:2036–2046

    Article  CAS  Google Scholar 

  93. Rosenberger S, Kruger U, Witzig R, Manz W, Szewzyk U, Kraume M (2002) Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water. Water Res 36:413–420

    Article  CAS  Google Scholar 

  94. Weiss S, Reemtsma T (2008) Membrane bioreactors for municipal wastewater treatment – a viable option to reduce the amount of polar pollutants discharged into surface waters? Water Res 42:3837–3847

    Article  CAS  Google Scholar 

  95. Massé A, Spérantio M, Cabassud C (2006) Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time. Water Res 40:2405–2415

    Article  CAS  Google Scholar 

  96. Bouhabila EH, Ben Aïm R, Buisson H (1998) Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment). Desalination 118:315–322

    Article  CAS  Google Scholar 

  97. Bouhabia EH, Ben Aïm R, Buisson H (2001) Fouling characterisation in membrane bioreactors. Sep Purif Technol 22-23:123–132

    Article  Google Scholar 

  98. Zhang B, Yamamoto K, Ohgaki S, Kamiko N (1997) Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment/reclamation. Water Sci Technol 35(6):37–44

    Article  CAS  Google Scholar 

  99. Huang X, Gui P, Qian Y (2001) Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor. Process Biochem 36:1001–1006

    Article  CAS  Google Scholar 

  100. Ng HY, Hermanowicz SW (2005) Membrane bioreactor operation at short solids retention times: performance and biomass characteristics. Water Res 39:981–992

    Article  CAS  Google Scholar 

  101. Gao M, Yang M, Li H, Wang Y, Pan F (2004) Nitrification and sludge characteristics in a submerged membrane bioreactor on synthetic inorganic wastewater. Desalination 170:177–185

    Article  CAS  Google Scholar 

  102. Cicek N, Macomer J, Davel J, Suidan MT, Audic J, Genestet P (2001) Effect of solids retention time on the performances and biological characteristics of a membrane bioreactor. Water Sci Technol 43(11):43–50

    Article  CAS  Google Scholar 

  103. Pollice A, Giordano C, Laera G, Saturno D, Mininni G (2006) Rheology of sludge in a complete retention membrane bioreactor. Environ Technol 27:723–732

    Article  CAS  Google Scholar 

  104. Hu JY, Chen X, Tao G, Kekred K (2007) Fate of endocrine disrupting compounds in membrane bioreactors systems. Environ Sci Technol 41:4097–4102

    Article  CAS  Google Scholar 

  105. Spring AJ, Bagley DM, Andrews RC, Lemanik S, Yang P (2007) Removal of endocrine disrupting compounds using a membrane bioreactor and disinfection. J Environ Eng Sci 6:131–137

    Article  CAS  Google Scholar 

  106. Urase T, Kagawa C, Kikuta T (2005) Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors. Desalination 178:107–113

    Article  CAS  Google Scholar 

  107. Clara M, Strenn B, Ausserleitner M, Kreuzinger N (2004) Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant. Water Sci Technol 50(5):29–36

    Article  CAS  Google Scholar 

  108. Kreuzinger N, Clara M, Strenn B, Kroiss H (2004) Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater. Water Sci Technol 50(5):149–156

    Article  CAS  Google Scholar 

  109. Schröder HF (2006) The elimination of the endocrine disrupters 4-nonylphenol and bisphenol A during wastewater treatment – comparison of conventional and membrane assisted biological wastewater treatment followed by an ozone treatment. Water Pract Technol 1(3):0060(1–9)

    Article  Google Scholar 

  110. Chen J, Hwang X, Lee D (2008) Bisphenol A removal by a membrane bioreactor. Process Biochem 43:451–456

    Article  CAS  Google Scholar 

  111. González S, Petrovic M, Barceló D (2007) Removal of a broad range of surfactants from municipal wastewater – comparison between membrane bioreactor and conventional activated sludge treatment. Chemosphere 67:335–343

    Article  CAS  Google Scholar 

  112. Wintgens T, Gallenkemper M, Melin T (2002) Endocrine disrupting removal from wastewater using membrane bioreactor and nanofiltration technology. Desalination 146:387–391

    Article  CAS  Google Scholar 

  113. Cirja M, Zühlke S, Ivashechkin P, Schäffer A, Corvini PFX (2006) Fate of a 14C-labeled nonylphenol isomer in a laboratory-scale membrane bioreactor. Environ Sci Technol 40:6131–6136

