Skip to main content

35 Heart Rate Variability

  • Reference work entry
Comprehensive Electrocardiology

1 Introduction

Changes of pulse rate and rhythm have attracted the attention of physicians since the earliest stages of medicine. Only recently, with the advance of computer techniques that allow for parsing heart rate variability (HRV) into components, which potentially yield information about the autonomic nervous control of cardiac activity, has there been an increased clinical interest. The technical advances, however, have not resulted in bedside application of HRV methods and evidence of their usefulness in real-world clinical practice is still limited. Moreover, from the point of view of the physician, complex approaches to HRV phenomena and the use of complicated mathematical formulae may have a rather limited implementation in everyday practice. In this chapter, several aspects of HRV are thoroughly reviewed giving priority to their physiological and pathophysiological meanings in order to render HRV more clinically useful. For that reason, technical descriptions are limited...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasset, J. and D. Danforth, An introduction to the cardiovascular system, in: Perspectives in Cardiovascular Psychophysiology, Cacioppo, J.T. and R.E. Petty, Editors. The Guilford Press: New York/London, 1982, pp. 4–18.

    Google Scholar 

  2. Cheng, T.O., Decreased heart rate variability as a predictor for sudden death was known in China in the third century A.D. Eur. Heart. J. 2000;21: 2081–2082.

    Article  PubMed  CAS  Google Scholar 

  3. Struthus, J., Sphygmicae artis tam mille ducentos annos perditae & desierate Libri V. Basel 1955 (Reprinted by the Polish Cardiac Society, Poznan 2004).

    Google Scholar 

  4. Task Force of the European Society of Cardiology and the North American Society of Pacing Electrophysiology, Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Eur. Heart. J. 1996;17: 354–381.

    Article  Google Scholar 

  5. Berntson, G.C., J.Tr. Bigger, D.L. Eckberg, P. Grossman, P.G. Kaufmann, M. Malik, H.N. Nagaraja, S.W. Porges, J.P. Saul, P.H. Stone, and M.W. van der Molen, Heart rate variability: origins, methods and interpretative caveats. Psychophysiology 1997;34: 623–648.

    Article  PubMed  CAS  Google Scholar 

  6. Porges, S.W., P.M. McCabe, and B.G. Younge, Respiratory-heart rate interactions: psychophysiological implications for pathophysiology and behavior, in: Perspectives in Cardiovascular Psychophysiology, Cacioppo, J.T. and R.E. Petty, Editors. The Guilford Press: New York/London, 1982, pp. 223–264.

    Google Scholar 

  7. Samaan, A., The antagonistic cardiac nerves and heart rate. J. Physiol. 1935;83: 332–340.

    PubMed  CAS  Google Scholar 

  8. Holzmann, M., Klinische Elektrokardiographie. Georg Thieme Verlag: Stuttgart, 1961, pp. 554–561.

    Google Scholar 

  9. Anrep, G.V., W. Pascual, and R. Rössler, Respiratory variations of the heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc. R. Soc. Lond. B. Biol. Sci. 1936;119B: 191–217.

    Article  Google Scholar 

  10. Lacey, J.I. and B.C. Lacey, Verification and extension of the principle of autonomic response-stereotypy. Am. J. Psychol., 1958;71:50–73.

    Article  PubMed  CAS  Google Scholar 

  11. Hon, E.H. and S.T. Lee, Electronic evaluation of the fetal heart rate. Am. J. Obstet. Gynecol., 1963;87: 814–826.

    PubMed  CAS  Google Scholar 

  12. Camm, A.J. and L. Fei, Clinical significance of heart rate variability, in Noninvasive Electrocardiology. Clinical Aspects of Holter Monitoring, Moss, A.J. and S. Stern S, Editors. W.B. Saunders: London, 1996, pp. 225–248.

    Google Scholar 

  13. Wolf, S., The end of the rope: the role of the brain in cardiac death. Can. Med. Assoc. J., 1967;97: 1022–1025.

    PubMed  CAS  Google Scholar 

  14. Katona, P.G., J.W. Poitras, G.O. Barnett, and B.S. Terry, Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am. J. Physiol., 1970;218: 1030–1037.

    PubMed  CAS  Google Scholar 

  15. Levy, M.N., Sympathetic-parasympathetic interactions in the heart. Circ. Res. 1971;29: 437–445.

    Article  PubMed  CAS  Google Scholar 

  16. Hinkle, L.E. Jr, S.T. Carver, and A. Plakun, Slow heart rates and increased risk of cardiac death in middle-aged men. Arch. Intern. Med., 1972;129: 732–748.

    Article  PubMed  Google Scholar 

  17. Sayers, B.M., Analysis of heart rate variability. Ergonomics, 1973;16: 17–32.

    Article  PubMed  CAS  Google Scholar 

  18. Wheeler, T. and P.J. Watkins, Cardiac denervation in diabetes. Br. Med. J., 1973;8: 584–586.

    Article  Google Scholar 

  19. Wolf, M.M., G.A. Varigos, D. Hunt, and J.G. Sloman, Sinus arrhythmia in acute myocardial infarction. Med. J. Aust., 1978;2: 52–53.

    PubMed  CAS  Google Scholar 

  20. Akselrod, S., D. Gordon, F.A. Ubel, D.C. Shannon, A.C. Berger, and R.J. Cohen, Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 1981;213: 220–222.

    Article  PubMed  CAS  Google Scholar 

  21. Kobayashi, M. and T. Musha, 1/f fluctuation of heart beat period. IEEE. Trans. Biomed. Eng., 1982;29: 456–457.

    Article  PubMed  CAS  Google Scholar 

  22. Ewing, D.J., J.M. Neilson, and P. Travis, New method for assessing cardiac parasympathetic activity using 24 hour electrocardiograms. Br. Heart J., 1984;52: 396–402.

    Article  PubMed  CAS  Google Scholar 

  23. Pomeranz, B., R.J. Macaulay, M.A. Caudill, I. Kutz, D. Adam, D. Gordon, K.M. Kilborn, A.C. Barger, D.C. Shannon, and R.J. Cohen, Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. Heart Circ. Physiol., 1985;248 (1 Pt 2): H151–153.

    CAS  Google Scholar 

  24. Kleiger, R.E., J.P. Miller, J.T. Jr. Bigger, and A.J. Moss, Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol., 1987;59: 256–262.

    Article  PubMed  CAS  Google Scholar 

  25. Camm, A.J., R. Karam, and C.M. Pratt, The azimilide post-infarct survival evaluation (ALIVE) trial. Am. J. Cardiol., 1998;81: 35D–39D.

    Article  PubMed  CAS  Google Scholar 

  26. Kors, J.A., J.H. Bemmel and C. Zywietz, Signal analysis for ECG interpretation. Meth. Inf. Med., 1990;29: 317–329.

    Google Scholar 

  27. Forester, J., H. Bo, J.W. Sleigh, and J.D. Henderson, Variability of R − R, P wave-to-R wave, and R wave-to-T wave intervals. Am. J. Physiol. Heart Circ. Physiol., 1997;273: H2857–2860.

    CAS  Google Scholar 

  28. Hamilton, R.M., P.S. Mckenzie, and P.W. Macfarlane, Can cardiac vagal tone be estimated from the 10-second ECG? Int. J. Cardiol., 2004;95: 109–115.

    Article  PubMed  Google Scholar 

  29. Teixeira, F.P., D.R. Ricardo, C.L.B. Castro, and C.G.S. Araújo, Evaluating cardiac vagal activity on a conventional electrocardiogram. Arq. Bras. Cardiol., 2007;88: 333–337.

    Google Scholar 

  30. Kleiger, E., P.K. Stein, M.S. Bosner, and J.N. Rottman, Time-domain measurements of heart rate variability, in Heart Rate Variability, Malik, M. and A.J. Camm, Editors. Futura Publishing: Armonk, NY, 1995, pp. 33–45.

    Google Scholar 

  31. Balocchi, R., F. Cantini, M. Varanini, G. Raimondi, J.M. Legramante, and A. Macerata, Revisiting the potential of time-domain indexes in short-term HRV analysis. Biomed. Tech. (Berl)., 2006;51: 190–193.

    Article  Google Scholar 

  32. Mietus, J.E., C-K. Peng, I. Henry, R.L. Goldsmith, and A.L. Goldberger, The pNNx files: re-examining a widely used heart rate variability measure. Heart, 2002;88: 378–380.

    Article  PubMed  CAS  Google Scholar 

  33. Burr, R.L., S.A. Motzer, W. Chen, M.J. Cowan, and M.M. Heitkemper Logit50: a nonlinear transformation of pNN50 with improved statistical properties. J. Electrocardiol., 2003;36:41–52.

    Article  PubMed  Google Scholar 

  34. Malik, M., Effect of electrocardiogram recognition artifact on time-domain measurement of heart rate variability, in Heart Rate Variability, Malik, M. and A.J. Camm, Editors. Futura Publishing Company, Inc.: Armonk, NY, 1995, pp. 99–118.

    Google Scholar 

  35. Kaplan, D.T., The analysis of variability. J. Cardiovasc. Electrophysiol., 1994;5: 16–19.

    Article  PubMed  CAS  Google Scholar 

  36. Griffin, M.P. and J.R. Moorman, Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis. Pediatrics, 2001;107: 97–104.

    Article  PubMed  CAS  Google Scholar 

  37. Malik, M., T. Farrell, T. Cripps, and A.J. Camm, Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur. Heart J., 1989;10: 1060–1074.

    PubMed  CAS  Google Scholar 

  38. Cripps, T.R., M. Malik, T.G. Farrell, and A.J. Camm, Prognostic value of reduced heart rate variability after myocardial infarction: clinical evaluation of a new analysis method. Br. Heart J., 1991;65: 14–19.

    Article  PubMed  CAS  Google Scholar 

  39. Scott, D.W., On optimal and data-based histograms. Biometrika, 1979;66: 605–610.

    Article  Google Scholar 

  40. Farrell, T.G., Y. Basir, T. Cripps, M. Malik, J. Poloniecki, E.D. Bennett, D.E. Ward, and A.J. Camm, Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. J. Am. Coll. Cardiol., 1991;18: 687–697.

    Article  PubMed  CAS  Google Scholar 

  41. Scherer, P., J.P. Ohler, H. Hirche, and H.W. Höpp, Definition of a new beat-to-beat-parameter of heart rate variability. PACE, 1993;16: 939 (abs).

    Google Scholar 

  42. Kovatchev, B.P., L.S. Farhy, H. Cao, M.P. Griffin, D.E. Lake, and J.R. Moorman, Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and systemic inflammatory response syndrome. Pediatr. Res., 2003;54: 892–898.

    Article  PubMed  Google Scholar 

  43. Björkander, I., T. Kahan, M. Ericson, C. Held, L. Forslund, N. Rehnquist, and P. Hjemdahl, Differential index, a novel graphical method for measurements of heart rate varability. Int. J. Cardiol., 2005;98: 493–499.

    Article  PubMed  Google Scholar 

  44. Björkander, I., L. Forslund, T. Kahan, M. Ericson, C. Held, P. Hjemdahl, and N. Rehnquist, Differential index: a simple time domain heart rate variability analysis with prognostic implications in stable angina pectoris. Cardiology, 2008;111: 126–133.

    Article  PubMed  Google Scholar 

  45. Soderstrom N., What is the reason for the ventricular arrhythmia in cases of auricular fibrillation? Am. Heart J., 1950;40: 212–223.

    Article  PubMed  CAS  Google Scholar 

  46. Nakanishi, A., R. Tabata, and T. Kobayashi, Effect of aging and diseases to fluctuation of the ECG R-R intervals, in Noise in Physical Systems and 1/f Fluctuations, T. Musha, S. Sato, and M. Yamamoto, Editors. Ohmsha Ltd., Institute of Physics, 1991, pp. 669–702.

    Google Scholar 

  47. Woo, M.A., W.G. Stevenson, D.K. Moser, R.B. Trelease, and R.M. Harper, Patterns of beat-to-beat heart rate variability in advanced heart failure. Am. Heart J., 1992;123: 704–710.

