Skip to main content

Biofuels: A Technical, Economic, and Environmental Comparison

  • Reference work entry
  • First Online:
Energy from Organic Materials (Biomass)
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC 2018

Glossary

2DS:

Two-degree scenario, synonym of scenario on GHG emissions for max. 2 °C temperature increase (link to Paris Agreement)

AE[R]:

Advanced energy revolution synonym of scenario considering much stronger efforts to transform the energy systems of all world regions toward a 100% renewable energy supply compared to E[R]

BtL:

Biomass to liquid, usually used for liquid biofuels that are produced out of synthesis (e.g., Fischer-Tropsch, methanol and other alcohols, dimethyl ether, etc.)

CAPEX:

Capital expenditures, usually used for investments to acquire or upgrade production facilities, infrastructure, or equipment

DDGS:

Animal feed called “distillers’ dried grain with solubles”

DST:

Diversified supply technologies; synonym of scenario assuming assumes that all energy sources can compete on a market basis with no specific support measures and decarbonization is mainly driven by carbon price

E[R]:

Energy revolution; synonym of scenario that proposes pathways to a 100% sustainable...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Majer S, Mueller-Langer F, Zeller V, Kaltschmitt M (2009) Implications of biodiesel production and utilisation on global climate – a literature review. Eur J Lipid Sci Technol 111:747–762. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Article  Google Scholar 

  2. Mueller-Langer F, Majer S, O’Keeffe S (2014) Benchmarking biofuels – a comparison of technical, economic and environmental indicators. Energy Sustain Soc 4:20. https://doi.org/10.1186/s13705-014-0020-x

    Article  Google Scholar 

  3. Mueller-Langer F, Kaltschmitt M (2014) Biofuels from lignocellulosic biomass – a multi-criteria approach for comparing overall concepts. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-014-0125-7

  4. Mueller-Langer F, Klemm M (2015) Liquid and gaseous biofuels for the transport sector. In: Thrän D (ed) Smart bioenergy. Springer International, Heidelberg. ISBN: 978-3-319-16192-1

    Google Scholar 

  5. Mueller-Langer F, Zech K, Roensch S, Oehmichen K, Michaelis J, Funke S, Grasemann E (2016) Assessment of selected concepts for hydrogen production based on biomass (chapter 17). In: Stolten D, Emonts B (eds) Hydrogen science and engineering. Wiley-VCH, Weinheim, pp 393–416

    Google Scholar 

  6. IEA (2017) Tracking clean energy progress 2017, energy technology perspectives 2017 excerpt informing energy sector transformations. IEA Directorate of Sustainability, Technology and Outlooks, May 2017

    Google Scholar 

  7. IEA & FAO (2017) How2Guide for bioenergy. ISBN: 978-92-5-109586-7

    Google Scholar 

  8. Naumann K, Oehmichen K, Remmele E, Thuneke K, Schröder J, Zeymer M, Zech K, Mueller-Langer F (2016) Monitoring Biokraftstoffsektor. 3. überarbeitete und erweiterte Auflage. DBFZ (DBFZ-Report Nr. 11), Leipzig. ISBN: 978-3-946629-04-7

    Google Scholar 

  9. Mueller-Langer F, Dietrich R-U, Arnold K, van de Krol R, Harnisch F (2016) Erneuerbare Kraftstoffe für Mobilität und Industrie – Wie decken wir die Bedarfe von morgen? In: Forschung für die Energiewende – Die Gestaltung des Energiesystems. Beiträge zur FVEE-Jahrestagung, Berlin. ISSN: 0939-7582

    Google Scholar 

  10. IEA (2015) Energy technology perspectives 2015 – mobilising innovation to accelerate climate action. Paris. http://www.iea.org/publications/freepublications/publication/ETP2015.pdf

  11. EC – European Commission (2011) Energy roadmap 2050. Brussels. https://ec.europa.eu/energy/sites/ener/files/documents/roadmap2050_ia_20120430_en_0.pdf

  12. Greenpeace, Global Wind Energy Council, SolarPower Europe (2015) Energy [r]evolution – a sustainable world energy outlook 2015. Hamburg. https://www.greenpeace.de/sites/www.greenpeace.de/files/publications/greenpeace_energy-revolution_erneuerbare_2050_20150921.pdf

  13. Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3rd edn. Springer, Berlin. https://doi.org/10.1007/978-3-662-47438-9_16

    Book  Google Scholar 

  14. Mueller-Langer F, Klemm M, Schneider S (2017) Biofuels production processes and technologies (chapter 6). In: Riazi MR, Chiaramonti D (eds) Biofuels production and processing technology. Taylor & Francis, Boca Raton. ISBN: 9781498778930

    Google Scholar 

  15. Worldwatch Institute (2007) Biofuels for transport. Global potential and implications for sustainable energy and agriculture. New York: Earthscan from Routledge

    Google Scholar 

  16. IEA Bioenergy (2017) State of technology review – algae bioenergy. ISBN: 978-1-910154-30-4 http://www.ieabioenergy.com/publications/state-of-technology-review-algae-bioenergy/

  17. IEA Bioenergy (2008) Gaps in the research of 2nd generation transportation biofuels. IEA Bioenergy T41(2):2008:01

    Google Scholar 

  18. European Biofuels Technology Platform (2008) Strategic research agenda & strategy deployment document. Jan 2008. http://www.etipbioenergy.eu/images/080111_sra_sdd_web_res.pdf

  19. IEA: technology roadmaps – biofuels for transport. (2011) International Energy Agency, Paris

    Google Scholar 

  20. European Biofuels Technology Platform (2016) Strategic research agenda & strategy deployment document, innovation driving sustainable biofuels. June 2016. http://www.etipbioenergy.eu/images/EBTP-SRIA-2016.pdf

  21. Neste Oil Corporation (2005) NExBTL – biodiesel fuel of the second generation. White paper, SAE International, Warrendale

    Google Scholar 

  22. Sotelo-Boyás R, Trejo-Zárraga F, Hernández-Loyo F (2012) Hydroconversion of triglycerides into green liquid fuels. In: Karamé I (ed) Hydrogenation. InTech, Rijeka. https://doi.org/10.5772/48710. ISBN: 978-953-51-0785-9

    Chapter  Google Scholar 

  23. Reinhardt G (2006) An assessment of energy and greenhouse gases of NExBTL. Institute for Energy and Environmental Research GmbH by order of the Neste Oil Corporation, Porvoo, Heidelberg, June 2006

    Google Scholar 

  24. Huber GW, Corma A (2007) Synergien zwischen Bio- und Ölraffinerien bei der Herstellung von Biomassetreibstoffen. Angew Chem 119:7320–7338. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, 2007

    Article  Google Scholar 

  25. Braune M, Grasemann E, Groengroeft A, Klemm M, Oehmichen K, Konstantin Zech K (2015) Die Biokraftstoffproduktion in Deutschland – Stand der Technik und Optimierungsansätze. DBFZ-Report 22. ISBN: 978-3-9817707-8-0

    Google Scholar 

  26. Igelspacher R (2006) Methode zur integrierten Bewertung von Prozessketten am Beispiel der Ethanolerzeugung aus Biomasse. IfE Schriftenreihe, Heft 51, Lehrstuhl für Energiewirtschaft und Anwendungstechnik, Technische Universität München, München. ISBN: 3-933283-43-4

    Google Scholar 

  27. Schmitz N (2003) Bioethanol in Deutschland – Verwendung von Ethanol und Methanol aus nachwachsenden Rohstoffen im chemisch-technischen und im Kraftstoffsektor unter besonderer Berücksichtigung von Agraralkohol. Studie im Auftrag des Bundesministeriums für Ernährung und Landwirtschaft und des Projektträgers Fachagentur Nachwachsende Rohstoffe (FNR), Schriftenreihe “Nachwachsende Rohstoffe”, Band 21. Landwirtschaftsverlag GmbH, Münster

    Google Scholar 

  28. Schmitz N (2005) Innovationen bei der Bioethanolerzeugung und ihre Auswirkungen auf Energie- und Treibhausgasbilanzen. Studie im Auftrag des Bundesministeriums für Verbraucherschutz, Ernährung und Landwirtschaft sowie des Projektträgers Fachagentur Nachwachsende Rohstoffe (FNR), Schriftenreihe “Nachwachsende Rohstoffe”, Band 26. Landwirtschaftsverlag GmbH, Münster

    Google Scholar 

  29. Groengroeft A, Brosowski A, Meisel K, Mueller-Langer F (2013) Development of plant concepts for ethanol production from wheat and wheat straw. Sugar Ind 138(4):208–214

    Google Scholar 

  30. Roehr M (2001) In: Roehr M (ed) The biotechnology of ethanol. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  31. Hamelinck C (2004) Outlook for advanced biofuels. PhD thesis, University Utrecht

    Google Scholar 

  32. Larsen J, Østergaard Haven M, Thirup L (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenergy. https://doi.org/10.1016/j.biombioe.2012.03.033. Groengroeft A, Brosowski A, Meisel K, Mueller-Langer F (2013) Development of plant concepts for ethanol production from wheat and wheat straw. Sugar Industry 138(4):208–214

  33. Mueller-Langer F, Groengroeft A, Majer S, O’Keeffe S, Klemm M (2013) Options for biofuel production – status and perspectives. In: Stolten D, Scherer V (eds) Transition to renewable energy systems. Wiley-VCH, Weinheim, pp 523–553. https://doi.org/10.1002/9783527673872.ch26

    Chapter  Google Scholar 

  34. Zech K, Meisel K, Brosowski A, Toft LV, Mueller-Langer F (2016) Environmental and economic assessment of the Inbicon lignocellulosic ethanol technology. Appl Energy 171:347–356. https://doi.org/10.1016/j.apenergy.2016.03.057

    Article  Google Scholar 

  35. Certifyhy (2016) CertifHy succeeds in establishing the first EU-wide guarantee of origin for green hydrogen. http://www.certifhy.eu/news-events/149-towards-the-1st-eu-wide-guarantee-of-origin-for-green-hydrogen.html. Accessed June 2017

  36. Mueller-Langer F, Tzimas E, Kaltschmitt M, Peteves S (2007) Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int J Hydrog Energy 32(16):3797–3810

    Article  Google Scholar 

  37. Contadini JF, Diniz CV, Sperling D, Moore RM (2000) Hydrogen production plants: emissions and thermal efficiency analysis. Institute of Transportation Studies, University of California, Davis

    Google Scholar 

  38. Lurgi (2003) Hydrogen. Brochure of Lurgi Oel Gas Chemie GmbH

    Google Scholar 

  39. Makihira A, Barreto L, Riahi K (2003) Assessment of alternative hydrogen pathways: natural gas and biomass. International Institute for Applied Systems Analysis, Dec 2003

    Google Scholar 

  40. Molburg JC, Doctor RD (2003) Hydrogen from steam-methane reforming. Argonne National Laboratory. In: Proceedings of the 20th annual international Pittsburgh coal conference, Pittsburgh, Sept 2003

    Google Scholar 

  41. Bachmeier M (2016) H2 fueling infrastructure and technologies. World Mobility Summit 2016, Presentation Munich, 18 Oct 2016

    Google Scholar 

  42. Mueller-Langer F, Klemm M, Schlüter M (2016) Synthetic methane from biomass. In: van Basshuysen R (ed) Natural gas and renewable methane for powertrains – future strategies for a climate-neutral mobility. Springer, Wiesbaden. ISBN: 978-3-319-23224-9

    Google Scholar 

  43. Mueller-Langer F, Vogel A, Kaltschmitt M, Thraen D (2007) Analysis and evaluation of the 2nd generation of transportation biofuels. In: 15th European biomass conference & exhibition – from research to market development, Berlin, May 2007

    Google Scholar 

  44. Vogel A, Mueller-Langer F, Kaltschmitt M (2008) Analysis and evaluation of technical and economic potentials of BTL-fuels. Chem Eng Technol 31(5):755–764

    Article  Google Scholar 

  45. Gronemann V, Plass L, Schmidt F (2014) Commercial methanol synthesis from syngas (chapter 4.7). In: Bertau M, Offermanns H, Plass L, Schmidt F, Wernicke H-J (eds) Methanol: the basic chemical and energy feedstock of the future. Springer, Heidelberg, pp 234–266

    Google Scholar 

  46. Tijmensen M, Faaij A, Hamelinck C, Van Hardeveld M (2002) Exploration of the possibilities for production of Fischer-Tropsch liquids and power via biomass gasification. Biomass Bioenergy 23:129–152

    Article  Google Scholar 

  47. Ekbom T, Lindblom M, Berglin N, Ahlvik P (2003) Technical and commercial feasibility study of black liquor gasification with methanol/DME production as motor fuels for automotive uses – BLGMF. Nykomb Synergetics AB, Chemrec, Volvo, Ecotraffic, OKQ8, STFi; Methanex, Final Report; Altener Programme

    Google Scholar 

  48. Saller G (1999) Technisch-wirtschaftliche Bewertung der Methanolerzeugung aus Biomasse mit Hilfe von Prozessmodellen. Höpner und Göttert, Siegen

    Google Scholar 

  49. Hoehlein B et al (2003) Methanol als Energieträger. Forschungszentrum Jülich GmbH, Institut für Werkstoffe und Verfahren der Energietechnik (IWV), Schriften des Forschungszentrums Jülich Reihe Energietechnik Band 28. Jülich. ISBN: 3-89336-338-6

    Google Scholar 

  50. Cheng WH, Kung HH (1994) Methanol production and use. Marcel Decker, New York

    Google Scholar 

  51. Fachagentur Nachwachsende Rohstoffe e.V (2004) Handreichung Biogasgewinnung und -nutzung. Institut für Energetik und Umwelt gGmbH in Kooperation mit der Bundesforschungsanstalt für Landwirtschaft und dem Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V., Leipzig

    Google Scholar 

  52. Institut für Energetik und Umwelt (2005) Evaluierung der Möglichkeiten zur Einspeisung von Biogas ins Erdgasnetz. Endbericht, Leipzig

    Google Scholar 

  53. Scholwin F, Hofmann F, Plaettner A (2007) Biomethane from biogas: expectations from established vs. new technologies. In: Lechner (ed) Waste matters. Integrating views. Proceedings of 2nd BOKU waste conference 2007, 17–19 Apr 2007, Vienna, pp 185–194. ISBN: 978-3-7089-0060-5

    Google Scholar 

  54. Perry M, Eliason D (2004) CO2 recovery and sequestration at Dakota Gasification Company – a progress report. Gasification Technologies Council, Arlington, Oct 2004

    Google Scholar 

  55. Technische Universität Wien (2005) Energiezentrale zur Umwandlung von biogenen Roh- und Reststoffen einer Region in Wärme, Strom, Bio-SNG und flüssige Kraftstoffe. Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, TU Wien, Endbericht, Sept 2005

    Google Scholar 

  56. Ricardo-AEA Ltd (2016) The role of natural gas and biomethane in the transport sector. https://www.transportenvironment.org/sites/te/files/publications/2016_02_TE_Natural_Gas_Biomethane_Study_FINAL.pdf

  57. Scholwin F, Grope J (2017) Innovative solutions for biomethane production in Europe. Institute for Biogas, Waste Management & Energy, Presentation Fuels of the Future, Berlin, Jan 2017

    Google Scholar 

  58. European Commission (2011) Key enabling technologies. European Commission, Brussels

    Google Scholar 

  59. CAAFI – Commercial Aviation Alternative Fuels Initiative (2010) Fuel readiness level. http://www.caafi.org/information/pdf/frl_caafi_jan_2010_v16.pdf

  60. Eurostat (2017) Exchange rates (annual average) http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=tec00033. Accessed June 2017

  61. Eurostat (2017) Inflation rate (annual average) in EU. http://ec.europa.eu/eurostat/tgm/table.do?tab=table&plugin=1&language=en&pcode=tec00118. Accessed June 2017

  62. IRENA (2016) Innovation outlook advanced liquid biofuels. ISBN: 978-92-9511152-3. http://www.irena.org/DocumentDownloads/Publications/IRENA_Innovation_Outlook_Advanced_Liquid_Biofuels_2016.pdf

  63. Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH (2017) Own calculations and data base available. Leipzig 2007 to 2017

    Google Scholar 

  64. Ekbom T, Berglin N, Lögdberg S (2005) Black liquor gasification with motor fuel production – BLGMF II, A techno-economic feasibility study on catalytic Fischer-Tropsch synthesis for synthetic diesel production in comparison with methanol and DME as transport fuels. Nykomb Synergetics AB, STFi-Packforsk, KTH Royal Institute of Technology, Statoil, Structor Hulthén Stråth, Final Report

    Google Scholar 

  65. Mueller-Langer F (2012) Analyse und Bewertung ausgewählter zukünftiger Biokraftstoffoptionen auf der Basis fester Biomasse. DBFZ Report Nr. 9, Leipzig. ISSN: 2190-7943

    Google Scholar 

  66. Chemical Engineering (2016) Economic indicators. The Chemical Engineering Plant Cost Index. http://tekim.undip.ac.id/v1/wp-content/uploads/CEPCI_2008_2015.pdf. Accessed June 2017

  67. CHEMIE TECHNIK exklusiv (2016) Preisindex für Chemieanlagen. http://www.chemietechnik.de/wp-content/uploads/2016/08/Zwischenablage01-3.jpg. Accessed June 2017

  68. De Wit M, Junginger M, Lensink S, Londo M, Faaij A (2010) Competition between biofuels: Modelling technological learning and cost reductions over time. Biomass Bioenergy 34(2):203–217

    Article  Google Scholar 

  69. Tunå P, Hulteberg C (2014) Woody biomass-based transportation fuels – a comparative techno-economic study. Fuel 117(Part B):1020–1026. https://doi.org/10.1016/j.fuel.2013.10.019

    Article  Google Scholar 

  70. Landälv I (2016) Methanol production from biomass. Presentation Green Pilot Kickoff Seminar (16 June 2016). Online: http://www.greenpilot.marinemethanol.com/pages/news/160601/2-02_20160616_Ingvar%20LandalvLTU.pdf

  71. Groengroeft A, Meisel K, Hauschild S, Grasemann E, Peetz D, Meyer K, Roth A, Riegel F, Endres C (2014) Teil II: Wissenschaftliche Untersuchung von Wegen der Biokerosinproduktion aus verschiedenen Biomassetypen. In: Zschocke A (ed) Abschlussbericht zu dem Vorhaben Projekt BurnFAIR. Deutsche, Lufthansa

    Google Scholar 

  72. Pearlson M, Wollersheim C, Hileman J (2013) A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. Biofuels Bioprod Biorefin 7(1):89–96

    Article  Google Scholar 

  73. Wiesenthal T, Schade B, Leduc G (2010) Cost assessment of alternative fuels in transport – the case of biofuels. GHG-TransPoRD workshop, 15 Dec, MCE, Brussels

    Google Scholar 

  74. Ong HC, Mahlia TMI, Masjuki HH, Honnery D (2012) Life cycle cost and sensitivity analysis of palm biodiesel production. Fuel 98:131–139

    Article  Google Scholar 

  75. LBST, Hinicio SA (2015) Study on hydrogen from renewable resources in the EU. https://doi.org/10.1017/CBO9781107415324.004. http://www.fch.europa.eu/sites/default/files/GHyP-Final-Report_2015-07-08_5%20%28ID%202849171%29.pdf

  76. Darlington T, Kahlbaum D, O’Connor D, Mueller S (2013) Land use change greenhouse gas emissions of European biofuel policies utilizing the global trade analysis project (GTAP) model. http://www.ebb-eu.org/studiesreports/GTAP%20Report%20ILUC%20Aug%2030%202013%20Final.pdf

  77. Valin H, Peter D, van den Berg M, Frank S, Havlik P, Forsell N, Hamelinck C (2015) The land use change impact of biofuels consumed in the EU Quantification of area and greenhouse gas impacts. ECOFYS Netherlands BV, Utrecht

    Google Scholar 

  78. DIN EN ISO 14040: Environmental management – Life cycle assessment – Principles and framework, 2006

    Google Scholar 

  79. DIN EN ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines, 2006

    Google Scholar 

  80. IPCC (2013) Climate Change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, 1535 pp. https://doi.org/10.1017/CBO9781107415324

    Chapter  Google Scholar 

  81. Zah R, Boeni H, Gauch M, Hischier R, Lehmann M, Wäger P (2007) Ökobilanz von Energieprodukten: Ökologische Bewertung von Biotreibstoffen. Empa – Abteilung Technologie und Gesellschaft, Bern, Mai

    Google Scholar 

  82. Brauer S, Vogel A, Mueller-Langer F (2008) Cost and life-cycle analysis of biofuels. Long version, Institute for Energy and Environment gGmbH (IE) on behalf of Union for the Promotion of Oil and Protein Crops (UFOP), Leipzig

    Google Scholar 

  83. Macedo IC, Seabra JEA et al (2008) Greenhouse gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32(7):582–595

    Article  Google Scholar 

  84. Directive 2009/28/EC of the Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, Brussels, 23 Apr 2009

    Google Scholar 

  85. Nikander S (2008) Greenhouse gas and energy intensity of product chain: case transport biofuel. https://www.neste.com/sites/default/files/attachments/case_study_of_nexbtl_ghg_and_energy_intensity.pdf

  86. Rettenmaier N, Reinhardt G, Gärtner S, Von Falkenstein E (2008) Greenhouse gas balances for VERBIO ethanol as per the German Biomass Sustainability Ordinance (BioNachV). ifeu – Institut für Energie- und Umweltforschung gGmbH, Heidelberg

    Google Scholar 

  87. Alvarado-Morales M, Boldrin AB, Karakashev DL, Holdt S, Angelidaki I, Astrup T (2011) Life Cycle Assessment (LCA) of the biofuel production process from sunflower oil, rapeseed oil and soybean oil. Fuel Process Technol 92(2):190–199

    Article  Google Scholar 

  88. Reinhardt G, Gärtner S, Helms H, Rettenmaier N (2006) An assessment of energy and greenhouse gases of NExBTL. IFEU, Heidelberg

    Google Scholar 

  89. Majer S, Gawor M, Thrän D, Bunzel K, Daniel-Gromke J (2011) Optimierung der marktnahen Förderung von Biogas/Biomethan unter Berücksichtigung der Umwelt- und Klimabilanz, Wirtschaftlichkeit und Verfügbarkeit. Biogasrat e.V, Berlin

    Google Scholar 

  90. Altmann M, Schmidt P, Weindorf W, Matrá Z (2010) Sustainability of transport fuels. Session “systems analysis and well-to-wheel studies”. WHEC18. Essen

    Google Scholar 

  91. Schmied M, Wüthrich P, Zah R, Althaus HJ, Friedl Ch (2015) Postfossile Energieversorgungsoptionen für einen treibhausgasneutralen Verkehr im Jahr 2050: Eine verkehrsträgerübergreifende Bewertung, TEXTE 30/2015, Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit, Projekt-Nr. 24180 UBA-FB 002039

    Google Scholar 

  92. Edwards R, Larivé J-F, Mahieu V, Rouveirolles P (2007) Well-to-wheels analysis of future automotive fuels and powertrains in the European context – Well-to-Tank report and appendices. EUCAR and CONCAWE

    Google Scholar 

  93. Jungbluth N, Chudacoff M, Dauriat A, Dinkel F, Doka G, Faist Emmenegger M, Gnansounou E, Kljun N, Spielmann M, Stettler C, Sutter J (2007) Life cycle inventories of bioenergy. Swiss Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  94. Mueller-Langer F, Jungbluth N (2012) Biomass to liquid (BtL): concepts and their assessment. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York. ISBN/EAN: 978-0-387-89469-0

    Google Scholar 

  95. Intergovernmental Panel on Climate Change (2003) In: Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (eds) Good practice guidance for land use, land-use change and forestry. Published by the Institute for Global Environmental Strategies (IGES) for the IPCC, Kanagawa. ISBN: 4-88788-003-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Mueller-Langer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mueller-Langer, F., Majer, S., Perimenis, A. (2019). Biofuels: A Technical, Economic, and Environmental Comparison. In: Kaltschmitt, M. (eds) Energy from Organic Materials (Biomass). Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7813-7_257

Download citation

Publish with us

Policies and ethics