    Article  CAS  Google Scholar 

  114. Dray J, Tillier F, Dray F, Ullmann A (1972) Hydrolysis of urine metabolites of different steroid hormones by β-glucuronidase from Escherichia coli. Ann Inst Pasteur 123:853–857

    CAS  Google Scholar 

  115. Lesjean B, Gnirss R, Buisson H, Keller S, Tazi-Pain A, Luck F (2005) Outcomes of a 2-year investigation on enhanced biological nutrients removal and trace organics elimination in membrane bioreactor (MBR). Water Sci Technol 52(10–11):453–460

    Article  CAS  Google Scholar 

  116. Vader JS, van Ginkel CG, Sperling FM, de Jong J, de Boer W, de Graaf JS, van der Most M, Stokman PG (2000) Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere 41:1239–1243

    Article  CAS  Google Scholar 

  117. De Gusseme B, Pycke B, Hennebel T, Marcoen A, Vlaeminck SE, Noppe H, Boon N, Verstraete W (2009) Biological removal of 17α-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Res 43:2493–2503

    Article  CAS  Google Scholar 

  118. Koh YK, Chiu TY, Boobis AR, Scrimshaw MD, Bagnall JP, Soares A, Pollard S, Cartmell E, Lester JN (2009) Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes. Environ Sci Technol 43:6646–6654

    Article  CAS  Google Scholar 

  119. Weber S, Leuschner P, Kämpfer P, Dott W, Hollender J (2005) Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Appl Microbiol Biotechnol 67:106–112

    Article  CAS  Google Scholar 

  120. González S, Petrovic M, Barceló D (2008) Evaluation of two pilot scale membrane bioreactors for the elimination of selected surfactants from municipal wastewaters. J Hydrol 356:46–55

    Article  CAS  Google Scholar 

  121. Zuehlke S, Duennbier U, Lesjean B, Gnirss R, Buisson H (2006) Long-term comparison of trace organics removal performances between conventional and membrane activated sludge processes. Water Environ Res 78:2480–2486

    Article  CAS  Google Scholar 

  122. Andersen HR, Andersen AM, Arnold SF (1999) Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect 107:89–108

    Article  CAS  Google Scholar 

  123. Ternes TA, Andersen H, Gilberg D, Bonerz M (2002) Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Anal Chem 74:3498–3504

    Article  CAS  Google Scholar 

  124. Larsen TA, Lienert J, Joss A, Siegrist H (2004) How to avoid pharmaceuticals in the aquatic environment. J Biotechnol 113:295–304

    Article  CAS  Google Scholar 

  125. Lai KM, Johnson KL, Scrimshaw MD, Lester JN (2000) Binding of waterborne steroid phases in river and estuarine systems. Environ Sci Technol 34:3890–3894

    Article  CAS  Google Scholar 

  126. Yamamoto H, Liljestrand HM, Shimizu Y, Morita M (2003) Effects of physical-chemical characteristics on the sorption of selected endocrine disruptors by dissolved organic matter surrogates. Environ Sci Technol 37:2646–2657

    Article  CAS  Google Scholar 

  127. Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  CAS  Google Scholar 

  128. Clara M, Strenn B, Saracevic E, Kreuzinger N (2004) Adsorption of bisphenol-a, 17β-estradiole and 17α-ethinylestradiole to sewage sludge. Chemosphere 56:843–851

    Article  CAS  Google Scholar 

  129. Mikkelsen LH (2003) Applications and limitations of the colloid titration method for measuring activated sludge surface charges. Water Res 37:2458–2466

    Article  CAS  Google Scholar 

  130. Ganaye VA, Keiding K, Vogel TM, Viriot ML, Block JC (1997) Evaluation of soil organic matter polarity by pyrene fluorescence spectrum variations. Environ Sci Technol 31:2701–2706

    Article  CAS  Google Scholar 

  131. Andersen HR, Hansen M, Kjolholt J, Stuer-Lauridsen F, Ternes T, Halling-Sorensen B (2005) Assessment of the importance of sorption for steroid estrogens removal during activated sludge treatment. Chemosphere 61:139–146

