Skip to main content

Innovative Options for Energy Provision

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 77 Accesses

CO2 sequestration:

Technology to re-fix CO2 from the combustion of fossil fuel energy and to use CO2 as a carbon source

Decarbonization:

Uncoupling energy delivery and organic chemistry from fossil carbon

Green chemistry:

Concept in chemistry to reduce the environmental burden for chemical products and processes as much as possible

Microalgae:

Photosynthetic active prokaryotic or eukaryotic microorganisms converting CO2 by the help of photosynthesis and inorganic nutrients to biomass

New green chemistry:

Concept generating organic carbon by means of photosynthetic cells without the production of biomass and by instead coupling the photobioreactor with a heterotrophic unit converting the organic carbon to the product of interest by conventional fermentation

Photobioreactor::

Bioreactor for photosynthetic active cells allowing for an optimum delivery of light, nutrients and CO2 for photosynthetic active cells

Definition of the Subject

Since the very beginning of human evolution,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Anastas P, Warner J (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  2. Perez E et al (2017) Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: a bibliographic analysis. Renewal 69:350–359

    Google Scholar 

  3. Gilbert, M Encyclopedia of sustainability science and technology. Robert A (ed), 2nd edn. Meyers Springer, New York

    Google Scholar 

  4. Beringer T, Lucht W, Schaphoff L (2011) bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Glob Change Biol Bioenergy. doi:10.1111/j.1757-1707.2010.01088.x

  5. Beer L, Boyd E, Peters J, Posewitz M (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    Article  CAS  Google Scholar 

  6. Hellingwerf M, de Mattos Z (2009) Alternative routes to biofuels: light-driven biofuel formation from CO2 and water based on the ‘photanol’ approach. J Biotechnol 142:87–90

    Article  CAS  Google Scholar 

  7. Silva C, Bertucco A (2017) Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem 51:1833–1842

    Article  Google Scholar 

  8. Wilhelm C (2012) The biological perspective: new green chemistry concepts to improve the performance of microalgae. Technol Assess 21:46–53

    Google Scholar 

  9. Walter C, Posten C (2012) Microalgal biotechnology: Potential and Production. De Gruyter, Berlin

    Google Scholar 

  10. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  11. Meyer M, Weiss A (2014) Life cycle costs for the optimized production of hydrogen and biogas from microalgae. Energy 78:84e93

    Article  Google Scholar 

  12. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nature Biotechnology 28:126–128

    Article  CAS  Google Scholar 

  13. Franz A, Lehr F, Posten C, Schaub G (2012) Modeling microalgae cultivation productivities in different geographic locations – estimation method for idealized photobioreactors. Biotechnol J 7:546–557

    Article  CAS  Google Scholar 

  14. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  15. Larkum A, Ross I, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30:198–204

    Article  CAS  Google Scholar 

  16. http://data.worldbank.org/indicator/AG.YLD.CREL.KG

  17. Wilhelm C, Weinberg J, Kaltschmitt M (2014) Conversion steps in bioenergy production – analysis of the energy flow from photon to biofuel. Biofuel 5:385–404

    Article  CAS  Google Scholar 

  18. de Mooij T, Janssen M, Cerezo-Chinarro O, Mussgnug J, Kruse O, Ballottari M, Bassi R, Bujaldon S, Wollman F, Wijffels F (2015) Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. J Appl Phycol 27:1063

    Article  Google Scholar 

  19. Schramm A, Jakob T, Wilhelm W (2016) The impact of the optical properties and respiration of algal cells with truncated antennae on biomass production under simulated outdoor conditions. Curr Biotechnol 5:142–153

    Article  CAS  Google Scholar 

  20. https://de.statista.com/themen/802/erdoel-in-deutschland/

  21. https://de.statista.com/statistik/daten/studie/161842/umfrage/verbrauch-ausgewaehlter-duenger-in-der-landwirtschaft-in-deutschland/

  22. Guenther A, Jakob T, Goss R et al (2012) Methane production from glycolate excreting algae as a new concept in the production of biofuels. Bioresour Technol 121:454–457

    Article  CAS  Google Scholar 

Books and Reviews

  • Hohmann-Mariott M (2014) The structural basis of biological energy generation. Springer, Dordrecht

    Book  Google Scholar 

  • Hu Q, Olivares J, Sayre R (2014) Special issue “Progress and perspectives on microalgal mass culture”. Algal Res 4:1–122

    Article  Google Scholar 

  • Lu X (2014) Biofuels: from microbes to molecules. Caister Academic Press, Norfolk

    Google Scholar 

  • Posten C, Walter C (2012a) Microalgal Biotechnology: potential and production. De Gruyter, Berlin

    Book  Google Scholar 

  • Posten C, Walter C (2012b) Microalgal Biotechnology: integration and economy. De Gruyter, Berlin

    Book  Google Scholar 

  • Rögner M (2015) Biohydrogen. De Gruyter, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wilhelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Wilhelm, C. (2017). Innovative Options for Energy Provision. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_995-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_995-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics