Skip to main content

Conversion Pathways Toward Transportation Fuels: Identification and Comparison

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Biodiesel:

Biofuel fulfilling directly and/or in blends the given fuel specifications; one prominent example is fatty acid methyl ester (FAME) usually produced from vegetable oil via transesterification.

Biogas to liquids:

Process to convert biogas into long-chain hydrocarbon liquid under standard conditions (i.e., advanced biofuels).

Biomass to liquids:

Process to convert solid biomass (i.e., lignocellulosic material) into long-chain hydrocarbon liquid under standard conditions.

Co-refining:

The processing of vegetable oil in a “classical” crude oil refinery together with crude oil to produce biofuels fulfilling the given specifications.

Drop-in fuels:

Fuels similar to fossil fuels on a molecular level, so that they can be mixed with varying shares and thus be used within the existing infrastructure.

HEFA fuels:

Fuels produced from vegetable oils via the hydroprocessed esters and fatty acids process.

Pyrolysis:

Thermochemical conversion process to convert solid biomass into a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. ExxonMobil (2016) The outlook for energy: a view to 2040

    Google Scholar 

  2. IPCC (2015) In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  3. Kline KL, Msangi S, Dale VH et al (2016) Reconciling food security and bioenergy: priorities for action. GCB Bioenergy. https://doi.org/10.1111/gcbb.12366

  4. Wikimedia Commons (2016) Kalt. https://commons.wikimedia.org/wiki/Main_Page. Accessed 29 Aug 2016

  5. Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3rd edn. Springer, Berlin/Heidelberg

    Google Scholar 

  6. Dubois V, Breton S, Linder M et al (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 109(7):710–732. https://doi.org/10.1002/ejlt.200700040

    Article  CAS  Google Scholar 

  7. Akbar E, Yaakob Z, Kamarudin SK et al (2009) Characteristic and composition of Jatropha Curcas oil seed from Malaysia and its potential as biodiesel feedstock. Eur J Sci Res 29(3):396–403

    Google Scholar 

  8. Meine N, Hilgert J, Kaldstrom M et al (2013) Katalytisches Vermahlen: Ein neuer Zugang für Lignocellulose-Bioraffinerien

    Google Scholar 

  9. Neuling U, Kaltschmitt M (2017) Review of biofuel production: feedstock, processes and markets. J Oil Palm Res 29(2):137–166

    Article  Google Scholar 

  10. Carter C, Finley W, Fry J et al (2007) Palm oil markets and future supply. Eur J Lipid Sci Technol 109(4):307–314. https://doi.org/10.1002/ejlt.200600256

    Article  CAS  Google Scholar 

  11. Shonnard DR, Williams L, Kalnes TN (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sustain Energy 29(3):382–392. https://doi.org/10.1002/ep.10461

    Article  CAS  Google Scholar 

  12. van der Putten E, Jongh JA (2010) The Jatropha handbook: from cultivation to application. FACT Foundation, Eindhoven

    Google Scholar 

  13. Zimmer Y (2010) Competitiveness of rapeseed, soybeans and palm oil. J Oilseed Brassica 1(2):84–90

    Google Scholar 

  14. Bockisch M (1998) Fats and oils handbook. AOCS Press, Champaign

    Google Scholar 

  15. Atabani AE, Silitonga AS, Ong HC et al (2013) Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sust Energ Rev 18:211–245. https://doi.org/10.1016/j.rser.2012.10.013

    Article  CAS  Google Scholar 

  16. Hoekman SK, Broch A, Robbins C et al (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16(1):143–169. https://doi.org/10.1016/j.rser.2011.07.143

    Article  CAS  Google Scholar 

  17. Refaat AA (2009) Correlation between the chemical structure of biodiesel and its physical properties. Int J Environ Sci Technol 6(4):677–694. https://doi.org/10.1007/BF03326109

    Article  CAS  Google Scholar 

  18. CEN European Committee for Standardization (2014) Automotive fuels – diesel – requirements and test methods (EN 590)

    Google Scholar 

  19. CEN European Committee for Standardization (2014) Liquid petroleum products – fatty acid methyl esters (FAME) for use in diesel engines and heating applications – requirements and test methods (EN 14 214)

    Google Scholar 

  20. American Society for Testing and Materials (2015) Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels (ASTM D 6751)

    Google Scholar 

  21. Demirbas A (2003) Fuel conversional aspects of palm oil and sunflower oil. Energy Sources 25(5):457–466. https://doi.org/10.1080/00908310390142451

    Article  CAS  Google Scholar 

  22. Ribeiro NM, Pinto AC, Quintella CM et al (2007) The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: a review. Energy Fuel 21(4):2433–2445. https://doi.org/10.1021/ef070060r

    Article  CAS  Google Scholar 

  23. Gunstone FD (2008) Oils and fats in the food industry. Food industry briefing series. Wiley-Blackwell, Oxford

    Google Scholar 

  24. Leung G, Strezov V (2015) Esterification. In: Strezov V, Evans TJ (eds) Biomass processing technologies. CRC Press, Taylor & Francis Group, Boca Raton, pp 213–256

    Google Scholar 

  25. Pourzolfaghar H, Abnisa F, Daud WMAW et al (2016) A review of the enzymatic hydroesterification process for biodiesel production. Renew Sust Energ Rev 61:245–257. https://doi.org/10.1016/j.rser.2016.03.048

    Article  CAS  Google Scholar 

  26. Nikander S (2008) Greenhouse gas and energy intensity of product chain: case transport biofuel. Masterthesis, Helsinki University of Technology

    Google Scholar 

  27. Furimsky E (2013) Hydroprocessing challenges in biofuels production. Catal Today 217:13–56. https://doi.org/10.1016/j.cattod.2012.11.008

    Article  CAS  Google Scholar 

  28. Kuchling T, Wollmerstädt H, Endisch M (2013) Hydrierung von Pflanzenölen – Mechanismus und Kinetik. Chem Ing Tech 85(4):508–511. https://doi.org/10.1002/cite.201200199

    Article  CAS  Google Scholar 

  29. Tóth C, Kasza T, Kovács S et al (2009) Investigation of catalytic conversion of vegetable oil. In: 44th International Petroleum Conference, Bratislava

    Google Scholar 

  30. Neuling U, Kaltschmitt M (2015) Conversion routes for production of biokerosene – status and assessment. Biomass Conv Bioref 5(4):367–385. https://doi.org/10.1007/s13399-014-0154-2

    Article  CAS  Google Scholar 

  31. Myllyoja J, Aalto P, Savolainen P et al Process for the manufacture of diesel range hydrocarbons. US 8,212,094 B2

    Google Scholar 

  32. Li L, Coppola E, Rine J et al (2010) Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energy Fuel 24(2):1305–1315. https://doi.org/10.1021/ef901163a

    Article  CAS  Google Scholar 

  33. Coppola E, Red C Jr, Nana S (2014) High rate reactor system. US 2014/0109465 A1. Accessed 15 May 2014

    Google Scholar 

  34. Kaltschmitt M, Andrée U, Majer ST (2010) Raffinerietechnik-Koraffination von Pflanzenöl in Mineralölraffinerien: Möglichkeiten und Grenzen. Erdöl Erdgas Kohle 126(5):203

    Google Scholar 

  35. Mittelmyr A, Reichhold A (2009) Co-processing vegetable oils in an FCCU: gasoline produced by pilot-scale co-processing of vegetable oils in a fluid catalytic cracking unit is suitable for conventional combustion engines. Biofuels Technol 2:5–10

    Google Scholar 

  36. Rakopoulos DC, Rakopoulos CD, Giakoumis EG et al (2010) Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Convers Manag 51(10):1989–1997. https://doi.org/10.1016/j.enconman.2010.02.032

    Article  CAS  Google Scholar 

  37. Wu H, Nithyanandan K, Zhou N et al (2015) Impacts of acetone on the spray combustion of Acetone–Butanol–Ethanol (ABE)-diesel blends under low ambient temperature. Fuel 142:109–116. https://doi.org/10.1016/j.fuel.2014.10.009

    Article  Google Scholar 

  38. Humbird D, Davis R, Tao L et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  39. Bertau M, Offermanns H, Plass L et al (2014) Methanol the basic chemical and energy feedstock of the future: Asinger’s vision today. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  40. Höhlein B, Grube T, Biedermann P et al. (2003) Methanol als Energieträger. Schriften des Forschungszentrums Jülich. Reihe Energietechnik, Bd. 28. Forschungszentrum Jülich, Zentralbibliothek, Jülich

    Google Scholar 

  41. Hamelinck CN, Faaij A (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sources 111(1):1–22. https://doi.org/10.1016/S0378-7753(02)00220-3

    Article  CAS  Google Scholar 

  42. Griffin DW, Schultz MA (2012) Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Environ Prog Sustain Energy 31(2):219–224. https://doi.org/10.1002/ep.11613