    Article  CAS  Google Scholar 

  132. Ternes T, Joss A, Siegrist H (2004) Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol 38:392–399

    Article  Google Scholar 

  133. Chen X, Hu J (2009) Degradation of 17β-estradiol and its conjugates: effects of initial concentration and MLSS concentration. Process Biochem 44:1330–1334

    Article  CAS  Google Scholar 

  134. Urase T, Kikuta T (2005) Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res 39:1289–1300

    Article  CAS  Google Scholar 

  135. Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696

    Article  CAS  Google Scholar 

  136. Suárez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Biotechnol 7:125–138

    Article  CAS  Google Scholar 

  137. Ying GG, Kookana RS, Kumar A, Mortimer M (2009) Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland. Sci Total Environ 407:5147–5155

    Article  CAS  Google Scholar 

  138. Cicek N, Franco J, Suidan M, Urbain V, Manem J (1999) Characterization and comparison of a membrane bioreactor and a conventional activated sludge system in the treatment of wastewater containing high molecular weight compounds. Water Environ Res 71:64–70

    Article  CAS  Google Scholar 

  139. Joss A, Keller E, Alder AC, Goebel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39:3139–3152

    Article  CAS  Google Scholar 

  140. Göbel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372:361–371

    Article  CAS  Google Scholar 

  141. Baek SH, Pagilla K (2009) Microbial community structures in conventional activated sludge system and membrane bioreactor (MBR). Biotechnol Bioprocess Eng 14:848–853

    Article  CAS  Google Scholar 

  142. Fan XJ, Urbain V, Qian Y, Manem J, Ng WJ, Ong SL (2000) Nitrification in a membrane bioreactor (MBR) for wastewater treatment. Water Sci Technol 42(3–4):289–294

    Article  CAS  Google Scholar 

  143. Shi J, Fujisawa S, Nakai S, Hosomi M (2004) Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Res 38:2323–2330

    Article  CAS  Google Scholar 

  144. Yi T, Harper WF (2007) The link between nitrification and biotransformation of 17 alpha-ethinylestradiol. Environ Sci Technol 41(12):4311–4316

    Article  CAS  Google Scholar 

  145. Gaulke LS, Strand SE, Kalhorn TF, David Stensel H (2009) Estrogen biodegradation kinetics and estrogenic activity reduction for two biological wastewater treatment methods. Environ Sci Technol 43:7111–7116

    Article  CAS  Google Scholar 

  146. Wisniewski C, Leon Cruz A, Grasmick A (1999) Kinetics of organic carbon removal by a mixed culture in a membrane bioreactor. Biochem Eng J 3:61–69

    Article  CAS  Google Scholar 

  147. Song KG, Choung YK, Ahn KH, Yun H (2003) Performance of membrane bioreactor systems with sludge ozonation process for minimization of excess sludge production. Desalination 157:353–359

    Article  CAS  Google Scholar 

  148. Radjenović J, Matošić M, Mijatović I, Petrović M, Barceló D (2008) Membrane bioreactor (MBR) as an advanced wastewater treatment technology. Hdb Environ Chem 5S:37–101

    Google Scholar 

  149. Han SS, Bae TH, Jang GG, Tak TM (2005) Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system. Process Biochem 40:2393–2400

    Article  CAS  Google Scholar 

  150. Sipma J, Osuna B, Collado N, Monclús H, Ferrero G, Comas J, Rodriguez-Roda I (2010) Comparison of removal of pharmaceuticals in MBR and activated sludge systems. Desalination 250:653–659

    Article  CAS  Google Scholar 

  151. Li F, Yuasa A, Obara A, Mathews AP (2005) Aerobic batch degradation of 17-β estradiol (E2) by activated sludge: effects of spiking E2 concentrations, MLVSS and temperatures. Water Res 39:2065–2075

    Article  CAS  Google Scholar 

  152. Nguyen LN, Hai FI, Kang J, Price WE, Nghiem LD (2013) Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. Int Biodeterior Biodegrad 85:474–482

    Article  CAS  Google Scholar 

  153. Subtil EI, Mierzwa JC, Hespanhol I (2014) Comparison between a conventional membrane bioreactor (C-MBR) and a biofilm membrane bioreactor (BF-MBR) for domestic wastewater treatment. Braz J Chem Eng 31:683–691

    Article  Google Scholar 

  154. Li X, Hai FI, Nghiem LD (2018) Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal. Bioresour Technol 102:5319–5324

    Article  CAS  Google Scholar 

  155. Sert G, Bunani S, Yorukoglu E, Kabay N, Egemen O, Arda M, Yuksel M (2017) Performances of some NF and RO membranes for desalination of MBR treated wastewater. J Water Process Eng 16:193–198

    Article  Google Scholar 

  156. Moser PB, Bretas C, Paula EC, Faria C, Ricci BC, Cerqueira ACFP, Amaral MCS (2019) Comparison of hybrid ultrafiltration-osmotic membrane bioreactor and conventional membrane bioreactor for oil refinery effluent treatment. Chem Eng J 378(1–10):121952

    Article  CAS  Google Scholar 

  157. Prado M, Borea L, Cesaro A, Liu H, Naddeo V, Belgiorno V, Ballesteros F Jr (2017) Removal of emerging contaminant and fouling control in membrane bioreactors by combined ozonation and sonolysis. Int Biodeterior Biodegrad 119:577–586

    Article  CAS  Google Scholar 

  158. Zhang Y, Xue J, Liu Y, El-Din MG (2018) The role of ozone pretreatment on optimization of membrane bioreactor for treatment of oil sands process-affected water. J Hazard Mater 347:470–477

    Article  CAS  Google Scholar 

  159. Perez JAS, Sanchez IMR, Carra I, Reina AC, Lopez JLC, Malato S (2013) Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs. J Hazard Mater 244-245:195–203

    Article  CAS  Google Scholar 

  160. Li X, Hai FI, Nghiem LD (2011) Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal. Bioresour Technol 102:5319–5324

    Article  CAS  Google Scholar 

  161. Serrano D, Suárez S, Lema JM, Omil F (2011) Removal of persistent pharmaceutical micropollutants from sewage by addition of PAC in a sequential membrane bioreactor. Water Res 45:5323–5333

    Article  CAS  Google Scholar 

  162. Nguyen LN, Hai FI, Jang J, Price WE, Nghiem LD (2012) Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-GAC) system. Bioresour Technol 13:169.173

    Google Scholar 

  163. Zhang S, Xiong J, Zuo X, Liao W, Ma C, He J, Chen Z (2019) Characteristics of the sludge filterability and microbial composition in PAC hybrid MBR: effect of PAC replenishment ratio. Biochem Eng J 145:10–17

    Article  CAS  Google Scholar 

  164. Londono IC (2011) Assessment of causes of irreversible fouling in powered activate carbon/ultrafiltration membrane (PAC/UF) systems. Mater thesis. The university of British Columbia (Vancouver)

    Google Scholar 

  165. Yoshimoto T, Nagai F, Fujimoto J, Watanabe K, Mizukoshi H, Makino T, Kimura K, Saino H, Sawada H, Omura H (2004) Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 70:5283–5289

    Article  CAS  Google Scholar 

  166. Liu J, Liu J, Xu D, Ling W, Li S, Chen M (2016) Isolation, immobilization and degradation performance of the 17β-estradiol-degrading bacterium Rhodococcus sp. JX-2. Water Air Soil Pollut 227:422

    Article  CAS  Google Scholar 

  167. Kurisu F, Ogura M, Saitoh S, Yamazoe A, Yagi O (2010) Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp. J Biosci Bioeng 109(6):576–582

    Article  CAS  Google Scholar 

  168. Villemur R, Santos SCCdS, Ouellette J, Juteau P, Lepine F, Deziel E (2013) Biodegradation of endocrine disruptors in solid-liquid two-phase partitioning systems by enrichment cultures. Appl Environ Microbiol 79(15):4701–4711

    Article  CAS  Google Scholar 

  169. Gusseme BD, Pycke B, Hennebel T, Marcoen A, Vlaeminck SE, Noppe H, Boon N, Verstraete W (2009) Biological removal of 17α-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Res 43:2493–2503

    Article  CAS  Google Scholar 

  170. Corvini PFX, Shahgaldian P (2010) LANCE: laccase-nanoparticle conjugates for the elimination of micropollutants (endocrine disrupting chemicals) from wastewater in bioreactors. Rev Environ Sci Biotechnol 9(1):23–27

    Article  CAS  Google Scholar 

  171. Bilal M, Iqbak HMN (2019) Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal. Sci Total Environ 690:490–459

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Yong Hu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hu, J.Y., Park, SK., Lim, F.Y. (2020). Water Reclamation System and Micropollutants. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_382-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_382-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics