Skip to main content

Agroecological Basis for Managing Biotic Constraints

  • Reference work entry
  • First Online:
Crop Science
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2018

Glossary

Abiotic factor:

A non-living component of the environment, such as soil, nutrients, light, fire, or moisture.

Adaptation:

(1) Any aspect of an organism or its parts that is of value in allowing the organism to withstand the conditions of the environment. (2) The evolutionary process by which a species’ genome and phenotypic characteristics change over time in response to changes in the environment.

Agroecology:

The science of applying ecological concepts and principles to the design and management of sustainable agroecosystems.

Agroecosystem:

An agricultural system understood as an ecosystem.

Agroforestry:

The practice of including trees in crop- or animal-production agroecosystems.

Allelopathy:

An interference interaction in which a plant releases into the environment a compound that inhibits or stimulates the growth or development of other plants.

Beneficial insects – arthropods:

Beneficial insects are predators, parasites, or competitors of insect pests, helping to regulate...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Almekinders CJM, Fresco LO, Struik PC (1995) The need to study and manage variation in agro-ecosystems. Neth J Agric Sci 43:127–142

    Google Scholar 

  2. Gliessman SR (1998) Agroecology: ecological processes in sustainable agriculture. Ann Arbor Press, Chelsea

    Google Scholar 

  3. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  4. Pretty JN (1994) Regenerating agriculture. Earthscan Publications, London

    Google Scholar 

  5. Altieri MA, Nicholls CI (1999) Biodiversity, ecosystem function and insect pest management in agroecosystems. In: Collins WW, Qualset CO (eds) Biodiversity in agroecosystems. CRC Press, Boca Raton, pp 69–84

    Google Scholar 

  6. Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93:1–24

    Article  Google Scholar 

  7. Pretty J, Hine R (2000) Feeding the world with sustainable agriculture: a summary of new evidence. Final report from “SAFE-World” research project. University of Essex, Colchester

    Google Scholar 

  8. Sumner DR (1982) Crop rotation and plant productivity. In: Recheigl M (ed) CRC handbook of agricultural productivity, vol I. CRC Press, Boca Raton

    Google Scholar 

  9. Francis CA (1986) Multiple cropping systems. Macmillan, New York

    Google Scholar 

  10. Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, London

    Google Scholar 

  11. Nair PKR (1982) Soil productivity aspects of agroforestry. ICRAF, Nairobi

    Google Scholar 

  12. Pearson CJ, Ison RL (1987) Agronomy of grassland systems. Cambridge University Press, Cambridge

    Google Scholar 

  13. Finch CV, Sharp CW (1976) Cover crops in California orchards and vineyards. USDA Soil Conservation Service, Washington, DC

    Google Scholar 

  14. Altieri MA, Rosset P (1996) Agroecology and the conversion of large-scale conventional systems to sustainable management. Int J Environ Stud 50:165–185

    Article  Google Scholar 

  15. Chambers R (1983) Rural development – putting the last first. Longmans Scientific and Technical Publishers/Wiley, Essex/New York, 218 pp

    Google Scholar 

  16. Vasey DE (1992) An ecological history of agriculture 10,000 BC-AD 10,000. Iowa State University Press, Ames

    Google Scholar 

  17. Jorgensen SE, Nielsen SN (1996) Application of ecological engineering principles in agriculture. Ecol Eng 7:373–381

    Article  Google Scholar 

  18. Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Villa M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7

    Article  Google Scholar 

  19. Cox GW, Atkins MD (1979) Agricultural ecology. W. H. Freeman & Co., 731 pp. San Francisco, CA, USA

    Google Scholar 

  20. Cox CM, Garrett KA, Bockus WW (2005) Meeting the challenge of disease management in perennial grain systems. Renew Agric Food Syst 20:15–24

    Article  Google Scholar 

  21. Carrol CR, Vandermeer JH, Rosset PM (1990) Agroecology. McGraw Hill Publishing Company, New York

    Google Scholar 

  22. Shennan C (2008) Biotic interactions, ecological knowledge and agriculture. Philos Trans R Soc Biol 363:717–739

    Article  Google Scholar 

  23. Ghersa CM, Roush ML, Radosevich SR, Cordray SM (1994) Coevolution of agroecosystems and weed management. Bioscience 44:85–94