    Article  CAS  Google Scholar 

  43. Tao L, He X, Tan E et al (2014) Comparative techno-economic analysis and reviews of n-butanol production from corn grain and corn stover. Biofuels Bioprod Biorefin 8(3):342–361. https://doi.org/10.1002/bbb.1462

    Article  CAS  Google Scholar 

  44. Harvey BG, Meylemans HA (2011) The role of butanol in the development of sustainable fuel technologies. J Chem Technol Biotechnol 86(1):2–9. https://doi.org/10.1002/jctb.2540

    Article  CAS  Google Scholar 

  45. Atsonios K, Kougioumtzis M-A, Panopoulos KD et al (2015) Alternative thermochemical routes for aviation biofuels via alcohols synthesis: process modeling, techno-economic assessment and comparison. Appl Energy 138:346–366. https://doi.org/10.1016/j.apenergy.2014.10.056

    Article  CAS  Google Scholar 

  46. Chang CD, Silvestri AJ (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259

    Article  CAS  Google Scholar 

  47. Takahara I, Saito M, Inaba M et al (2005) Dehydration of ethanol into ethylene over solid acid catalysts. Catal Lett 105(3–4):249–252. https://doi.org/10.1007/s10562-005-8698-1

    Article  CAS  Google Scholar 

  48. Taylor JD, Jenni MM, Peters MW (2010) Dehydration of fermented isobutanol for the production of renewable chemicals and fuels. Top Catal 53(15–18):1224–1230. https://doi.org/10.1007/s11244-010-9567-8

    Article  CAS  Google Scholar 

  49. Breitmaier E, Jung G (2005) Organische Chemie: Grundlagen, Stoffklassen, Reaktionen, Konzepte, Molekülstruktur; zahlreiche Formeln, Tabellen, 5., überarb. Aufl. Thieme, Stuttgart

    Google Scholar 

  50. Wollrab A (2009) Organische Chemie: Eine Einführung für Lehramts- und Nebenfachstudenten, 2009th edn. Springer, Berlin/Heidelberg

    Google Scholar 

  51. Froment G, Dehertog W, Marchi A (1992) Zeolite catalysis in the conversion of methanol into olefins. Catalysis, vol 9. Royal Society of Chemistry, London, pp 1–64, 10 figg., 15 tabb

    Google Scholar 

  52. Amin NAS, Anggoro DD (2002) Dealuminated ZSM-5 zeolite catalyst for ethylene oligomerization to liquid fuels. J Nat Gas Chem 11(1/2):79–86

    CAS  Google Scholar 

  53. Janiak C (2006) Metallocene and related catalysts for olefin, alkyne and silane dimerization and oligomerization. Coord Chem Rev 250(1–2):66–94. https://doi.org/10.1016/j.ccr.2005.02.016

    Article  CAS  Google Scholar 

  54. Wellinger A, Murphy J, Baxter D (2013) The biogas handbook: science, production and applications. Woodhead publishing series in energy, no. 52. Woodhead Publishing Limited, Oxford

    Google Scholar 

  55. Basu P (2013) Biomass gasification, pyrolysis and torrefaction: practical design and theory, 2nd edn. Academic, Amsterdam

    Google Scholar 

  56. Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. Wiley, Hoboken

    Google Scholar 

  57. Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44(3):550–552

    Article  CAS  Google Scholar 

  58. Li Y, Zhang R, Liu G et al (2013) Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour Technol 149:565–569. https://doi.org/10.1016/j.biortech.2013.09.063

    Article  CAS  Google Scholar 

  59. European Biogas Association EBA (2014) EBA biogas report 2014 is published! – European Biogas Association. http://european-biogas.eu/2014/12/16/4331/. Accessed 01 Mar 2016

  60. Ramaswamy S (ed) (2013) Separation and purification technologies in biorefineries. Wiley, Chichester

    Google Scholar 

  61. Kumar A, Jones DD, Hanna MA (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2(3):556–581. https://doi.org/10.3390/en20300556

    Article  CAS  Google Scholar 

  62. Rönsch S, Kaltschmitt M (2012) Bio-SNG production – concepts and their assessment. Biomass Conv Bioref 2(4):285–296. https://doi.org/10.1007/s13399-012-0048-0

    Article  Google Scholar 

  63. Klasson K, Ackerson MD, Clausen EC et al (1992) Bioconversion of synthesis gas into liquid or gaseous fuels. Enzym Microb Technol 14(8):602–608. https://doi.org/10.1016/0141-0229(92)90033-K

    Article  CAS  Google Scholar 

  64. Kopyscinski J, Schildhauer TJ, Biollaz SM (2010) Production of synthetic natural gas (SNG) from coal and dry biomass – a technology review from 1950 to 2009. Fuel 89(8):1763–1783. https://doi.org/10.1016/j.fuel.2010.01.027

    Article  CAS  Google Scholar 

  65. Dry ME (2004) Present and future applications of the Fischer-Tropsch process. Appl Catal A Gen 276(1):1–3

    Article  CAS  Google Scholar 

  66. Schulz H (1999) Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A Gen 186(1–2):3–12. https://doi.org/10.1016/S0926-860X(99)00160-X

    Article  CAS  Google Scholar 

  67. de Klerk A (2011) Fischer-Tropsch refining, 1st edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  68. Steynberg A, Dry ME (2004) Fischer-Tropsch technology. In: Studies in surface science and catalysis, vol 152. Elsevier, Amsterdam

    Google Scholar 

  69. Fischer F, Tropsch H (1923) The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennstoff Chem 4:276–285

    CAS  Google Scholar 

  70. Schulz GV (1935) Über die Beziehung zwischen Reaktionsgeswindlichkeit und zusammensetzung des Reaktionsproduktes bei Makropolymerisationsvorgängen. Phys Chem 30:379–398

    Article  Google Scholar 

  71. Flory PJ (1936) Molecular size distribution in linear condensation polymers 1. J Am Chem Soc 58(10):1877–1885. https://doi.org/10.1021/ja01301a016

    Article  CAS  Google Scholar 

  72. de Klerk A, Furimsky E (2011) Catalysis in the refining of Fischer–Tropsch syncrude. Platin Met Rev 55(4):263–267. https://doi.org/10.1595/147106711X593717

    Article  Google Scholar 

  73. Jager B, Espinoza R (1995) Advances in low temperature Fischer-Tropsch synthesis. Catal Today 23(1):17–28. https://doi.org/10.1016/0920-5861(94)00136-P

    Article  CAS  Google Scholar 

  74. Maitlis PM, de Klerk A (2013) Greener Fischer-Tropsch processes for fuels and feedstocks. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  75. Davis BH, Occelli ML (2016) Fischer-Tropsch synthesis, catalysts and catalysis: advances and applications. Chemical industries, 142. CRC Press LLC, Boca Raton

    Google Scholar 

  76. Gambaro C, Calemma V, Molinari D et al (2011) Hydrocracking of Fischer-Tropsch waxes: kinetic modeling via LHHW approach. AICHE J 57(3):711–723. https://doi.org/10.1002/aic.12291

    Article  CAS  Google Scholar 

  77. Wood DA, Nwaoha C, Towler BF (2012) Gas-to-liquids (GTL): a review of an industry offering several routes for monetizing natural gas. J Nat Gas Sci Eng 9:196–208. https://doi.org/10.1016/j.jngse.2012.07.001

    Article  CAS  Google Scholar 

  78. Park S, Jung I, Lee Y et al (2016) Design of microchannel Fischer–Tropsch reactor using cell-coupling method: effect of flow configurations and distribution. Chem Eng Sci 143:63–75. https://doi.org/10.1016/j.ces.2015.12.012

    Article  CAS  Google Scholar 

  79. Zhang C, Jun K-W, Gao R et al (2016) Efficient utilization of associated natural gas in a modular gas-to-liquids process: technical and economic analysis. Fuel 176:32–39. https://doi.org/10.1016/j.fuel.2016.02.060

    Article  CAS  Google Scholar 

  80. Stöcker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47(48):9200–9211. https://doi.org/10.1002/anie.200801476

    Article  Google Scholar 

  81. Rytter E, Ochoa-Fernández E, Fahmi A (2013) Biomass-to-liquids by the Fischer-Tropsch process. In: Imhof P, van der Waal JC (eds) Catalytic process development for renewable materials. Wiley-VCH, Weinheim, pp 265–308

    Chapter  Google Scholar 

  82. Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis – technology review and current scenario. Renew Sust Energ Rev 58:267–286. https://doi.org/10.1016/j.rser.2015.12.143

    Article  CAS  Google Scholar 

  83. Spath PL, Dayton DC (2003) Preliminary screening – technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory, Golden

    Google Scholar 

  84. Arena U (2012) Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32(4):625–639. https://doi.org/10.1016/j.wasman.2011.09.025

    Article  CAS  Google Scholar 

  85. Trippe F, Fröhling M, Schultmann F et al (2011) Techno-economic assessment of gasification as a process step within biomass-to-liquid (BtL) fuel and chemicals production. Fuel Process Technol 92(11):2169–2184. https://doi.org/10.1016/j.fuproc.2011.06.026

    Article  CAS  Google Scholar 

  86. Swanson RM, Satrio JA, Brown RC et al (2010) Techno-economic analysis of biofuels production based on gasification. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  87. Mountouris A, Voutsas E, Tassios D (2006) Solid waste plasma gasification: equilibrium model development and exergy analysis. Energy Convers Manag 47(13–14):1723–1737. https://doi.org/10.1016/j.enconman.2005.10.015

    Article  CAS  Google Scholar 

  88. Simell P, Kurkela E, Ståhlberg P et al (1996) Catalytic hot gas cleaning of gasification gas. Catal Today 27(1–2):55–62. https://doi.org/10.1016/0920-5861(95)00172-7

    Article  CAS  Google Scholar 

  89. Hasler P, Nussbaumer T (1999) Gas cleaning for IC engine applications from fixed bed biomass gasification. Biomass Bioenergy 16(6):385–395. https://doi.org/10.1016/S0961-9534(99)00018-5

    Article  CAS  Google Scholar 

  90. Stevens DJ (2001) Hot gas conditioning: recent progress with larger-scale biomass gasification systems; update and summary of recent progress. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  91. Cui H, Turn SQ, Keffer V et al (2010) Contaminant estimates and removal in product gas from biomass steam gasification. Energy Fuel 24(2):1222–1233. https://doi.org/10.1021/ef9010109

    Article  CAS  Google Scholar 

  92. Hannula I, Kurkela E (2010) A semi-empirical model for pressurised air-blown fluidised-bed gasification of biomass. Bioresour Technol 101(12):4608–4615. https://doi.org/10.1016/j.biortech.2010.01.072

    Article  CAS  Google Scholar 

  93. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  CAS  Google Scholar 

  94. Jones S, Meyer P, Snowden-Swan L et al (2013) Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels: fast pyrolysis and hydrotreating bio-oil pathway. Department of Energy, Bioenergy Technologies Office, Washington, D.C.; Oak Ridge, Tenn.: distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2013

    Google Scholar 

  95. Hassan EB, Elsayed I, Eseyin A (2016) Production high yields of aromatic hydrocarbons through catalytic fast pyrolysis of torrefied wood and polystyrene. Fuel 174:317–324. https://doi.org/10.1016/j.fuel.2016.02.031

    Article  CAS  Google Scholar 

  96. Venderbosch RH, Ardiyanti AR, Wildschut J et al (2010) Stabilization of biomass-derived pyrolysis oils. J Chem Technol Biotechnol 85(5):674–686. https://doi.org/10.1002/jctb.2354

    Article  CAS  Google Scholar 

  97. Augustinova J, Cvengrosova Z, Mikulec J et al (2013) Upgrading of biooil from fast pyrolysis. In: 46th international conference on petroleum processing

    Google Scholar 

  98. Garcia F (2011) Amyris-total alternative aviation fuel partnership. Caafi General Meeting and Expo, Washington, DC

    Google Scholar 

  99. Blommel PG, Cortright RD (2008) Production of conventional liquid fuels from sugars. White Paper. Virent Energy Systems, Madison

    Google Scholar 

  100. Bauldreay J (2012) Catalytic conversion of sugars to create bio Jet fuels – Virent/Shell. Aireg Workshop “Technologies of fuel conversion”. Berlin

    Google Scholar 

  101. Holmgren J (2013) Innovative use of industrial waste gases to produce sustainable fuels & chemicals. Avalon Air Show, Geelong

    Google Scholar 

  102. LanzaTech Low Carbon Fuel Project Achieves Breakthrough. http://www.lanzatech.com/low-carbon-fuel-project-achieves-breakthrough-lanzatech-produces-jet-fuel-waste-gases-virgin-atlantic/. Accessed 16 Aug 2017

  103. Peterson AA, Vogel F, Lachance RP et al (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1(1):32. https://doi.org/10.1039/b810100k

    Article  CAS  Google Scholar 

  104. NASA (2015) Technology readiness level. https://www.nasa.gov/content/technology-readiness-level/. Accessed 04 Mar 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Neuling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Neuling, U., Kaltschmitt, M. (2017). Conversion Pathways Toward Transportation Fuels: Identification and Comparison. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_992-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_992-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics