Skip to main content

DNA Computing

  • Reference work entry
  • First Online:
Unconventional Computing

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media New York 2013

Glossary

DNA:

Deoxyribonucleic acid. Molecule that encodes the genetic information of cellular organisms. Enzyme protein that catalyzes a biochemical reaction.

Nanotechnology:

Branch of science and engineering dedicated to the construction of artifacts and devices at the nanometer scale.

RNA:

Ribonucleic acid. Molecule similar to DNA, which helps in the conversion of genetic information to proteins.

Satisfiability (SAT):

Problem in complexity theory. An instance of the problem is defined by a Boolean expression with a number of variables, and the problem is to identify a set of variable assignments that makes the whole expression true.

Definition of the Subject

DNA computing (or, more generally, biomolecular computing) is a relatively new field of study that is concerned with the use of biological molecules as fundamental components of computing devices. It draws on concepts and expertise from fields as diverse as chemistry, computer science,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 489.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  • Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  Google Scholar 

  • Adleman LM (1995) On constructing a molecular computer. University of Southern California, Los Angeles, Draft

    Google Scholar 

  • Amos M (2005) Theoretical and experimental DNA computation. Springer, Berlin

    MATH  Google Scholar 

  • Amos M, Gibbons A, Hodgson D (1996) Error-resistant implementation of DNA computations. In: Landweber LF, Baum EB (eds) 2nd annual workshop on DNA based computers. Princeton University, NJ, 10-12 June 1996. American Mathematical Society, Providence

    Google Scholar 

  • Arkin A, Ross J (1994) Computational functions in biochemical reaction networks. Biophys J 67:560–578

    Article  Google Scholar 

  • Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414:430–434

    Article  Google Scholar 

  • Benenson Y, Adam R, Paz-Livneh T, Shapiro E (2003) DNA molecule provides a computing machine with both data and fuel. Proc Natl Acad Sci USA 100:2191–2196

    Article  Google Scholar 

  • Bennett CH (1982) The thermodynamics of computation – a review. Int J Theor Phys 21:905–940

    Article  Google Scholar 

  • Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L (2002) Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296:499–502

    Article  Google Scholar 

  • Bray D (1995) Protein molecules as computational elements in living cells. Nature 376:307–312

    Article  Google Scholar 

  • Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA 83(11):3746–3750

    Article  Google Scholar 

  • Brown TA (1993) Genetics: a molecular approach. Chapman and Hall, New York

    Google Scholar 

  • Campbell-Kelly M, Aspray W (2004) Computer: a history of the information machine, 2nd edn. Westview Press, Colorado

    Google Scholar 

  • Conrad M (1985) On design principles for a molecular computer. Commun ACM 28:464–480

    Article  Google Scholar 

  • Conrad M, Liberman EA (1982) Molecular computing as a link between biological and physical theory. J Theor Biol 98:239–252

    Article  Google Scholar 

  • Cook S (1971) The complexity of theorem proving procedures. Proceedings of the 3rd annual ACM symposium on theory of computing, pp 151–158

    Google Scholar 

  • Faulhammer D, Cukras AR, Lipton RJ, Landweber LF (2000) Molecular computation: RNA solutions to chess problems. Proc Natl Acad Sci USA 97:1385–1389

    Article  Google Scholar 

  • Feynman RP (1961) There’s plenty of room at the bottom. In: Gilbert D (ed) Miniaturization. Reinhold, New York, pp 282–296

    Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. WH Freeman and Company, New York

    MATH  Google Scholar 

  • Gibbons AM (1985) Algorithmic graph theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Guarnieri F, Fliss M, Bancroft C (1996) Making DNA add. Science 273:220–223

    Article  Google Scholar 

  • Hartmanis J (1995) On the weight of computations. Bull Eur Assoc Theor Comput Sci 55:136–138

    MATH  Google Scholar 

  • Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural networks and turing machines. Proc Natl Acad Sci USA 88:10983–10987

    Article  Google Scholar 

  • Hjelmfelt A, Schneider FW, Ross J (1993) Pattern recognition in coupled chemical kinetic systems. Science 260:335–337

    Article  Google Scholar 

  • Lipton RJ (1995) DNA solution of hard computational problems. Science 268:542–545

    Article  Google Scholar 

  • Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM (2000) DNA computing on surfaces. Nature 403:175–179

    Article  Google Scholar 

  • Mao C, LaBean TH, Reif JH, Seeman NC (2000) Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407:493–496

    Article  Google Scholar 

  • Mullis KB, Ferré F, Gibbs RA (eds) (1994) The polymerase chain reaction. Birkhauser, Boston

    Google Scholar 

  • Ogihara M, Ray A (2000) DNA computing on a chip. Nature 403:143–144

    Article  Google Scholar 

  • Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278:446–449

    Article  Google Scholar 

  • Regalado A (2002) DNA computing. MIT Technology Review. http://www.technologyreview.com/articles/00/05/regalado0500.asp. Accessed 26 May 2008

  • Rivest R, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public key cryptosystems. Comm ACM 21:120–126

    Article  MathSciNet  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale patterns. Nature 440:297–302

    Article  Google Scholar 

  • Roweis S, Winfree E, Burgoyne R, Chelyapov NV, Goodman MF, Rothemund PWK, Adleman LM (1996) A sticker based architecture for DNA computation. In: Landweber LF, Baum EB (eds) 2nd annual workshop on DNA based computers. Princeton University, NJ, 10-12 June 1996. American Mathematical Society, Providence

    Google Scholar 

  • Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Yokomori T, Hagiya M (2000) Molecular computation by DNA hairpin formation. Science 288:1223–1226

    Article  Google Scholar 

  • Smalley E (2005) Interview with Ned Seeman. Technology Research News, May 4

    Google Scholar 

  • Smith LM (2006) Nanostructures: the manifold faces of DNA. Nature 440:283–284

    Article  Google Scholar 

  • Stubbe H (1972) History of genetics – from prehistoric times to the rediscovery of Mendel’s laws. MIT Press, Cambridge

    Google Scholar 

  • van Noort D, Gast F-U, McCaskill JS (2002) DNA computing in microreactors. In: Jonoska N, Seeman NC (eds) DNA computing: 7th international workshop on DNA-based computers, vol 2340, LNCS. Springer, Berlin, pp 33–45

    Chapter  Google Scholar 

  • Watkins JJ (2004) Across the board: the mathematics of chess problems. Princeton University Press, Princeton

    Book  Google Scholar 

  • Watson JD, Crick FHC (1953a) Genetical implications of the structure of deoxyribose nucleic acid. Nature 171:964

    Article  Google Scholar 

  • Watson JD, Crick FHC (1953b) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  Google Scholar 

  • Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM (1987) Molecular biology of the gene, 4th edn. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Winfree E (1998) Algorithmic self-assembly of DNA. PhD thesis, California Institute of Technology

    Google Scholar 

  • Winfree E, Liu F, Wenzler L, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544

    Article  Google Scholar 

  • Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884

    Article  Google Scholar 

Books and Reviews

  • Adleman L (1998) Computing with DNA. Sci Am 279:54–61

    Article  Google Scholar 

  • Amos M (2006) Genesis machines: the new science of biocomputing. Atlantic Books, London

    Google Scholar 

  • Forbes N (2004) Imitation of life: how biology is inspiring computing. MIT Press, Cambridge

    Google Scholar 

  • Gonick L, Wheelis M (1983) The cartoon guide to genetics. Harper Perennial, New York

    Google Scholar 

  • Jones R (2004) Soft machines: nanotechnology and life. Oxford University Press, Oxford

    Google Scholar 

  • Păun G, Rozenberg G, Salomaa A (1998) DNA computing: new computing paradigms. Springer, Berlin

    Book  Google Scholar 

  • Pool R (1995) A boom in plans for DNA computing. Science 268:498–499

    Article  Google Scholar 

  • Watson J (2004) DNA: the secret of life. Arrow Books, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martyn Amos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Amos, M. (2018). DNA Computing. In: Adamatzky, A. (eds) Unconventional Computing. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6883-1_131

Download citation

Publish with us

Policies and ethics