    Article  Google Scholar 

  24. Settle WH, Ariawan H, Astuti EH, Cahyana W, Hakim AL, Hindayana D, Lestari AS (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77:1975–1988

    Article  Google Scholar 

  25. Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377

    Article  Google Scholar 

  26. Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  27. Andow DA (1991a) Yield loss to arthropods in vegetationally diverse agroecosystems. Environ Entomol 20:1228–1235

    Article  Google Scholar 

  28. Andow DA (1991b) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586

    Article  Google Scholar 

  29. Brown BJ, Ewel JJ (1987) Herbivory in complex and simple tropical successional ecosystems. Ecology 68:108–116

    Article  Google Scholar 

  30. Prieur-Richard AH, Lavorel S, Linhart YB, Dos Santos A (2002) Plant diversity, herbivory and resistance of a plant community to invasion in Mediterranean annual communities. Oecologia 130:96–104

    Article  PubMed  Google Scholar 

  31. Ghersa CM, León RJC (1999) Successional changes in the agroecosystems of the Rolling Pampas. In: Walker LR (ed) Ecosystems of disturbed ground. Elsevier, Amsterdam, pp 487–502

    Google Scholar 

  32. Radosevich SR, Holt JS, Ghersa CM (2007) Ecology of weeds and invasive plants. Wiley, New York

    Book  Google Scholar 

  33. Baudry J, Poggio SL, Laurent C (2010) Agricultural landscape changes through globalisation and biodiversity effects. In: Primdahl J, Swaffied S (eds) Globalisation and agricultural landscapes. Change patterns and policy trends in developed countries. Cambridge University Press, Cambridge, pp 58–70

    Google Scholar 

  34. Ray DK, Foley JA (2013) Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett 8:044041

    Article  Google Scholar 

  35. Edwards CA (1990) The importance of integration in sustainable agricultural systems. In: Edwards CA, Lal R, Madden P, Miller RH, House G (eds) Sustainable agricultural systems. Soil and Water Conservation Society, Ankey, pp 249–264

    Google Scholar 

  36. Altieri MA (1987) Agroecology: the scientific basis of alternative agriculture. Westview Press, Boulder

    Google Scholar 

  37. Helenius J (1998) Enhancement of predation through within-field diversification. In: Pickett E, Bugg RL (eds) Enhancing biological control. University of California Press, Berkeley, pp 121–160

    Google Scholar 

  38. Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303

    Article  Google Scholar 

  39. Freckleton RP, Watkinson AR (2002) Are weed population dynamics chaotic? J Appl Ecol 39:699–707

    Article  Google Scholar 

  40. Weinig C (2005) Rapid evolutionary responses to selection in heterogeneous environments among agricultural and nonagricultural weeds. Int J Plant Sci 166:641–647

    Article  Google Scholar 

  41. Mundt CC (2002) Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol 40:381–400

    Article  CAS  PubMed  Google Scholar 

  42. Shennan C (2008) Biotic interactions in agroecosystems. Philos Trans R Soc B 363:717–739

    Article  Google Scholar 

  43. Welbaum GE, Sturz AV, Dong ZM, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  44. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  45. Anderson RL (2004) Sequencing crops to minimize selection pressure for weeds in the Central Great Plains. Weed Technol 18:157–164

    Article  Google Scholar 

  46. Gurr GM, Wratten SD, Altieri MA (eds) (2004) Ecological engineering for pest management: habitat manipulation for arthropods. CSIRO Publishing, Collingwood, 244 pp

    Google Scholar 

  47. Shennan C, Pisani Gareau T, Sirrine JR (2004) Agroecological approaches to pest management in the US. In: Pretty J (ed) The pesticide detox, solutions for safe agriculture. Earthscan Publications, London, pp 193–211

    Google Scholar 

  48. Moonen AC, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosyst Environ 127:7–21

    Article  Google Scholar 

  49. Mead R, Riley J, Dear K, Singh SP (1986) Stability comparison of intercropping and monocropping systems. Biometrics 42:253–266

    Article  Google Scholar 

  50. Zhu Y, Fen H, Wang Y, Li Y, Chen J, Hu L, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–772

    Article  CAS  PubMed  Google Scholar 

  51. Schoonhoven LM, van Loon JJA, Dicke M (2006) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  52. Xia J (1994) An integrated cotton insect pest management system for cotton-wheat intercropping in North China. In: Constable GA, Forrester NW (eds) Proceedings of the world cotton research conference – I: challenging the future. CSIRO, Brisbane, 617 pp

    Google Scholar 

  53. Xia J (1997) Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter) cropping systems in China; a simulation study. PhD dissertation, Landouwuniversiteit, Wageningen, 173 pp

    Google Scholar 

  54. Liang W, Huang M (1994) Influence of citrus orchard ground cover plants on arthropod communities in China: a review. Agric Ecosyst Environ 50:29–37

    Article  Google Scholar 

  55. Smith D, Papacek DF (1991) Studies of the predatory mite Amblyseius victoriensis (Acarina: Phytoseiidae) in citrus orchards in south-east Queensland: control of Tegolophus australis and Phyllocoptruta oleivora (Acarina: Eriophyidae), effects of pesticides, alternative host plants and augmentative release. Exp Appl Acarol 12:195–217

    Article  CAS  Google Scholar 

  56. Lys JA (1994) The positive influence of strip-management on ground beetles in a cereal field: increase, migration and overwintering. In: Desender K, Dufrene M, Loreau M, Luff ML, Maelfait JP (eds) Carabid beetles: ecology and evolution. Kluwer, Dordrecht/Boston/London, pp 451–455

    Chapter  Google Scholar 

  57. Lys JA, Zimmermann M, Netwig W (1994) Increase in activity density and species number of carabid beetles in cereals as a result of strip-management. Entomol Exp Appl 73:1–9

    Article  Google Scholar 

  58. Hausmmann A (1996) The effects of weed strip-management on pests and beneficial arthropods in winter wheat fields. Z Pflanzenkrankh Pflanzenschutz 103:70–81

    Google Scholar 

  59. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:94–125

    Article  Google Scholar 

  60. Smith JG (1976) Influence of crop background on aphids and other phytophageous insects on Brussels sprouts. Ann Appl Biol 83:1–13

    Article  Google Scholar 

  61. Finch S, Collier RH (2000) Host-plant selection by insects – a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol Exp Appl 96:91–102

    Article  Google Scholar 

  62. Finch S, Kienegger M (1997) A behavioural study to help clarify how undersowing with clover affects host plant selection by pest insects of brassica crops. Entomol Exp Appl 84:165–172

    Article  Google Scholar 

  63. Power AG, Flecker AS (2008) The role of vector diversity on disease dynamics. In: Ostfeld RS, Keesing F, Eviner V (eds) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton, pp 30–48

    Google Scholar 

  64. Cook SM, Khan ZR, Pickett JA (2007) The use of push–pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  CAS  PubMed  Google Scholar 

  65. Uvah I, Coaker TH (1984) Effect of mixed cropping on some insect pests of carrots and onions. Entomol Exp Appl 36:159–167

    Article  Google Scholar 

  66. Kimani SM, Chhabra SC, Lwande W, Khan ZR, Hassanali A, Pickett JA (2000) Airborne volatiles from Melinis minutiflora P. Beauv., a non-host plant of the spotted stem borer. J Essent Oil Res 12:221–224

    Article  CAS  Google Scholar 

  67. Shelton AM, Badenes-Perez FR (2006) Concepts and applications of trap cropping in pest management. Annu Rev Entomol 51:285–308

    Article  CAS  PubMed  Google Scholar 

  68. Pyke B, Rice M, Sabine B, Zalucki MP (1987) The push-pull strategy – behavioural control of Heliothis. Aust Cotton Grow May–July:7–9

    Google Scholar 

  69. Miller JR, Cowles RS (1990) Stimulo-deterrent diversion: a concept and its possible application to onion maggot control. J Chem Ecol 16:3197–3212

    Article  CAS  PubMed  Google Scholar 

  70. Hokkanen H (1991) Trap cropping in pest management. Annu Rev Entomol 36:119–138

    Article  Google Scholar 

  71. Khan Z, Midega C, Pittchar J, Pickett J, Bruce T (2011) Push–pull technology: a conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. Int J Agric Sustain 9:162–170

    Article  Google Scholar 

  72. Gliessman SR (1995) Sustainable agriculture: an agroecological perspective. Adv Plant Pathol 11:45–57

    Article  Google Scholar 

  73. Knudsen IMB, Debosz K, Hockenhull J, Funck JD, Elmholt S (1999) Suppressiveness of organically and conventionally managed soils towards brown foot rot of barley. Appl Soil Ecol 12:61–72

    Article  Google Scholar 

  74. LaMondia J, Elmer WH, Mervosh TL, Cowles RS (2002) Integrated management of strawberry pests by rotation and intercropping. Crop Prot 21:837–846

    Article  Google Scholar 

  75. Hooks CRR, Wang K-H, Ploeg A, McSorley R (2010) Using marigold (Tagetes spp.) as a over crop to protect crops from plant-paraitic nematodes. Appl Soil Ecol 46:307–320

    Article  Google Scholar 

  76. Müller J (1999) The economic importance of Heterodera schachtii in Europe. Helminthologia 36:205–213

    Google Scholar 

  77. Krupinsky JM, Bailey KL, McMullen MP, Gossen BD, Turkington TK (2002) Managing plant disease risk in diversified cropping systems. Agron J 94:198–209

    Article  Google Scholar 

  78. Bengtsson J, Ahnstrom J, Weibull A-C (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269

    Article  Google Scholar 

  79. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727

    Article  CAS  PubMed  Google Scholar 

  80. Rand TA, van Veen FJF, Tscharntke T (2012) Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography 35:97–104

    Article  Google Scholar 

  81. Mundt CC, Sacket KE, Wallace LD (2011) Landscape heterogeneity and disease spread: experimental approaches with a plant pathogen. Ecol Appl 21:321–328

    Article  PubMed  Google Scholar 

  82. Real LA, Biek R (2007) Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes. J R Soc Interface 4:935–948

    Article  PubMed  PubMed Central  Google Scholar 

  83. O’Rourke ME, Rienzo-Stack K, Power AG (2011) A multi-scale, landscape approach to predicting insect populations in agroecosystems. Ecol Appl 21:1782–1791

    Article  PubMed  Google Scholar 

  84. Chaplin-Kramer R, Kremen C (2012) Pest control experiments show benefits of complexity at landscape and local scales. Ecol Appl 22:1936–1948

    Article  PubMed  Google Scholar 

  85. Tylianakis JM, Romo CM (2010) Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl Ecol 11:657–668

    Article  Google Scholar 

  86. Colunga-G M, Gage SH, Dyer LE (1998) The insect community. In: Cavigelli MA, Deming SR, Probyn LK, Harwood RR (eds) Michigan field crop ecology, managing biological processes for productivity and environmental quality. Michigan State University Extension bulletin E-2646. Michigan State University Extension, East Lansing, pp 59–70

    Google Scholar 

  87. Purtauf T, Roschewitz I, Dauber J, Thies C, Tscharntke T, Wolters V (2005) Landscape context of organic and conventional farms, influences on carabid beetle diversity. Agric Ecosyst Environ 108:165–174

    Article  Google Scholar 

  88. Roschewitz I, Hucker M, Tscharntke T, Thies C (2005a) The influence of landscape context and farming practices on parasitism of cereal aphids. Agric Ecosyst Environ 108:218–227

    Article  Google Scholar 

  89. Roschewitz I, Gabriel D, Tscharntke T, Thies C (2005b) The effects of landscape complexity on arable weed species diversity in organic and conventional farming. J Appl Ecol 42:873–882

    Article  Google Scholar 

  90. Baudry J, Papy F (2001) The role of landscape heterogeneity in the sustainability of cropping systems. In: Nösberger J, Geiger HH, Struik PC (eds) Crop science – progress and prospects. Cabi Publishing, Oxon

    Google Scholar 

  91. Kalkhoven JTR (1993) Survival of populations and the scale of the fragmented agricultural landscape. In: Bunce RGH, Ryszkowski L, Paoletti MG (eds) Landscape ecology and agroecosystems. Lewis Publishers, Boca Raton, pp 83–90

    Google Scholar 

  92. Shennan C, Bode CA (2002) Integrating wetland habitat with agriculture. In: Jackson LL, Jackson D (eds) The farm as a natural habitat. Island Press, Washington, DC, pp 189–204

    Google Scholar 

  93. Wilby A, Thomas MB (2002) Natural enemy diversity and pest control, patterns of pest emergence with agricultural intensification. Ecol Lett 5:353–360

    Article  Google Scholar 

  94. Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932

    Article  PubMed  Google Scholar 

  95. Tscharntke T, Rand TA, Bianchi FJJA (2005) The landscape context of trophic interactions: insect spill-over across the crop non-crop interface. Ann Zool Fenn 42:421–432

    Google Scholar 

  96. Martin EA, Reineking B, Seo B, Steffan-Dewenter I (2013) Natural enemy interactions constrain pest control in complex agricultural landscapes. PNAS 110:5534–5539

    Article  CAS  PubMed  Google Scholar 

  97. Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol Syst 40:573–592

    Article  Google Scholar 

  98. Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237

    Article  Google Scholar 

  99. Janssen A, Sabelis MW, Magalhães S, Montserrat M, Van Der Hammen T (2007) Habitat structure affects intraguild predation. Ecology 88:2713–2719

    Article  PubMed  Google Scholar 

  100. Landis DA, Menalled FD, Costamagna AC, Wilkinson TK (2005) Manipulating plant resources to enhance beneficial arthropods in agricultural landscapes. Weed Sci 53:902–908

    Article  CAS  Google Scholar 

  101. Burel F, Baudry J, Butet A, Clergeau P, Delettre Y, Le Cœur D, Dubs F, Morvan N, Paillat G, Petit S, Thenail C, Brunel E, Lefeuvre JC (1998) Comparative biodiversity along a gradient of agricultural landscapes. Acta Oecol 19:47–60

    Article  Google Scholar 

  102. Jervis MS, Kidd MAC, Fitton MD, Huddleson T, Dawah HA (1993) Flower visiting by hymenopteran parasitoids. J Nat Hist 27:287–294

    Article  Google Scholar 

  103. Idris AB, Grafius E (1995) Wildflowers as nectar sources for Diadegma insulare (Hymenoptera, Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera, Yponomeutidae). Environ Entomol 24:1726–1735

    Article  Google Scholar 

  104. Bugg RL, Ehler LE, Wilson LT (1987) Effect of common knotweed (Polygonum aviculare) on abundance and efficiency of insect predators of crop pests. NAL/Hilgardia 55:1–53

    Google Scholar 

  105. Pollard E (1971) Hedges. VI. Habitat diversity and crop pests, a study of Brevicoryne brassica and its syrphid predators. J Appl Ecol 8:751–780

    Article  Google Scholar 

  106. Bugg RL, Pickett CH (1998) Introduction, enhancing biological control – habitat management to promote natural enemies of agricultural pests. In: Pickett CH, Bugg RL (eds) Enhancing biological control. Habitat management to promote natural enemies of agricultural pests. The Regents of the University of California, Berkeley, pp 1–23

    Google Scholar 

  107. Rosenheim JA, Limburg DD, Colfer RG (1999) Impact of generalist predators on a biological control agent, Chrysoperla carnea, direct observations. Ecol Appl 9:409–417

    Article  Google Scholar 

  108. Nicholls CI, Parrella M, Altieri MA (2001) The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landsc Ecol 16:133–146

    Article  Google Scholar 

  109. Corbett A (1998) The importance of movement in the response of natural enemies to habitat manipulation. In: Pickett CH, Bugg RL (eds) Enhancing biological control, habitat management to promote natural enemies of agricultural pests. University of California Press, Berkeley, pp 25–48

    Google Scholar 

  110. Doutt RL, Nakata J (1973) The rubus leafhopper and its egg parasitoid, an endemic biotic system useful in grape pest mangement. Environ Entomol 2:381–386

    Article  Google Scholar 

  111. Murphy BC, Rosenheim JA, Granett J, Pickett CH, Dowell RV (1998) Measuring the impact of a natural enemy refuge, the prune tree/vineyard example. In: Pickett CH, Bugg RL (eds) Enhancing biological control, habitat management to promote natural enemies of agricultural pests. University of California Press, Berkeley, pp 297–309

    Google Scholar 

  112. Ricketts TH, Daily GC, Ehrlich PR, Michener CD (2004) Economic value of tropical forest to coffee production. Proc Natl Acad Sci 101:12579–12582

    Article  CAS  PubMed  Google Scholar 

  113. Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895

    Article  CAS  PubMed  Google Scholar 

  114. Pullaro TC, Marino PC, Jackson DM, Harrison HF, Keinath AP (2006) Effects of killed cover crop mulch on weeds, weed seeds, and herbivores. Agric Ecosyst Environ 115:97–104

    Article  Google Scholar 

  115. Menalled FD, Marino PC, Gage SH, Landis D (1999) Does agricultural landscape structure affect parasitism and parasitoid diversity? Ecol Appl 9:634–641

    Article  Google Scholar 

  116. Landis DA, Wratten SD, Gurr GA (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  CAS  PubMed  Google Scholar 

  117. Paredes D, Cayuela L, Campos M (2013) Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric Ecosyst Environ 173:72–80

    Article  Google Scholar 

  118. Liebman M, Davis AS (2000) Integration of soil, crop and weed management in low-external-input farming systems. Weed Res 40:27–47

    Article  Google Scholar 

  119. Westerman P, Liebman M, Menalled FD, Heggenstaller AH, Hartzler RG, Dixon PM (2005) Are many little hammers effective? – velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems. Weed Sci 53:382–392

    Article  CAS  Google Scholar 

  120. Heggenstaller AH, Menalled FD, Liebman M, Westerman PR (2006) Seasonal patterns in post-dispersal seed predation of Abutilon theophrasti and Setaria faberi in three-cropping systems. J Appl Ecol 43:999–1010

    Article  Google Scholar 

  121. Ghorbani R, Leifart C, Seel W (2005) Biological control of weeds with antagonistic plant pathogens. Adv Agron 86:191–225

    Article  CAS  Google Scholar 

  122. Albrecht M, Duelli P, Muller C, Kleijn D, Schmid B (2007) The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. J Appl Ecol 44:813–822

    Article  Google Scholar 

  123. Ricketts TH, Daily GC, Ehrlich PR, Fay JP (2001) Countryside biogeography of moths in a fragmented landscape, biodiversity in native and agricultural habitats. Conserv Biol 15:378–388

    Article  Google Scholar 

  124. Marshall EJP, Brown VK, Boatman ND, Lutman PJW, Squire GR, Ward LK (2003) The role of weeds in supporting biological diversity within crop fields. Weed Res 43:77–89

    Article  Google Scholar 

  125. Marshall EJP, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Ecosyst Environ 89:5–21

    Article  Google Scholar 

  126. Holland JM, Thomas CFG, Birkett T, Southway S, Oaten H (2005) Farm-scale spatiotemporal dynamics of predatory beetles in arable crops. J Appl Ecol 42:1140–1152

    Article  Google Scholar 

  127. van Groenigen JW, Burns EG, Eadie JM, Horwath WR, van Kessel C (2003) Effects of foraging waterfowl in winter flooded rice fields on weed stress and residue decomposition. Agric Ecosyst Environ 95:289–296

    Article  Google Scholar 

  128. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Article  Google Scholar 

  129. Smith MR, Charvat I, Jacobson RI (1998) Arbuscular mycorrhizae promote establishment of prairie species in a tall grass prairie restauration. Can J Bot 76:1947–1954

    Google Scholar 

  130. Requena N, Perez Solis E, Ascon-Aguilar C, Jeffries P, Bareal JM (2001) Management of indigenous plant-microbe symbiosis aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Thrall PH, Milssom DA, Jeavons AC, Waavers M, Harvey GR, Bagnall J, Brockwell J (2005) Studies on land restoration: seed inoculation with effective root-nodule bacteria enhances the establishment, survival and growth of Acacia species. J Appl Ecol 42:740–751

    Article  Google Scholar 

  132. Kiers ET, West SA, Denison RF (2002) Mediating mutualisms: farm management practices and evolutionary changes in symbiont cooperation. J Appl Ecol 39:745–754

    Article  Google Scholar 

  133. Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ, Sheppard A, Russell RJ et al (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agroecosystems. Evol Appl 4:200–215

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio M. Ghersa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ghersa, C.M., Martínez-Ghersa, M.A. (2019). Agroecological Basis for Managing Biotic Constraints. In: Savin, R., Slafer, G. (eds) Crop Science. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8621-7_196

Download citation

Publish with us

Policies and ethics