    Article  PubMed  CAS  Google Scholar 

  48. Esperer, H.D., D. Esperer, and R.J. Cohen, Cardiac arrhythmias imprint specific signatures on Lorenz plots. Ann. Noninvasive Electrocardiol., 2008;13: 44–60.

    Article  PubMed  Google Scholar 

  49. Schechtman, V.L., K.A. Kluge,, and R.M. Harper, Time-domain system for assessing variation in heart rate. Med. Biol. Eng. Comput., 1988;26: 367–373.

    Article  PubMed  CAS  Google Scholar 

  50. Kuo, C.D., G.Y. Chen, Y.Y. Wang, M.J. Hung, J.L. Yang, Characterization and quantification of the return map of RR intervals by Pearson coefficient in patients with acute myocardial infarction. Auton. Neurosci.I, 2003;105: 145–152.

    Article  Google Scholar 

  51. Sosnowski, M., Z. Czyż, T. Petelenz, et al., Repeat return map distinguishes patients in the chronic phase after myocardial infarction with different risk for future cardiac events. Comput. Cardiol., 1995; 285–288.

    Google Scholar 

  52. Otzenberger, H., C. Simon, C. Gronfier, and G. Brandenberger, Temporal relationship between dynamic heart rate variability and electroencephalographic activity during sleep in man. Neurosci. Lett., 1997;229: 173–176.

    Article  PubMed  CAS  Google Scholar 

  53. Stein, P.K., P.P. Domitrovich, N. Hui, P. Rautaharju, and J. Gottdiener, Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses. J. Cardiovasc. Electrophysiol., 2005;16: 954–959.

    Article  PubMed  Google Scholar 

  54. Schechtman, V.L., S.L. Raetz, R.K. Harper, A. Garfinkiel, A.J. Wilson, D.P. Southall, and R.M. Harper, Dynamic analysis of cardiac R-R intervals in normal infants and in infants who subsequently succumbed to the sudden infant death syndrome. Ped. Res., 1992,31: 606–612.

    Article  CAS  Google Scholar 

  55. Schechtman, V.L., R.K. Harper, and R.M. Harper, Development of heart rate dynamics during sleep-waking states in normal infants. Pediatr. Res., 1993;34: 618–623.

    Article  PubMed  CAS  Google Scholar 

  56. Schechtman, V.L., M.Y. Lee, A.J. Wilson, and R.M. Harper, Dynamics of respiratory patterning in normal infants and infants who subsequently died of the sudden infant death syndrome. Pediatr. Res., 1996;40: 571–577.

    Article  PubMed  CAS  Google Scholar 

  57. Kamen, P.W., H. Krum, and A.M. Tonkin, Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin. Sci., 1996;91: 201–208.

    PubMed  CAS  Google Scholar 

  58. Tulppo, M.P., T.H. Makikallio, T.E. Takala, T. Seppanen, and H.V. Huikuri, Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. Heart Circ. Physiol., 1996;271: H244–252.

    CAS  Google Scholar 

  59. Toichi, M., T. Sugiura, T. Murai, and A. Sengoku, A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval. J. Auton. Nerv. Syst., 1997;62: 79–84.

    Article  PubMed  CAS  Google Scholar 

  60. Copie, X., J-Y. Le Heuzey, M-C. Iliou, R. Khouri, T. Lavergne, F. Pousset, and L.Guize, Correlation between time-domain measures of heart rate variability and scatterplots in postinfarction patients. PACE, 1996;19: 342–347.

    Article  PubMed  CAS  Google Scholar 

  61. Guzik, P., J. Piskorski, T. Krauze, A. Wykretowicz, and H. Wysocki, Partitioning total heart rate variability. Int. J. Cardiol., 2009, in press, doi:10.1016/j.ijcardiol 2008.12.151.

    Google Scholar 

  62. Schmidt, G. and G.E. Morfill, Nonlinear methods for heart rate variability assessment, in Heart Rate Variability, M. Malik and A.J. Camm., Editors. Armonk, NY: Futura Publishing, 1995, pp. 87–98.

    Google Scholar 

  63. Hnatkova, K., X. Copie, A. Staunton, and M. Malik, Numeric processing of Lorenz plots of R-R intervals from long-term ECS: comparisons with time-domain measures of heart rate variability for risk stratification after myocardial infarction. J. Electrocardiol., 1995;28(Suppl.1): 74–80.

    Article  PubMed  Google Scholar 

  64. Sosnowski, M., P.W. MacFarlane, Z. Czyż, J. Skrzypek-Wańha, E. Boczkowska-Gaik, and M. Tendera, Age-adjustment of HRV measures and its prognostic value for risk assessment in patients late after myocardial infarction. Int. J. Cardiol., 2002;86: 249–258.

    Article  PubMed  Google Scholar 

  65. Sosnowski, M., E. Clark, S. Latif, P.W. Macfarlane, and M. Tendera, Heart rate variability fraction—a new reportable measure of 24-hour R-R interval variation. Ann. Noninvasive. Electrocardiol., 2005;10: 7–15.

    Article  PubMed  Google Scholar 

  66. Sosnowski, M., P.W. Macfarlane, R. Parma, J. Skrzypek-Wanha, and M. Tendera, Prognostic value of heart rate variability analysis in patients with depressed left ventricular function irrespective of cardiac rhythm. Comp. Cardiol., 2006: 81–84.

    Google Scholar 

  67. Moraes, R.S., E.L. Ferlin, C.A. Polanczyk, L.E. Rohde, L. Zaslavski, J.L. Gross, and P. Ribeiro, Three-dimensional return map: a new tool for quantification of heart rate variability. Autonom. Neurosci., 2000;83: 90–99.

    Article  CAS  Google Scholar 

  68. Grossman, P., Respiratory and cardiac rhythms as windows to central and autonomic biobehavioral regulation: selection of window frames, keeping the panes clean and viewing the neural topography. Biol. Psych., 1992;34: 131–161.

    Article  CAS  Google Scholar 

  69. Porges, S.W., Respiratory sinus arrhythmia: an index of vagal tone, in Psychophysiology of Cardiovascular Control: Models, Methods, and Data, J.F. Orlebeke, G. Mulder, and L.J.P. Van Domen, Editors. New York: Plenum, 1985, pp. 437–450.

    Google Scholar 

  70. Allen, J.J.B., A.S. Chambers, and D.N. Towers, The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biol. Psych., 2007;74: 243–262.

    Article  Google Scholar 

  71. Denver, J.W., S.F. Reed, and S.W. Porges, Methodological issues in the quantification of respiratory sinus arrhythmia. Biol. Psych., 2007;74: 286–294.

    Article  Google Scholar 

  72. Sosnowski, M., T. Petelenz, and J. Leski, Return maps: a non-linear method for evaluation of respiratory sinus arrhythmia. Comput. Cardiol., 1994; 129–132.

    Google Scholar 

  73. Suder, K., F.R. Drepper, M. Schiek, H-H. Abel, One-dimensional, nonlinear determinism characterizes heart rate pattern during paced respiration. Am. J. Physiol. Heart Circ. Physiol., 1998; 275: H1092–1102.

    CAS  Google Scholar 

  74. Carlson, G., S. Girouard, M. Schlegl, and C. Butter, Three-dimensional heart rate variability diagnostic for monitoring heart failure through an implantable device. J. Cardiovasc. Electrophysiol., 2004;15: 506.

    Article  PubMed  Google Scholar 

  75. Gilliam, F.R. IIIrd, J.P. Singh, C.M. Mullin, M. McGuire, and K.J. Chase, Prognostic value of heart rate variability footprint and standard deviation of average 5-minute intrinsic R-R intervals for mortality in cardiac resynchronization therapy patients. J. Electrocardiol., 2007;40: 336–342.

    Article  PubMed  Google Scholar 

  76. Penaz, J., J. Roukenz, and H.J. van der Waal, in Spectral Analysis of Some Spontaneous Rhythms in the Circulation, H. Drischel and N. Tiedt, Editors. Biokybernetik. Bd I, Karl Marx University, Leipzig, 1968, pp. 223–241.

    Google Scholar 

  77. DeBoer, R.W., J.M. Karemaker, and J. Strackee, Beat-to-beat variability of heart rate interval and blood pressure. Automedica., 1983;4: 217–222.

    Google Scholar 

  78. Parati, G., P. Castiglioni, M. Di Rienzo, S. Omboni, A. Pedotti, and G. Mancia, Sequential spectral analysis of 24-hour blood pressure and pulse interval in humans. Hypertension, 1990;16: 414–421.

    Article  PubMed  CAS  Google Scholar 

  79. Cerutti, S., A.M. Bianchi, and L.T. Mainardi, Spectral analysis of the heart rate variability signal, in Heart Rate Variability, M. Malik and A.J. Camm, Editors. Armonk, NY: Futura Publishing 1995, pp. 63–74.

    Google Scholar 

  80. Bigger, J.T. Jr., Heart rate variability: frequency domain, in Noninvasive Electrocardiology. Clinical Aspects of Holter Monitoring, Moss, A.J. and S. Stern, Ediotrs. London: W.B. Saunders, 1996: 175–198.

    Google Scholar 

  81. Malliani, A., M. Pagani, F. Lombardi, and S. Cerutti, Cardiovascular neural regulation explored in the frequency domain. Circulation, 1991;84: 482–492.

    Article  PubMed  CAS  Google Scholar 

  82. Pagani, M., F. Lombardi, S. Guzzetti, O. Rimoldi R. Furlan, P. Pizzinelli, G. Sandrone, G. Malfatto, S. Dell’Orto, and E. Piccaluga, Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res., 1986;59: 178–193.

    Article  PubMed  CAS  Google Scholar 

  83. Wichterle, D., J. Simek, M.T. La Rovere, P.J. Schwartz, A.J. Camm, and M. Malik, Prevalent low-frequency oscillation of heart rate: novel predictor of mortality after myocardial infarction. Circulation, 2004;110: 1183–1190.

    Article  PubMed  Google Scholar 

  84. Cooley, J.W. and J.W. Tukey, An algorithm for machine calculation of complex Fourier series. Math. Comput., 1965;19: 297–310.

    Article  Google Scholar 

  85. Kay, S.M. and S.L. Marple, Spectrum analysis: a modern perspective. Proc. IEEE., 1981;69: 1380–1418.

    Article  Google Scholar 

  86. Rüdiger, H., L. Klinghammer, and K. Scheuch, The trigonometric regressive spectral analysis—a method for mapping of beat-to-beat recorded cardiovascular parameters on to frequency domain in comparison with Fourier transformation. Comput. Meth. Prog. Biomed., 1999;58: 1–15.

    Article  Google Scholar 

  87. Nelson, W., Y.L. Tong, J.K. Lee, and F. Halberg, Methods for cosinor-rhythmometry. Chronobiologia., 1979;6: 305–323.

    PubMed  CAS  Google Scholar 

  88. Kitney, R.I., T. Fulton, A.H. McDonald, and D.A. Linkens, Transient interactions between blood pressure, respiration and heart rate in man. J. Biomed. Eng., 1985;7: 217–224.

    Article  PubMed  CAS  Google Scholar 

  89. Di Rienzo, M., P. Castiglioni, G. Mancia G. Parati, and A. Pedotti, 24 hour sequential analysis of arterial blood pressure and pulse interval in free moving subjects. IEEE. Trans. Biomed. Eng., 1989;36: 1066–1075.

    Article  PubMed  CAS  Google Scholar 

  90. Boardman, A., F.S. Schlindwein, A.P. Rocha, and A. Leite, A study on the optimum order of autoregressive models for heart rate variability. Physiol. Meas., 2002;23: 325–336.

    Article  PubMed  Google Scholar 

  91. Lacoss, R.T., Data adaptive spectral analysis methods. Geophysics 1971;36: 661–675.

    Article  Google Scholar 

  92. Marple, S.L., A new autoregressive spectrum analysis algorithm. IEEE Trans. Acoust., Speech, Signal Process., 1980;28: 441–454.

    Article  Google Scholar 

  93. Cohen, L., Time-frequency distribution. A. Rev.. Proc. IEEE., 1989;177: 941–981.

    Article  Google Scholar 

  94. Cerutti, S., A.M. Bianchi, and L.T. Mainardi, Advanced spectral methods for detecting dynamic behaviour. Auton. Neurosci., 2001;90: 3–12.

    Article  PubMed  CAS  Google Scholar 

  95. Pinna, G.D., R. Maestri, and A. Di Cesare, Application of time series spectral analysis theory: analysis of cardiovascular variability signals. Med. Biol. Eng. Comput. 1996;34: 142–148.

    Article  PubMed  CAS  Google Scholar 

  96. Novak, P. and V. Novak, Time/frequency mapping of the heart rate, blood pressure and respiratory signals. Med. Biol. Eng. Comput., 1993;31: 103–110.

    Article  PubMed  CAS  Google Scholar 

  97. Bianchi, A.M., L.T. Mainardi, and S. Cerutti, Time-frequency analysis of biomedical signals. Trans. Inst. Meas. Control., 2000;22: 215–230.

    Google Scholar 

  98. Mainardi, L.T., On the quantification of heart rate variability spectral parameters using time-frequency and time-varying methods. Phil. Trans. R. Soc. A., 2009;367: 255–275.

    Article  PubMed  Google Scholar 

  99. Jason, S., C. Medique, P. Maison-Blanche, N. Montano, L. Meyer, C. Vermeiren, P. Mansier, P. Coumel, A. Malliani, and B. Swynghedaw, Instant power spectrum analysis of heart rate variability during orthostatic tilt using a time/frequency domain method. Circulation., 1997;96: 3521–3526.

    Article  Google Scholar 

  100. Martinmäki, K., H. Rusko, S. Saalasti, and J. Kettunen, Ability of short-time Fourier transform method to detect transient changes in vagal effects on hearts: a pharmacological blocking study. Am. J. Physiol. Heart Circ. Physiol., 2006;290: H2582–2589.

    Article  PubMed  CAS  Google Scholar 

  101. Baillard, C., P. Gonçavales, L. Mangin, B. Swynghedauw, and P. Mansier, Use of time frequency analysis to follow transitory modulation of the cardiac autonomic system in clinical studies. Autonom. Neurosci.: Basic. Clin., 2001;90: 24–28.

    Article  CAS  Google Scholar 

  102. Vigo, D.E., S.M. Guinjoan, M. Scaramal, L.N. Siri, and D.P. Cardinali, Wavelet transform shows age-related changes of heart rate variability within independent frequency components. Autonom. Neurosci. Basic. Clin., 2005;123: 94–100.

    Article  Google Scholar 

  103. Pichot, V., J-M. Gaspoz, S. Molliex, A. Antoniadis, T. Busso, F. Roche, F. Costes, L. Quintin, J-R. Lacour, and J-C. Barthélémy, Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. J. Appl. Physiol., 1999;86: 1081–1091.

    PubMed  CAS  Google Scholar 

  104. Huang, N.E., Z. Shen, S.R. Long, M.L. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, and H.H. Liu, The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Roy. Soc. London. A., 1998;454: 903–995.

    Article  Google Scholar 

  105. Li, M., X-K. Gu, and S-S. Yang, Hilbert-Huang transform based time-frequency distribution and comparison with other three. Int. J. Circ. Syst. Signal. Proc., 2007;2: 155–160.

    Google Scholar 

  106. Perlstein, I. and A. Hoffman, Cumulative plot of heart rate variability spectrum assesses kinetics of action of cholinergic drugs in rats. Am. J. Physiol. Heart. Circ. Physiol., 2000;279: H110–115.

    PubMed  CAS  Google Scholar 

  107. Goldberger AL, L.A.N. Amaral, J.M. Hausdorff, P.C. Ivanov, C.K. Peng, and H.E. Stanley Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. USA., 2002;99(Suppl 1): 2466–2472

    Article  PubMed  Google Scholar 

  108. Denton, T.A., G.A. Diamond, R.H. Helfant, S. Khan, and H. Karagueuzian, Fascinating rhythm: a prime on chaos theory and its application to cardiology. Am. Heart. J., 1990;120: 1419–1440.

    Article  PubMed  CAS  Google Scholar 

  109. Elbert, T., W.J. Ray, W.J. Kowalik, K.E.G. Skinner, and N. Birbaumer, Chaos and physiology: Deterministic chaos in excitable cell assemblies. Physiol. Rev., 1994;74: 1–47.

    PubMed  CAS  Google Scholar 

  110. Goldberger, A.L., Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet, 1996;347: 1312–1314.

    Article  PubMed  CAS  Google Scholar 

  111. Voss, A., S. Schulz, R. Schreoder, M. Baumert, and P. Caminal, Methods derived from nonlinear dynamics for analysis heart rate variability. Phil. Trans. Roy. Soc. London A., 2009;367: 277–296.

    Article  Google Scholar 

  112. Huikuri, H.V., J.S. Perkiömaki, R. Maestri, and G.D. Pinna, Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Phil. Trans. Roy. Soc. London A., 2009;367: 1223–1238.

    Article  Google Scholar 

  113. Higuchi, T., Approach to an irregular time series on the basis of the fractal theory. Physica. D., 1988;31: 277–283.

    Article  Google Scholar 

  114. Katz, M., Fractals and the analysis of waveforms. Comput. Biol. Med., 1988;18: 145–156.

    Article  PubMed  CAS  Google Scholar 

  115. Yamamoto, Y. and R.L. Hughson, Coarse-graining spectral analysis: new method for studying heart rate variability. J. Appl. Physiol., 1991;71: 1143–1150.

    PubMed  CAS  Google Scholar 

  116. Guevara, M.R. and L. Glass, Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: a theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J. Math. Biol., 1982;14: 1–23.

    Article  PubMed  CAS  Google Scholar 

  117. Chialvo, D.R. and J. Jalife, Non-linear dynamics of cardiac excitation and impulse propagation. Nature., 1987;330: 749–752.

    Article  PubMed  CAS  Google Scholar 

  118. Garfinkel, A., M.L. Spano, W.L. Ditto, and J.N. Weiss, Controlling cardiac chaos. Science., 1992;57: 1230–1235.

    Article  Google Scholar 

  119. Weiss, J.N., A. Garfinkel, H.S. Karagueuzian, Z. Qu, and P.S. Chen, Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. Circulation, 1999;99: 2819–2826.

    Article  PubMed  CAS  Google Scholar 

  120. Sato, D., L.H. Xie, A.A. Sovari, D.X. Tran, N. Morita, F. Xie, H. Karagueuzian, A. Garfinkel, J.N. Weiss, and Z. Qu, Synchronization of chaotic early afterdepolarizations in the genesis of cardiac arrhythmias. Proc. Natl. Acad. Sci. USA., 2009;106: 2983–2988.

    Article  PubMed  CAS  Google Scholar 

  121. Saul, J.P., P. Albrecht, R.D. Berger, and R.J. Cohen, Analysis of long-term heart rate variability: methods, 1/f scaling and implications. Comput.Cardiol., 1987: 419–422. Silver Spring, MD: IEEE Computer Society Press.

    Google Scholar 

  122. Bigger, J.T. Jr., R.C. Steinman, L.M. Rolnitzky, J.L. Fleiss, P. Albrecht, and R.J. Cohen, Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants. Circulation, 1996;93: 2142–2151.

    Article  PubMed  Google Scholar 

  123. Schepers, H.E., J.H.G.M. van Beek, and J.B. Bassingthwaighte, Four methods to estimate the fractal dimension from self-affine signals. IEEE. Eng. Med. Biol. 1992;11: 57–64.

    Article  Google Scholar 

  124. Peng, C.K., S. Havlin, H.E. Stanley, and A.L. Goldberger, Quantification of scaling exponents and crossover phenomena in nonstationary heart beat time series. Chaos, 1995;5: 82–87.

    Article  PubMed  CAS  Google Scholar 

  125. Francis, D.P., K. Willson, P. Georgiadou, R. Wensel, L.C. Davies, A. Coats, and M. Piepoli, Physiological basis of fractal complexity properties of heart rate variability in man. J. Physiol., 2002;542: 619–629.

    Article  PubMed  CAS  Google Scholar 

  126. Ho, K.K., G.B. Moody, C.K. Peng, J.E. Mietus, M.G. Larson, D. Levy, and A.L. Goldberger, Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation, 1997;96: 842–848.

    Article  PubMed  CAS  Google Scholar 

  127. Huikuri, H.V., T.H. Mäkikallio, C.K. Peng, A.L. Goldberger, U. Hintze, and M. Moller, Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation, 2000;101: 47–53.

    Article  PubMed  CAS  Google Scholar 

  128. Tibby, S.M., H. Frndova, A. Durward, and P.H. Cox, Novel method to quantify loss of heart rate variability in pediatric multiple organ failure. Crit. Care. Med., 2003;31: 2079–2080.

    Article  Google Scholar 

  129. Ivanov, P.C., A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, Z.R. Struzik, and H.E. Stanley, Multifractality in human heart beat dynamics. Nature, 1999;399: 461–465.

    Article  PubMed  CAS  Google Scholar 

  130. Ching, E.S. and Y.K. Tsang, Multifractality and scale invariance in human heart beat dynamics. Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys., 2007;76 (4 Pt 1): 041910–04198.

    Article  PubMed  CAS  Google Scholar 

  131. Kiyono, K., Z.R. Struzik, N. Aoyagi,S. Sakata, J. Hayano, and Y. Yamamoto. Critical scale- invariance in healthy human heart rate. Phys. Rev. Lett., 2004;93: 178103.

    Article  PubMed  CAS  Google Scholar 

  132. Kiyono, K., J. Hayano, E. Watanabe, Z.R. Struzik, and Y. Yamamoto, Non-Gaussian heart rate as an independent predictor of mortality in patients with chronic heart failure. Heart Rhythm., 2008;5: 261–268.

    Article  PubMed  Google Scholar 

  133. Cerutti, S., D. Hoyer, A. Voss, Multiscale, multiorgan and multivariate complexity analysis of cardiovascular regulation. Phi. Trans. Roy. Soc. London A., 2009;367: 1337–1358.

    Article  Google Scholar 

  134. Batzel, J., G. Baselli, R. Mukkamala, and K.H. Chon, Modelling and disentangling physiological mechanisms: linear and nonlinear identification techniques for analysis of cardiovascular regulation. Phil. Trans. Roy. Soc. London A., 2009;367: 1377–1391.

    Article  Google Scholar 

  135. Takens, F., Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898, D.A. Rand and L-S. Young, Editors. Berlin: Springer-Verlag, 1981; pp. 366–381.

    Google Scholar 

  136. Grassberger, P. and I. Procaccia, Measuring the strangeness of strange attractors. Physica. D., 1983;9: 189–208.

    Article  Google Scholar 

  137. Carjaval, R., N. Wessel, M. Vallverdu, P. Caminal, and A. Voss, Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy. Comput. Meth. Prog. Biomed., 2005;78: 133–140.

    Article  Google Scholar 

  138. Skinner, J.E., C.M. Pratt,and T. Vybiral, A reduction in the correlation dimension of heart beat intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart. J., 1993;125: 731–734.

    Article  PubMed  CAS  Google Scholar 

  139. Shannon, C.E. and W. Weaver, The Mathematical Theory of Information. University of Illinois Press, 1949.

    Google Scholar 

  140. Pincus, S.M. and W.M. Huang, Approximate entropy: statistical properties and applications. Commun. Stat. Theory. Meth., 1992;21: 3061–3077.

    Article  Google Scholar 

  141. Pikkujämsä, S.M., T.H. Mäkikallio, K.E. Airaksinen, and H.V. Huikuri, Determinants and interindividual variation of R-R interval dynamics in healthy middle-aged subjects. Am. J. Physiol. Heart. Circ. Physiol., 2001;280: H1400–1406.

    PubMed  Google Scholar 

  142. Mäkikallio, T.H., T. Seppänen, N. Niemelä, K.E. Airaksinen, M. Tulpo, H.V. Huikuri, Abnormalities in beat to beat complexity of heart rate dynamics in patients with a previous myocardial infarction. J. Am. Coll. Cardiol., 1996;28: 1005–1011.

    Article  PubMed  Google Scholar 

  143. Richman, J.S. and J.R. Moorman,J.R Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart. Circ. Physiol., 2000;278: H2039–2049.

    PubMed  CAS  Google Scholar 

  144. Lake, D.E., J.S. Richman, M.P. Griffin, and J.R. Moorman, Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002;283: R789–797.

    PubMed  CAS  Google Scholar 

  145. Tuzcu, V., S. Nas, T. Borklu, and A. Ugur, Decrease in the heart rate complexity prior to the onset of atrial fibrillation. Europace., 2006;8: 398–402.

    Article  PubMed  Google Scholar 

  146. Costa, M., A.L. Goldberger, and C.K. Peng, Multiscale entropy analysis of complex physiological time series. Phys. Rev. Lett., 2002;89: 068–102.

    Article  CAS  Google Scholar 

  147. Javorka, M., Z. Trunkvalterova, I. Tonhajzerova, J. Javorkova, K. Javorka, and M. Baumert Short-term heart rate complexity in reduced in patients with type 1 diabetes mellitus. Clin. Neurophysiol., 2008;119: 1071–1081.

    Article  PubMed  Google Scholar 

  148. Baumert, M., V. Baier, J. Hauesian, N. Wessel, U. Meyerfeldt, A. Schirdewan, and A. Voss, Forecasting of life threatening arrhythmias using the compression entropy of heart rate. Meth. Inf. Med., 2004;43: 202–206.

    CAS  Google Scholar 

  149. Treubner, S., I. Cygankiewicz, R. Schreoder, M. Baumenrt, M. Vallverdú, P. Caminal, R. Vazquez, A. Bayés de Luna, and A. Voss, Compression entropy contributes to risk stratification in patients with cardiomyopathy. Biomed. Tech. (Berl.) 2006;51: 77–82.

    Article  Google Scholar 

  150. Bai-Lin, H., Elementary Symbolic Dynamics and Chaos in Dissipative Systems. Singapore: World Scientific, 1989.

    Google Scholar 

  151. Kurths, J., A. Voss, P. Saparin, A. Witt, H.J. Kleiner, and N. Wessel, Quantitative analysis of heart rate variability. Chaos, 1995;5: 88–94.

    Article  PubMed  Google Scholar 

  152. Wessel, N., C. Ziehmann, J. Kurths, U. Meyerfeldt, A. Schirdewan, and A. Voss, Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates. Phys. Rev. E., 2000;61: 733–739.

    Article  CAS  Google Scholar 

  153. García-Gonzáles, M.A., J. Ramos-Castro, and M. Fernández-Chimeno, A new index for the analysis of heart rate variability dynamics: characterization and application. Physiol. Meas., 2003;24: 819–832.

    Article  Google Scholar 

  154. Arif, M. and W. Aziz, Application of threshold-based acceleration change index (TACI) in heart rate variability analysis. Physiol. Meas., 2005;26: 653–665.

    Article  PubMed  CAS  Google Scholar 

  155. Porta, A., S. Guzzetti, N. Montano, R. Furlan, M. Pagani, A. Malliani, and S. Cerutti, Entropy, entropy rate and pattern classification as tools to typify complexity in short heart period variability series. IEEE. Trans. Biomed. Eng., 2001;48: 1282–1291.

    Article  PubMed  CAS  Google Scholar 

  156. Hoyer, D., H. Friedrich, U. Zwiener, B. Pompe, R. Baranowski, K. Werdan, U. Müller-Werdan, and H. Schmidt. Prognostic impact of autonomic information flow in multiple organ dysfunction syndrome patients. Int. J. Cardiol., 2006;108: 359–369

    Article  PubMed  Google Scholar 

  157. Eckmann, J.P. and D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985;57: 617–656.

    Article  CAS  Google Scholar 

  158. Wolf, A., J.B. Swift, L.H. Swinney, J.A.Vastano, Determining Lyapunov exponent from a time series. Physica. D. 1985;16: 285–317.

    Article  Google Scholar 

  159. Poon, C-S. and M. Barahona, Titration of chaos with added noise. Proc. Natl. Acad. Sci. USA. 2001;98: 7107–7112

    Article  PubMed  CAS  Google Scholar 

  160. Wu, G-Q., N.M. Arzeno, L-L. Shen, D-K. Tang, D-A. Zheng, N-Q. Zhao, D.L. Eckberg, and C-S. Poon, Chaotic signature of heart rate variability and its power spectrum in health, aging and heart failure. PLoS. ONE. 2009;4: e4323.

    Article  PubMed  CAS  Google Scholar 

  161. Sugihara, G. and R. May, Nonlinear forecasting as a way for distinguishing chaos from measurement error in a data series. Nature (London), 1990;344: 734–741.

    Article  PubMed  CAS  Google Scholar 

  162. Sugihara, G., Nonlinear forecasting for the classification of natural time series. Phil. Trans. R. Soc. A. 1994;348: 477–495.

    Article  Google Scholar 

  163. Braun, C., P. Kowalik, A. Freking, D. Hadeler, K.D. Kniffi, and M. Messmann, Demonstration of non-linear components in heart rate variability of healthy persons. Am. J. Physiol. Heart. Circ. Physiol. 1998;275: H1577–H1584.

    CAS  Google Scholar 

  164. Costa, M., A.L. Goldberger, C-K. Peng, Broken asymmetry of the human heart beat: loss of time irreversibility in aging and disease. Phys. Rev. Lett. 2005;95: 198102.

    Article  PubMed  CAS  Google Scholar 

  165. Ehlers, C.L., J. Havstad, D. Prichard, and J. Theiler, Low doses of ethanol reduce evidence for nonlinear structure in brain activity. J. Neurosci. 1998;18: 7474–7486.

    PubMed  CAS  Google Scholar 

  166. Guzik, P., J. Piskorski, T. Krauze, A. Wykretowicz, and H. Wysocki, Heart rate asymmetry by Poincare’ plots of RR intervals. Biomed. Tech. 2006;51: 272–275.

    Article  Google Scholar 

  167. Porta, A., S. Guzzetti, N. Montano, T. Gnecchi-Ruscone, R. Furlan, and A. Malliani, Time reversibility in short-term heart period variability. Comp. Cardiol. 2006;33: 77–80.

    Google Scholar 

  168. Porta, A., K.R. Casali, A.G. Casali, T. Gnecchi-Ruscone, E. Tobaldini, N. Montano, S. Lange, D. Geue, D. Cysarz, and P. van Leeuwen, Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am. J. Physiol. Regulatory. Integrative. Comp. Physiol. 2008;295(2): R550–557.

    Article  CAS  Google Scholar 

  169. Porta, A., G. D’Addio, T. Bassani, R. Maestri, and G-D. Pinna, Assessment of cardiovascular regulation through irreversibility analysis of heart period variability: a 24 hours Holter study in healthy and chronic heart failure populations. Phil. Trans. R. Soc. A. 2009;367: 1359–1375.

    Article  PubMed  Google Scholar 

  170. Bauer A., J.W. Kantelhardt, A. Bunde, M. Malik, R. Schneider, and G. Schmidt Phase-rectified signal averaging detects quasi-periodicities in non-stationary data. Physica. A. 2006;364: 423–434.

    Article  Google Scholar 

  171. Bauer, A., J.W. Kantelhardt, P. Barthel, R. Schneider, T. Mäkikallio, K. Ulm, K. Hnatkova, A. Schömig, H. Huikuri, A. Bunde, M. Malik, Schmidt G. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 2006;367: 1674–1681.

    Article  PubMed  Google Scholar 

  172. Bauer, A., P. Barthel, R. Schneider, K. Ulm, A. Müller, A. Joeinig, R. Stich, A. Kiviniemi, K. Hnatkova, H. Huikuri, A. Schömig, M. Malik, G. Schmidt, Improved stratification of autonomic regulation for risk prediction in post-infarction patients with preserved left ventricular function (ISAR-Risk). Eur. Heart. J. 2009;30: 576–583.

    Article  PubMed  Google Scholar 

  173. Eckmann, J.P., S.O. Kamphorst, and D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 1987;4: 973–977.

    Article  Google Scholar 

  174. Webber, C.L. and J.P. Zbilut, Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 1994;76: 965–973.

    PubMed  Google Scholar 

  175. Giuliani, A., G. Piccirillo, V. Marigliano, and A. Colosimo, A nonlinear explanation of aging-induced changes in heart beat dynamics. Am. J. Physiol. Heart. Circ. Physiol. 1998;275: H1455–1461.

    CAS  Google Scholar 

  176. Gammaitoni, L., P. Hänggi, P. Jung, and F. Marchesoni, Stochastic resonance. Rev. Mod. Phys. 1998;70: 223–287.

    Article  CAS  Google Scholar 

  177. Moody, G.B., R.G. Mark, A. Zoccola, S. Mantero, J.T. Bigger, and J.L. Fleiss, Derivation of respiratory signals from multi-leads ECGs. Comput. Cardiol. 1985;12: 113–116.

    Google Scholar 

  178. Sosnowski, M., J. Skrzypek-Wańha, Z. Czyż, M. Petelenz, and M. Tendera, Importance of respiration for non-invasive assessment of cardiac autonomic control in patients with ischemic left ventricular dysfunction. Wiad. Lek., 1999;52: 230–237.

    PubMed  CAS  Google Scholar 

  179. Sosnowski, M., Z. Czyż, and M. Tendera, Scatterplots of RR and RT interval variability bring evidence for diverse non-linear dynamics of heart rate and ventricular repolarization duration in coronary heart disease. Europace, 2001;3: 39–45.

    Article  PubMed  CAS  Google Scholar 

  180. Challis, R.E. and R.I. Kitney, Biomedical signal processing (in four parts). Part 3 The power spectrum and coherence function. Med. Biol. Eng. Comput., 1991;29: 225–241.

    Article  PubMed  CAS  Google Scholar 

  181. Porges, S.W., R.E. Bohrer, M.N. Cheung, F. Drasgow, P.M. McCabe, and G. Keren, New time-series statistic for detecting rhythmic co-occurrence in the frequency domain: the weighted coherence and its application to psychophysiological research. Psychol. Bull., 1980;88: 580–587.

    Article  PubMed  CAS  Google Scholar 

  182. Kirchheim, H.R., Systemic arterial baroreceptor reflexes. Physiol. Rev., 1976;56: 100–176.

    PubMed  CAS  Google Scholar 

  183. Smyth, H.S., P. Sleight, and G.W. Pickering, Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ. Res., 1969;24: 109–121.

    Article  PubMed  CAS  Google Scholar 

  184. Taylor, J.A. and D.L. Eckberg, Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation, 1996;93: 1527–1532.

    Article  PubMed  CAS  Google Scholar 

  185. Baselli, G, S. Cerutti, S. Civardi, and D. Liberati. Spectral and cross-spectral analysis of heart rate and arterial blood pressure variability signals. Comput. Biomed. Res., 1986;19: 520–553

    Article  PubMed  CAS  Google Scholar 

  186. La Rovere, M.T., A. Mortara, and P.J. Schwartz, Baroreflex sensitivity. J. Cardiovasc. Electrophysiol., 1995;6: 761–774.

    Article  PubMed  CAS  Google Scholar 

  187. Bettermann, H., D. Amponsah, D. Cysarz, and P. Van Leeuwen, Musical rhythms in heart period dynamics – a cross-cultural and interdisciplinary approach to cardiac rhythms. Am. J. Physiol., 1999;277: H1762–H1770.

    PubMed  CAS  Google Scholar 

  188. Galletly, D.C. and P.D. Larsen, Cardioventilatory coupling in heart rate variability: methods for qualitative and quantitative determination. Br. J. Anaesth., 2001;87: 827–833.

    Article  PubMed  CAS  Google Scholar 

  189. Engel, P., G. Hildebrandt and H.G. Scholz, Die Messung der Phasenkopplung zwischen Herzschlag und Atmung beim Menschen mit einem Koinzidenzmessgerät. Pflugers. Arch., 1967;298: 259–270.

    Google Scholar 

  190. Kenner, T., H. Pessenhofer, and G. Schwaberger, Method for the analysis of the entrainment between heart rate and ventilation rate. Pflugers. Arch., 1976;363: 263–265.

    Article  PubMed  CAS  Google Scholar 

  191. Hoyer, D., O. Hader, and U. Zwiener, Relative and intermittent cardiorespiratory coordination. IEEE. Eng. Med. Biol. Mag., 1997;16: 97–104.

    Article  PubMed  CAS  Google Scholar 

  192. Nollo, G., L. Faes, R. Antolini, and A. Porta, Assessing causality in normal and impaired short-term cardiovascular regulation via nonlinear prediction methods. Philos. Transact. A. Math. Phys. Eng. Sci., 2009;367: 1423–1440.

    Article  PubMed  Google Scholar 

  193. Schäfer, C., M.G. Rosenblum, J. Kurths, and H.H. Abel, Heart beat synchronized with ventilation. Nature, 1998;392: 239–240.

    Article  PubMed  Google Scholar 

  194. Seidel, H. and H. Herzel, Analyzing entrainment of heart beat and respiration with surrogates. IEEE. Eng. Med. Biol. Mag., 1998;17: 54–57.

    Article  PubMed  CAS  Google Scholar 

  195. Cysarz, D., H. Bettermann, S. Lange, D. Geue, P. van Leeuwen. A quantitiative comparison of different methods to detect cardiorespiratory coordination during night-time sleep. Biomed. Eng. OnLine, 2004;3: 44

    Article  PubMed  Google Scholar 

  196. Cysarz, D., D. von Bonin, P. Brachmann, S. Buetler, F. Edelhäuser, K. LaederachHofmann, and P. Heusser, Day-to-night time differences in the relationship between cardiorespiratory coordination and heart rate variability. Physiol. Meas., 2008;29: 1281–1291.

    Article  PubMed  Google Scholar 

  197. Hidaka, I., S-I. Ando, H. Shigematsu, K. Sakai, S. Setoguchi, T. Seto, Y. Hirooka, A. Takeshita, and Y. Yamamoto, Noise-enhanced heart rate and sympathetic nerve responses to oscillatory lower body negative pressure in humans. J. Neurophysiol., 2001;86: 559–564.

    PubMed  CAS  Google Scholar 

  198. Schmid, G., I. Goychuk, and P. Hänggi, Stochastic resonance as a collective property of ion channel assemblies. Europhys. Lett., 2001;56: 22–28.

    Article  CAS  Google Scholar 

  199. Chang, K.L., K.J. Monahan, P.M. Griffin, D. Lake, and J.R. Moorman, Comparison and clinical application of frequency domain methods in analysis of neonatal heart rate time series. Ann. Biomed. Eng., 2001;29: 764–774.

    Article  PubMed  CAS  Google Scholar 

  200. Smyth, H.S., P. Sleight, and G.W. Pickering, Reflex regulation of arterial pressure during sleep in man: a quantitative method of assessing baroreflex sensitivity. Circ. Res., 1969;24: 109–121.

    Article  PubMed  CAS  Google Scholar 

  201. DeBoer, R.W., J.M. Karemaker, and J. Strackee, Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am. J. Physiol., 253 (Heart Circ Physiol) 1987;22: 680–689.

    Google Scholar 

  202. Laude, D., L-J. Elghozi, A. Girard, E. Bellard, M. Bouhaddi, P. Castiglioni, C. Cerutti, A. Cividjian, M. Di Rienzo, J-O. Fortrat, B. Janssen, J.M. Karemaker, G. Lefthériotis, G. Parati, P.B. Persson, A. Porta, L. Quintin, J. Regnerd, H. Rüdiger, and H.M. Strauss, Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). Am. J. Physiol. Regulatory. Integrative. Comp. Physiol., 2004;286: R226–231.

    Article  CAS  Google Scholar 

  203. Robbe, H.W.J., L.J.M. Mulder, H. Rudel, W.A. Langewitz, J.B.P. Veldman, and G. Mulder, Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension, 1987;10: 538–543.

    Article  PubMed  CAS  Google Scholar 

  204. Hartikainen, J.E., K.U.O. Tahvanainen, M.J. Mantysaari, P.E. Tikkanen, E.O. Lansimies, and K.E.J. Airaksinen, Simultaneous invasive and noninvasive evaluations of baroreflex sensitivity with bolus phenylephrine technique. Am. Heart. J., 1995;130: 296–301.

    Article  PubMed  CAS  Google Scholar 

  205. Pinna, G.D., M.T. La Rovere, and R. Maestri, Estimation of arterial blood pressure variability by spectral analysis: comparison between Finapres and invasive measurements. Physiol. Meas., 1996;17: 147–169.

    Article  PubMed  CAS  Google Scholar 

  206. Mortara, A., M.T. La Rovere, G.D. Pinna, A. Prpa, R. Maestri, O. Febo, M. Pozzoli, C. Opasich, and L. Tavazzi, Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation, 1997;96: 3450–3458.

    Article  PubMed  CAS  Google Scholar 

  207. Osculati, G., G. Grassi, C. Giannattasio, G. Seravalle, F. Valagussa, A. Zanchetti, and G. Mancia, Early alterations of the baroreceptor control of heart rate in patients with acute myocardial infarction. Circulation, 1990;81: 939–934.

    Article  PubMed  CAS  Google Scholar 

  208. Korner, P.I., M.J. West, J. Shaw, and J.B. Uther, “Steady-state” properties of the baroreceptor-heart rate reflex in essential hypertension in man. Clin. Exp. Pharmacol. Physiol., 1974;1: 65–76.

    Article  PubMed  CAS  Google Scholar 

  209. Eckberg, D.L., M.S. Cavanaugh, A.L. Mark, and F.M. Abboud, A simplified neck suction device for activation of carotid baroreceptors. J. Lab. Clin. Med., 1975;85: 167–173.

    PubMed  CAS  Google Scholar 

  210. Ludbrook, J., G. Mancia, A. Ferrari, and A. Zanchetti, The variable-pressure neck-chamber method for studying the carotid baroaflex in man. Clin. Sci. Mol. Med., 1977;53: 165–171.

    PubMed  CAS  Google Scholar 

  211. Sundlof, G. and B.G. Wallin, Effect of lower body negative pressure on human muscle sympathetic nerve activity. J. Physiol., 1978;278: 525–532.

    PubMed  CAS  Google Scholar 

  212. Bernardi, L., B. Bianchini, G. Spadacini, S. Leuzzi, F. Valle, E. Marchesi, C. Passino, A. Calciati, M. Viganó, M. Rinaldi, L. Martinelli, G. Finardi, and P. Sleight, Demonstrable cardiac reinnervation after human heart transplantation by carotid baroreflex modulation of RR interval. Circulation, 1995;92: 2895–2903.

    Article  PubMed  CAS  Google Scholar 

  213. Sleight, P., M.T. La Rovere, A. Mortara, G. Pinna, R. Maestri, S. Leuzzi, B. Bianchini, L. Tavazzi, and L. Bernardi, Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain? Clin. Sci. (Colch), 1995;88: 103–109.

    PubMed  CAS  Google Scholar 

  214. Kautzner, J., Noninvasive provocations of baroreflex sensitivity, in Dynamic Electrocardiography, M. Malik and A.J. Camm, Editors. London: Blackwell Futura Publishing, 2004, pp. 162–169.

    Chapter  Google Scholar 

  215. Raczak, G., M.T. la Rovere, G.D. Pinna, R. Maestri, and G. Swiatecka, Assessment of baroreflex sensitivity in patients with preserved and impaired left ventricular function by means of the Valsalva manoeuvre and the phenylephrine test. Clin. Sci. (Lond)., 2001;100: 33–41.

    Article  PubMed  CAS  Google Scholar 

  216. Takaashi, N., M. Nakagawa, and T. Saikawa, Noninvasive assessment of the cardiac baroreflex response to downward tilting and comparison with the phenylephrine method. J. Am. Coll. Cardiol., 1999;34: 211–215.

    Article  Google Scholar 

  217. Di Rienzo, M., G. Bertinieri, G. Mancia, and A. Pedotti, A new method for evaluating the baroreflex role by a joint pattern analysis of pulse interval and systolic blood pressure series. Med. Biol. Eng. Comput., 1985;23: 313–314.

    Google Scholar 

  218. Davies, L.C., H. Colhoun, A.J. Coats, M. Piepoli, and D.P. Francis, A noninvasive measure of baroreflex sensitivity without blood pressure measurements. Am. Heart. J., 2002;143: 441–447.

    Article  PubMed  Google Scholar 

  219. James, M.A., R.B. Panerai, and J.E. Potter, Applicability of new techniques in the assessment of arterial baroreflex sensitivity in the elderly: a comparison with established pharmacological methods. Clin. Sci., 1998;94: 245–253.

    PubMed  CAS  Google Scholar 

  220. Maestri, R., G.D. Pinna, A. Mortara, M.T. La Rovere, and L. Tavazzi, Assessing baroreflex sensitivity in post-myocardial infarction patients: comparison of spectral and phenylephrine techniques. J. Am. Coll. Cardiol., 1998;31: 344–351.

    Article  PubMed  CAS  Google Scholar 

  221. Pitzalis, M.V., F. Mastropasqua, A. Passantino, F. Massari, L. Ligurgo, C. Forleo, C. Balducci, F. Lombardi, and P. Rizzon, Comparison between noninvasive indices of baroreceptor sensitivity and the phenylephrine method in post-myocardial infarction patients. Circulation, 1998;97: 1362–1367.

    Article  PubMed  CAS  Google Scholar 

  222. Schmidt, G., M. Malik, P. Barthel, R. Schneider, K. Ulm, L. Rolnitzky, A.J. Camm, J.T. Jr Bigger, and A. Schomig, Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet, 1999;353: 1390–1396.

    Article  PubMed  CAS  Google Scholar 

  223. Mrowka, R., P.B. Persson, H. Theres, et al., Blunted arterial baroreflex causes “pathological” heart rate turbulence. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000;279: R1171–1175.

    PubMed  CAS  Google Scholar 

  224. Lin, L.Y., L.P. Lai, J.L. Lin, C.C. Du, W.Y. Shay, H.L. Chan, Y.Z. Tsend, S.K.S. Huang, Tight mechanism correlation between heart rate turbulence and baroreflex sensitivity: sequential autonomic blockade analysis. J. Cardiovasc. Electrophysiol., 2002;13: 427–431.

    Article  PubMed  Google Scholar 

  225. Davies, L.C., D.P. Francis, P. Ponikowski, M.F. Piepoli, and A.J. Coats, Relation of heart rate and blood pressure turbulence following premature ventricular complexes to baroreflex sensitivity in chronic congestive heart failure. Am. J. Cardiol., 2001;87: 737–742.

    Article  PubMed  CAS  Google Scholar 

  226. Ghuran, A., F. Reid, M.T. La Rovere, et al., Heart rate turbulence-based predictors of fatal and nonfatal cardiac arrest (the Autonomic Tone and Reflexes After Myocardial Infarction substudy). Am. J. Cardiol., 2002;89: 184–190.

    Article  PubMed  Google Scholar 

  227. Cygankiewicz, I., W. Zareba, R. Vazquez, M. Vallverdu, J.R. Gonzalez-Juantey, M. Valdes, J. Almendral, J. Cinca, P. Caminal, A. Bayes de Luna and MUSIC Investigators, Heart rate turbulence predicts all-cause mortality and sudden death in congestive heart failure patients. Heart. Rhythm., 2008;5: 1095–1102.

    Article  PubMed  Google Scholar 

  228. Schneider, R., P. Barther, and M. Watanabe, Heart rate turbulence on Holter, in Dynamic Electrocardiography, M. Malik and A.J. Camm, Editors. London: Blackwell Futura Publishing, 2004, pp. 190–193.

    Chapter  Google Scholar 

  229. Watanabe, M.A., J.E. Marine, R. Sheldon, et al., Effects of ventricular premature stimulus coupling interval on blood pressure and heart rate turbulence. Circulation, 2002;106: 325–330.

    Article  PubMed  Google Scholar 

  230. Voss, A., V. Baier, J. Hopfe, et al., Heart rate and blood pressure turbulence– marker of the baroreflex sensitivity or consequence of postextrasystolic potentiation and pulsus alternans? Am. J. Cardiol., 2002;89: 110–111.

    Article  PubMed  Google Scholar 

  231. Goldberger, J. and A.H. Kadish, Influence of sympathethic and parasympathetic maneuvers on heart rate variability, in: Noninvasive Electrocardiology. Clinical Apects of Holter Monitoring, A.J. Moss and S. Stern, Editors. London: WB Saunders, 1996, pp. 207–223.

    Google Scholar 

  232. Merri, M., D.C. Farden, J.G. Mottley, and E.L. Titlebaum, Sampling frequency of the electrocardiogram for spectral analysis of the heart rate variability. IEEE. Trans. Biomed. Eng., 1990;37: 99–106.

    Article  PubMed  CAS  Google Scholar 

  233. Hilton, M.F., J.M. Beattie, M.J. Chappell, and R.A. Bates, Heart rate variability: measurement error or chaos. Comp. Cardiol., 1997: 125–128.

    Google Scholar 

  234. Bianchi, A.M., L.T. Mainardi, E. Petrucci, M.G. Signorini, M. Mainardi, and S. Cerutti, Time-variant power spectrum analysis for the detection of transient episodes in HRV signal. IEEE. Trans. Biomed. Eng., 1993;40: 136–144.

    Article  PubMed  CAS  Google Scholar 

  235. Voss, A., N. Wessel, A. Sander, H. Malberg, and R. Dietz, Requirements on sampling rate in Holter systems for analysis of heart rate variability. Clin. Sci. (Lond)., 1996;91 (Suppl): 120–121.

    Google Scholar 

  236. Hejjel, L. and E. Roth, What is the adequate sampling interval of the ECG signal for heart rate variability analysis in the time domain? Physiol. Meas., 2004;25: 1405–1411.

    Article  PubMed  Google Scholar 

  237. Tapanainen, J.M., T. Seppänen, R. Laukkanen, A. Loimaala, and H.V. Huikuri, Significance of the accuracy of RR interval detection for the analysis of new dynamic measures of heart rate variability. Ann. Noninvas. Electrocardiol., 1999;4: 10–18.

    Article  Google Scholar 

  238. Merri, M., D.C. Farden, J.G. Mottley, and E.L. Titlebaum, Sampling frequency of the electrocardiogram for spectral analysis of the heart rate variability. IEEE. Trans. Biomed. Eng., 1990;37: 99–106.

    Article  PubMed  CAS  Google Scholar 

  239. Xia, R., O. Odemuyiwa, J. Gill, M. Malik, and A.J. Camm, Influence of recognition errors of computerised analysis of 24-hour electrocardiograms on the measurement of spectral components of heart rate variability. Int. J. Biomed. Comput., 1993;32: 223–235.

    Article  PubMed  CAS  Google Scholar 

  240. Sapoznikov, D., M.H. Luria, Y. Mahler, and M.S. Gotsman, Computer processing of artifact and arrhythmias in heart rate variability analysis. Comput. Methods. Progr. Biomed., 1992;39: 75–84.

    Article  CAS  Google Scholar 

  241. Salo, M.A., H.V. Huikuri, and T. Seppänen, Ectopic beats in heart rate variability analysis: effects of editing on time and frequency domain measures. Ann. Noninvasive. Electrocardiol., 2001;6: 5–17.

    Article  PubMed  CAS  Google Scholar 

  242. Berntson, G.G. and J.R. Stowell, ECG artifacts and heart period variability: don’t miss a beat! Psychophysiology, 1998;35: 127–132.

    Article  PubMed  CAS  Google Scholar 

  243. Clifford, G.D., ECG statistics, noise, artifacts, and missing data, in Advanced Methods for ECG Analysis, G.D. Clifford, F. Azuaje, and P.E. McSharry, Editors. London: Artech House, 2006.

    Google Scholar 

  244. Janssen, M.J., C.A. Swenne, J. de Bie, O. Rompelman, and J.H. van Bemmel, Methods in heart rate variability analysis: which tachogram should we choose? Comput. Meth. Prog. Biomed., 1993;41: 1–8.

    Article  CAS  Google Scholar 

  245. Sacha, J. and W. Pluta, Different methods of heart rate variability analysis reveal different correlation of heart rate variability spectrum with average heart rate. J. Electrocardiol., 2005;38: 47–53.

    Article  PubMed  Google Scholar 

  246. Borell von, E., J. Langbein, G. Després, S. Hansen, C. Leterrier, J. Marchant-Forde, R. Marchant-Forde, M. Minero, E. Mohr, A. Prunier, D. Valance, and I. Veissier, Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals — A review. Physiol. Behav., 2007;92: 293–316.

    Article  CAS  Google Scholar 

  247. Crawford, M.H., S.J. Bernstein, P.C. Deedwania, J.P. DiMarco, K.J. Ferrick, A. Jr. Garson, L.A. Green, H.L. Greene, M.J. Silka, P.H. Stone, C.M. Tracy, R.J. Gibbons, J.S. Alpert, K.A. Eagle, T.J. Gardner, G. Gregoratos, R.O. Russell, T.H. Ryan, S.C. Jr. Smith, ACC/AHA Guidelines for Ambulatory Electrocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the Guidelines for Ambulatory Electrocardiography). Developed in collaboration with the North American Society for Pacing and Electrophysiology. J. Am. Coll. Cardiol., 1999;34: 912–948.

    Article  PubMed  CAS  Google Scholar 

  248. Liao, D., R.W. Barnes, L.E. Chambless, R.J. Jr. Simpson, P. Sorlie, and G. Heiss, Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability–the ARIC study. Atherosclerosis Risk in Communities. Am. J. Cardiol., 1995;76: 906–912.

    Article  PubMed  CAS  Google Scholar 

  249. Carnethon, M.R., D. Liao, G.W. Evans, W.E. Cascio, L.E. Chambless, W.D. Rosamond, and G. Heiss, Does the cardiac autonomic response to postural change predict incident coronary heart disease and mortality? The Atherosclerosis Risk in Communities Study. Am. J. Epidemiol., 2002;155: 48–56.

    Article  PubMed  Google Scholar 

  250. Rashba, E.J., N.A. Estes, P. Wang, A. Schaechter, A. Howard, W. Zareba, J.P. Couderc, J. Perkiomaki, J. Levine, and A. Kadish, for the Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation (DEFINITE) Investigators. Preserved heart rate variability identifies low-risk patients with nonischemic dilated cardiomyopathy: Results from the DEFINITE trial. Heart. Rhythm., 2006;3: 281–286.

    Article  PubMed  Google Scholar 

  251. Tsuji, H., M.G. Larson, F.J. Jr. Venditti, E.S. Manders, J.C. Evans, C.L. Feldman, and D. Levy, Impact of reduced heart rate variability on risk for cardiac events: the Framingham heart study. Circulation, 1996;94: 2850–2855.

    Article  PubMed  CAS  Google Scholar 

  252. Bigger, J.T. Jr., J.L. Fleiss, R.C. Steinman, L.M. Rolnitzky, R.E. Kleiger, and J.N. Rottman. Correlations among time and frequency domain measures of heart period variability two weeks after myocardial infarction. Am. J. Cardiol., 1992;69: 891–898.

    Article  PubMed  Google Scholar 

  253. Binder, T., B. Frey, G. Porenta, G. Heinz, M. Wutte, G. Kreiner, H. Gossinger, H. Schmidinger, R. Pacher, and H. Weber, Prognostic value of heart rate variability in patients awaiting cardiac transplantation. PACE, 1992;15 (P.II): 2215–2220.

    Article  PubMed  CAS  Google Scholar 

  254. Frey, B., G. Heinz, T. Binder, M. Wutte, B. Schneider, H. Schmidinger, H. Weber, and R. Pacher, Diurnal variation of ventricular response to atrial fibrillation in patients with advanced heart failure. Am. Heart. J., 1995;129: 58–65.

    Article  PubMed  CAS  Google Scholar 

  255. Schroeder, E.B., E.A. Whitsel, G.W. Evans, R.J. Prineas, L.E. Chambless, and G. Heiss, Repeatability of heart rate variability measures. J. Electrocardiol., 2004;37: 163–172.

    Article  PubMed  Google Scholar 

  256. Sandercock, G., P. Bromley, and D. Brodie, The reliability of short-term measurements of heart rate variability. Int. J. Cardiol., 2005;103: 238–247.

    Article  PubMed  Google Scholar 

  257. Radespiel-Tröger, M., R. Rauh, C. Mahlke, T. Gottschald, and M. Mück-Weymann, Agreement of two different methods for measurement of heart rate variability. Clin. Auton. Res., 2003;13: 99–102.

    Article  PubMed  Google Scholar 

  258. Dekker, J.M., R.M. Crow, A.R. Folsom, P.J. Hannan, D. Liao, C.A. Sweene, and E.G. Schouten, Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes. The ARIC study. Circulation, 2000;102: 1239–1244.

    Article  PubMed  CAS  Google Scholar 

  259. Van Schelven, L.J., P.L. Oey, I.H.I. Klein, M.G.W. Barnas, P. Blankstein, and G.H. Wieneke, Observer variations in short spectral analysis of heart period variability. J. Auton. Nerv. Syst., 2000;79: 144–148.

    Article  PubMed  CAS  Google Scholar 

  260. Tarkiainen, T.H., K.L. Timonen, P. Tittanen, J.E.K. Hartikainen, J. Pekkanen, G. Hoek, A. Ibald-Mulli, and E.J. Vanninen, Stability over time of short-term heart rate variability. Clin. Auton. Res., 2005;15: 394–399.

    Article  PubMed  Google Scholar 

  261. Kroll, D.J., L.A. Freed, K.M. Stein, J.S. Borer, and P. Kligfield, Rhythm annotation and interobserver reproducibility of measures of heart rate variability. Am. J. Cardiol., 1996;78: 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  262. Pardo, Y., C.N. Bairey Merz, P. Paul-Labrador, I. Velasquez, J.S. Gottdiener, W.J. Kop, D. Krantz, A. Rozanski, J. Klein, and T. Peter, Heart rate variability reproducibility and stability using commercially available equipment in coronary artery disease with daily life myocardial ischemia. Am. J. Cardiol., 1996;78: 866–870.

    Article  PubMed  CAS  Google Scholar 

  263. Batten, L.A., E.M. Urbina, and G.S. Berenson, Interobserver reproducibility of heart rate variability in children (The Bogalusa Heart Study). Am. J. Cardiol., 2000;6: 1264–1266.

    Article  Google Scholar 

  264. Jung, J., A. Heisel, D. Tscholl, R. Fries, H. Schiefer, and C. Ozbek, Assessment of heart rate variability by using different commercially available systems. Am. J. Cardiol. 1996;78: 118–120.

    Article  PubMed  CAS  Google Scholar 

  265. Murray, P.G., R.M. Hamilton, P.W. Macfarlane, Reproducibility of a non-invasive real-time measure of cardiac parasympathetic acitivity. Physiol. Meas., 2001;22: 661–667.

    Article  PubMed  CAS  Google Scholar 

  266. Højgaard, M.V., N-H.Holstein-Athlou, E. Agner, and J.K. Kanters, Reproducibility of heart rate variability and baroreceptor sensitivity during rest and head-up tilt. Blood Pres. Monit., 2005;10: 19–24.

    Article  Google Scholar 

  267. Winsley, R.J., N. Armstrong, K. Bywater, and S.G. Fawkner, Reliability of heart rate variability measures at rest and during light exercise in children. Br. J. Sports. Med., 2003;37: 550–552.

    Article  PubMed  CAS  Google Scholar 

  268. Maestri, R., G.D. Pinna, A. Porta, R. Balocchi, R. Sassi, M.G. Signorini, M. Dudziak, and G. Raczak, Assesing nonlinear properties of heart rate variability from short-term recordings: are these measurements reliable? Physiol. Meas., 2007;28: 1067–1077.

    Article  PubMed  Google Scholar 

  269. Sinnreich, R., J.D. Kark, Y. Friedelanger, D. Sapoznikov, and D. Luria, Five minute recordings of heart rate variability for population studies: repeatability and age-sex characteristics. Heart, 1998;80: 156–162.

    PubMed  CAS  Google Scholar 

  270. Salo, T.M., L-M. Voipio, J.O. Jalonen, H. Helenius, J.S.A. Viikari, and I. Kantola, Reproduibility of abnormal heart rate variability indices: the case of hypertensive sleep apnoea syndrome. Clin. Physiol., 1999;19: 258–268.

    Article  PubMed  CAS  Google Scholar 

  271. Lord, S.W., R.R. Senior, M. Das, A.M. Whittam, A. Murray, and J.M. McComb, Low-frequency heart rate variability: reproducibility in cardiac transplant recipients and normal subjects. Clin. Sci., 2001;100: 43–46.

    Article  PubMed  CAS  Google Scholar 

  272. Haas, J., A. Liebich, E. Himmrich, and N. Treese, Kurzzeitmessung der Herzfrequenzvariabilitat bei Postinfarktpatienten – Methodik, Reproduzierbarkeit and Stellenwert im Rahmen den Postinfarktdiagnostik. Hertzschr. Elektrophys., 2000;111: 102–109.

    Article  Google Scholar 

  273. Ponikowski, P., M. Piepoli, A.A. Amadi, T.P. Chua, D. Harrington, M. Volterrani, R. Colombo, G. Mazzuero, A. Giordano, and A.J. Coats, Reproducibility of heart rate variability measures in patients with chronic heart failure. Clin. Sci. (Lond)., 1996;91: 391–398.

    CAS  Google Scholar 

  274. Freed, L.A., K. Stein, M. Gordon, M. Urban, and P. Kiligfield, Reproducibility of power spectral measures obtained from short-term sampling periods. Am. J. Cardiol., 1994;74: 972–973.

    Article  PubMed  CAS  Google Scholar 

  275. Chemla, D., D. Young, F. Badilini, P. Maison-Blanche, H. Affres, Y. Lecarpetier, and P. Chanson, Comparison of fast Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients. Int. J. Cardiol., 2005;104: 307–313.

    Article  PubMed  Google Scholar 

  276. Nolan, J., A.D. Flapan, N.E. Goodfield, R.J. Prescott, P. Bloomfield, and J.M. Neilson, Measurement of parasympathetic activity from 24-hour ambulatory electrocardiograms and its reproducibility and sensitivity in normal subjects, patient with symptomatic myocardial ischemia, and patients with diabetes mellitus. Am. J. Cardiol., 1996;77: 154–158.

    Article  PubMed  CAS  Google Scholar 

  277. Van Hoogenhuyze, D., N. Weinstein, G.J. Martin, J.S. Weiss, J.W. Schaad, X.N. Sahyoni, D. Fintel, W.J. Remme, and D.J. Singer, Reproducibility and relation to mean heart rate of heart rate variability in normal subjects and in patients with congestive heart failure secondary to coronary heart disease. Am. J. Cardiol., 1991;68: 1668–1676.

    Article  PubMed  CAS  Google Scholar 

  278. Bigger, J.T. Jr., J.L. Fleiss, L.M. Rolnitzky, and R.C. Steinman, Stability over time of heart period variability in patients with previous myocardial infarction and ventricular arrhythmias. The CAPS and ESVEM investigators. Am. J. Cardiol., 1992;69: 718–723.

    Article  PubMed  Google Scholar 

  279. Kautzner, J., K. Hnatkova, A. Staunton, A.J. Camm, and M. Malik, Day-to-day reproducibility of time-domain measures of heart rate variability in survivors of acute myocardial infarction. Am. J. Cardiol., 1995;76: 309–312.

    Article  PubMed  CAS  Google Scholar 

  280. Stein, P.K., M.W. Rich, J.N. Rottman, and R.E. Kleiger, Stability of index of heart rate variability in patients with congestive heart failure. Am. Heart. J., 1995;129: 975–981.

    Article  PubMed  CAS  Google Scholar 

  281. Hohnloser, S.H., T. Klingenheben, M. Zabel, F. Schroder, and H. Just, Intraindividual reproducibility of heart rate variability. Pacing. Clin. Electrophysiol., 1992;15: 2211–2214.

    Article  PubMed  CAS  Google Scholar 

  282. Anastasiou-Nana, M.I., L.A. Karagounis, J. Kanakakis, N.E. Kouvelas, A. Geramoutsos, K. Chalkis, J. Karelas, and N. Nanas, Correlation and stability of heart rate and ventricular ectopy variability in patients with heart failure. Am. J. Cardiol., 2001;88: 175–179.

    Article  PubMed  CAS  Google Scholar 

  283. Weber, F., H. Schneider, T. von Arnim, and W. Urbaszek, for the TIBBS investigators group. Heart rate variability and ischemia in patients with coronary artery disease and stable angina pectoris; influence of drug therapy and prognostic value. Eur. Heart. J., 1998;19: 38–50.

    Google Scholar 

  284. Huikuri, H.V., K.M. Kessler, E. Terracall, A. Castellanos, M.K. Linnaluoto, and R.J. Myerburg, Reproducibility and circadian rhythm of heart rate variability in healthy subjects. Am. J. Cardiol., 1990;65: 391–393.

    Article  PubMed  CAS  Google Scholar 

  285. Hayano, J., W. Jiang, R. Waugh, C. O’Connor, D. Frid, and J.A. Blumenthal, Stability over time of circadian rhythm of variability of heart rate in patients with coronary artery disease. Am. Heart. J., 1997;134: 411–418.

    Article  PubMed  CAS  Google Scholar 

  286. Dawson, S.L., T.G. Robinson, J.H. Youde, M.A. James, A. Martin, P. Weston, R. Panerai, and J.F. Potter, The reproducibility of cardiac baroreceptor activity assessed noninvasively by spectral techniques. Clin. Auton. Res., 1997;7: 279–284.

    Article  PubMed  CAS  Google Scholar 

  287. Davies, L.C., D. Francis, P. Jurak, T. Kara, M. Piepoli, and A.J. Coats, Reproducibility of methods assessing baroreflex sensitivity in normal controls and in patients with chronic heart failure. Clin. Sci. (Lond)., 1999;97: 515–522.

    Article  CAS  Google Scholar 

  288. Iellamo, F., J.M. Legramante, G. Raimondi, F. Gastrucci, M. Massaro, G. Perizzi, Evaluation of spontaneous baroreflex sensitivity at rest and during laboratory tests. J. Hypertens., 1996;14: 1099–1104.

    Article  PubMed  CAS  Google Scholar 

  289. Laude, D., J-L. Elghozi, A. Girard, E. Bellard, M. Bouhaddi, P. Castiglioni, C. Cerutti, A. Cividjian, M. Di Rienzo, J-O. Fortrat, B. Janssen, J.M. Karemaker, G. Georges Lefthériotis, G. Gianfranco Parati, B. Pontus. P.B. Persson, A. Porta, L. Quintin, J. Regnard, H. Rüdiger, H.M. Stauss, Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004;286: R226–231.

    Article  PubMed  CAS  Google Scholar 

  290. Gao, S.A., M. Johansson, A. Hammaren, M. Nordberg, and P. Friberg, Reproducibility of methods assessing beroreflex sensitivity and temporal QT variability in end-stage renal disease and healthy subjects. Clin. Auton. Res., 2005;15: 21–28.

    Article  PubMed  Google Scholar 

  291. Wichterle, D., V. Melenovsky, L. Necasova, J. Kautzner, and M. Malik, Stability of the noninvasive baroreflex sensitivity assessment using cross-spectral analysis of heart rate and arterial blood pressure variabilities. Clin. Cardiol., 2000;23: 201–204.

    Article  PubMed  CAS  Google Scholar 

  292. Herpin, D. and S. Ragot, Mid- and long-term reproducibility of noninvasive measurements of spontaneous arterial baroreflex sensitivity in healthy volunteers. Am. J. Hypertens., 1997;10: 790–797.

    Article  PubMed  CAS  Google Scholar 

  293. Lord, S.D., R.H. Clayton, M.C.S. Hall, J.C. Gray, A. Murray, J.M. McComb, and R.A. Kenny, Reproducibility of three different methods of measuring baroreflex sensitivity in normal subjects. Clin. Sci., 1998;95: 575–581.

    Article  PubMed  CAS  Google Scholar 

  294. Bauer, A., M. Malik, G. Schmidt, P. Barthel, H. Bonnemeier, I. Cygankiewicz, P. Guzik, F. Lombardi, A. Muller, A. Oto, R. Schneide, M. Watanabe, D. Wichterle, and W. Zareba, Heart rate turbulence: standards of measurements, physiological interpretation, and clinical use: International Society for Holter and Noninvasive Electrophysiology Consensus. J. Am. Coll. Cardiol., 2008;52: 1353–1365.

    Article  PubMed  Google Scholar 

  295. Sandercock, G.R.H., P. Bromley, and D.A. Brodie, Reliability of three commercially available heart rate variability instruments using short-term (5-min) recordings. Clin. Physiol. Funct. Imaging., 2004;24: 359–367.

    Article  PubMed  CAS  Google Scholar 

  296. Pitzalis, M.V., F. Mastropasqua, F. Massari, C. Foleo, M. Di Maggio, A. Passantino, R. Colombo, M. Di Biase, and P. Rizzon Short- and long-term reproducibility of time and frequency domain heart rate variability measurements in normal subjects. Cardiovasc. Res., 1996;32: 226–233.

    Article  PubMed  CAS  Google Scholar 

  297. Lobnig, B.M., E. Maslowska-Wessel, and R. Bender, Repeatability of heart rate variability measured via spectral analysis in healthy subjects. J. Clin. Basic. Cardiol., 2003;6: 29–33.

    Google Scholar 

  298. Dietrich, A., J.G.M. Rosmalen, A.M. van Roon, L.J.M. Mulder, A.J. Oldehinkel, and H. Riese, Short-term reproducibility of autonomic nervous system function measures in 10-to-13-year-old children, in PhD Thesis, Dietrich A. University Medical Center, Groningen, 2007.

    Google Scholar 

  299. Parati, G., S. Omboni, A. Villani, F. Glavina, P. Castiglioni, M. Di Rienzo, and G. Mancia. Reproducibility of beat-by-beat blood pressure and heart rate variability. Blood Press. Monit., 2001;6: 217–220.

    Article  PubMed  CAS  Google Scholar 

  300. Carrasco, S., R. González, M.J. Gaitán, and O. Yáñez, Reproducibility of heart rate variability from short-term recordings during five manoeuvres in normal subjects. J. Med. Eng. Technol., 2003;27: 241–248.

    Article  PubMed  CAS  Google Scholar 

  301. Jáuregui-Renaud, K., A.G. Hermosillo, M.F. Márquez, F. Ramos-Aguilar, M. Hernández-Goribar, and M. Cárdenas, Repeatability of heart rate variability during simple cardiovascular reflex tests on healthy subjects. Arch. Med. Res., 2001;32: 21–26.

    Article  PubMed  Google Scholar 

  302. Guijt, A.M., J.K. Sluiter, M.H.W. Frings-Dresen, Test-retest reliability of heart rate variability and respiration rate at rest and during light physical activity in normal subjects. Arch. Med. Res., 2007;38: 113–120.

    Article  PubMed  Google Scholar 

  303. Cloarec-Blanchard, L., C. F. Unck-Brentano, M. Lipski, P. Jaillon, and I. Macquin-Mavier, Repeatability of spectral components of short-term blood pressure and heart rate variability during acute sympathetic activation in healthy young male subjects. Clin. Sci. (Lond)., 1997;93: 21–28.

    CAS  Google Scholar 

  304. Piepoli, M., A. Radaelli, P. Ponikowski, S. Adamopoulos, L. Bernardi, P. Sleight, and A.J. Coats, Reproducibility of heart rate variability indices during exercise stress testing and inotrope infusion in chronic heart failure patients. Clin. Sci. (Lond)., 1996;91 (Suppl): 87–88.

    Google Scholar 

  305. Randall, D., D. Brown, R. Raisch, J. Yinling, and W. Randall, SA nodal parasympathectomy dealineates autonomic control of heart rate power spectrum. Am. J. Physiol. Heart. Circ. Physiol., 1991;29: H985–988.

    Google Scholar 

  306. Jose, A.D. and D. Collison, The normal range and determinants of the intrinsic heart rate in man. Cardiovasc. Res., 1970;4: 160–167.

    Article  PubMed  CAS  Google Scholar 

  307. Ahmed, M., A. Kadish, M. Paker, and J. Goldberger, Effect of physiologic and pharmacologic adrenergic stimulation on heart rate variability. J. Am. Coll. Cardiol., 1994;24: 1082–1090.

    Article  PubMed  CAS  Google Scholar 

  308. Moser, M., M. Lehofer, A. Seminek, M. Lux, H-G. Zapotoczky, T. Kenner, and A. Noordergraaf, Heart rate variability as a prognostic tool in cardiology: a contribution to the problem from a theoretical point of view. Circulation 1994;90: 1078–1082.

    Article  PubMed  CAS  Google Scholar 

  309. Huikuri, H.V., T. Makikallio, K.E.J. Airaksinen, R. Mitrani, A. Castellanos, and R.J. Myerburg, Measurement of heart rate variability: a clinical tool or a research toy? J. Am. Coll. Cardiol., 1999;34: 1878–1883.

    Article  PubMed  CAS  Google Scholar 

  310. Seely, A.L.E. and P.T. Macklem, Complex system and the technology of variability analysis. Crit. Care., 2004;8: R367–384.

    Article  PubMed  Google Scholar 

  311. Stein, K.M., J.S. Borer, C. Hochreiter, P.M. Okin, E.M. Herrold, R.B. Cevereux, and P. Klgfield, Prognostic value and physiological correlates of heart rate variability in chronic severe mitral regurgitation. Circulation, 1993;88: 127–135.

    Article  PubMed  CAS  Google Scholar 

  312. Cygankiewicz, I., J.K. Wranicz, H. Bolinska, J. Zaslonka, and W. Zareba, Relationship between heart rate turbulence and heart rate, heart rate variability and number of premature beats in coronary patients. J. Cardiovasc. Electrophysiol., 2004;15: 731–778.

    Article  PubMed  Google Scholar 

  313. Pichon, A., M. Roulaud, S. Antione-Jonville, C. de Bischop, and A. Denjean, Spectral analysis of heart rate variability: interchangeability between autoregressive analysis and fast Fourier transform. J. Electrocardiol., 2006;39: 31–37.

    Article  PubMed  Google Scholar 

  314. Valkama, J.O., H.V. Huikuri, K.E.J. Airaksinen, M.L. Linnaluoto, and J.T. Takkunen, Determinants of frequency domain measures of heart rate variability in the acute and convalescent phases of myocardial infarction. Cardiovasc. Res., 1994;28: 1273–1276.

    Article  PubMed  CAS  Google Scholar 

  315. Kuch, B., T. Parvanov, H.W. Hense, J. Axmann, and H.D. Bolte, Short-period heart rate variability in the general population as compared to patients with acute myocardial infarction from the same source population. Ann. Noninvas. Electrocardiol., 2004;9: 113–120.

    Article  Google Scholar 

  316. Grimm, W., J. Liedtke, and H-H. Muller, Prevalence of potential noninvasive arrhythmia risk predictors in healthy, middle-aged persons. Ann. Nonivas. Electrocardiol., 2003;8: 37–46.

    Article  Google Scholar 

  317. Bigger, J.R. Jr., J.L. Fleiss, R.C. Steinman, L.M. Rolnitzky, W.J. Schneider, and P.K. Stein, RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation, 1995;91: 1936–1943.

    Article  PubMed  Google Scholar 

  318. Mølgaard, H., K.E. Sørensen, and P. Bjerregaard, Circadian variation and influence of risk factors on heart rate variability in healthy subjects. Am. J. Cardiol., 1991;68: 777–784.

    Article  PubMed  Google Scholar 

  319. Ramaekers, D., H. Ector, A.E. Aubert, A. Rubens, and F. van de Werf, Heart rate variability and heart rate in healthy volunteers. Is the female autonomic nervous system cardioprotective? Eur. Heart. J., 1998;19: 1334–1341.

    Article  PubMed  CAS  Google Scholar 

  320. Pikkujämsä, S.M., T.H. Mäkikallio, L. Sourander, I.J. Räihä, P. Puuka, J. Skyttä, C-K. Peng, A.L. Goldberger, and H.V. Huikuri, Cardiac interbeat interval dynamics from childhood to senescence. Comparison of conventional and new measures based on fractals and chaos theory. Circulation, 1999;100: 393–399.

    Article  PubMed  Google Scholar 

  321. Bonnemeier, H., U.K.H. WIegand, A. Brandes, N. Kluge, H.A. Katus, G. Richardt, and J. Potratz, Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effect of aging and gender on heart rate variability. J. Cardiovasc. Electrophysiol., 2003;14: 791–799.

    Article  PubMed  Google Scholar 

  322. Umetani, K., D.H. Singer, R. McCraty, and M. Atkinson, Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J. Am. Coll. Cardiol., 1998;31: 593–601.

    Article  PubMed  CAS  Google Scholar 

  323. Huikuri, H.V., S.M. Pikkujämsä, K.E.J. Airaksinen, M.J. Ikäheimo, A.O. Rantala, H. Kauma, M. Lilja, and Y.A. Kesäniemi, Sex-related differences in autonomic modulation of heart rate in middle-aged subjects. Circulation, 1996;94: 122–125.

    Article  PubMed  CAS  Google Scholar 

  324. Kuo, T.B., T. Lin, C.C.H. Yang, C-L. Li, C-F. Chen, and P. Chou, Effect of aging on gender differences in neural control of heart rate. Am. J. Physiol. Heart. Circ. Physiol., 1999;277: H2233–2239.

    CAS  Google Scholar 

  325. Šlachta, R., P. Stejskal, M. Elfmark, J. Salinger, M. Kalina, and I. Rehova,. Age and spectral analysis of heart rate variability. J. Auton. Nerv. Syst., 2002;32: 191–198.

    Google Scholar 

  326. Laitinen, T., L. Niskanen, G. Geelen, E. Lansimies, and J. Hartikainen, Age dependency of cardiovascular autonomic responses to head-up tilt in healthy subjects. J. Appl. Physiol., 2004;96: 2333–2340.

    Article  PubMed  Google Scholar 

  327. Acharya, R.U., N. Kannanthal, O.W. Sing,L.Y. Ping, and T. Chua, Heart rate analysis in normal subjects of various age groups. BioMed. Engineering. Online., 2004:3: 24.

    Article  Google Scholar 

  328. Kuo, T.B.J. and C.C.H. Yang, Sexual dimorphism in the complexity of cardiac pacemaker activity. Am. J. Physiol. Heart. Circ. Physiol., 2002;283: H1695–1702.

    PubMed  CAS  Google Scholar 

  329. Mehta, S.K., D.M. Super, D. Connuck, A. Salvator, L. Singer, L.G. Fradley, R.A. Harcar-Sevcik, L. Kirchner, and E.S. Kaufman, Heart rate variability in healthy neonates. Am. J. Cardiol., 2000;89: 50–53.

    Article  Google Scholar 

  330. Longin, E., T. Schaible, T. Lenz, and S. König, Short term heart rate variability in healthy neonates: normative data and physiological observations. Early. Hum. Develop., 2005;81: 663–671.

    Article  Google Scholar 

  331. Massin, M. and G. von Bernuth, Normal ranges of heart rate variability during infancy and childhood. Pediatr. Cardiol., 1997;18: 297–302.

    Article  PubMed  CAS  Google Scholar 

  332. Silvetti, M.S., F. Drago, and P. Ragonese, Heart rate variability in healthy children and adolescents is partially related to age and gender. Int. J. Cardiol., 2001;81: 169–174.

    Article  PubMed  CAS  Google Scholar 

  333. Lenard, Z., P. Studinger, B. Merich, L. Kocsis, and M. Kollai, Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation, 2004;110: 2307–2312.

    Article  PubMed  Google Scholar 

  334. Faulkner, M.S., D. Hathaway, and B. Tolley, Cardiovascular autonomic function in healthy adolescents. Heart. Lung., 2003: 32: 10–22.

    Article  PubMed  Google Scholar 

  335. Agelink, M.W., R. Malessa, B. Bauman, T. Majewski, F. Akila, T. Zeit, and D. Ziegler, Standardized tests of heart arte variability: normal ranges obtained from 309 healthy humans, and effects of ag, gender, and heart rate. Clin. Auton. Res., 2001;11: 99–108.

    Article  PubMed  CAS  Google Scholar 

  336. Braune H- and U. Geisendörfer, Measurements of heart rate variations: influencing factors, normal values and diagnostic impact on diabetic autonomic neuropathy. Diab. Res. Clin. Pract., 1995;29: 179–187.

    Article  CAS  Google Scholar 

  337. Bergfeldt, L., M. Rosenquist, H. Vallin, R. Nordlander, and H. Astrom Screening for sinus node dysfunction by analysis of short-term sinus cycle variations on the surface electrocardiogram. Am. Heart. J., 1995;130: 141–147.

    Article  PubMed  CAS  Google Scholar 

  338. Malik, M., K. Hnatkova, and A.J. Camm, Practicality of postinfarction risk assessment based on time-domain measurement of heart rate variability, in Heart Rate Variability, M. Malik and A.J. Camm, Editors. Armonk, NY: Futura Publishing, 1995, pp. 393–405.

    Google Scholar 

  339. Ewing, D.J., C.N. Martyn, R.J. Young, and B.F. Clarke, The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diab. Care., 1985;8: 491–498.

    Article  CAS  Google Scholar 

  340. O’Brien, I.A., J.P. O’Hare, and R.J.M. Corrall, Heart rate variability in healthy subjects: effects of age and the derivation of normal ranges for test of autonomic function. Br. Heart. J., 1986;55: 348–354.

    Article  PubMed  Google Scholar 

  341. Howorka, K., J. Pumprla, A. Schabmann, Optimal parameters of short-term heart rate spectrogram for routine evaluation of diabetic cardiovascular autonomic neuropathy. J. Auton. Nerv. Syst., 1998;69: 164–172.

    Article  PubMed  CAS  Google Scholar 

  342. Miličević, G., N. Lakušić, J. Szirovicza, D. Cerovec, M. Majsec, Different cut-off points of decreased heart rate variability for different groups of cardiac patients. J. Cardiovasc. Risk., 2001;8: 93–102.

    Article  PubMed  Google Scholar 

  343. La Rovere, M.T., J.T. Jr. Bigger, F.I. Marcus, A. Mortara, and P.J. Schwartz for the ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators, Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet, 1998;351: 478–484.

    Article  PubMed  CAS  Google Scholar 

  344. Rich, M.W., J.S. Saini, K.E. Kleiger, R.M. Carney, A. teVelde, and K.E. Freedland, Correlation of heart rate variability with clinical and angiographic variables and late mortality afer coronary angiography. Am. J. Cardiol., 1988;62: 714–717.

    Article  PubMed  CAS  Google Scholar 

  345. Odemuyiwa, O., J. Poloniecki, M. Malik, T. Farrell, R. Xia, A. Staunton, P. Kulakowski, D. Ward, and J. Camm, Temporal influences on the prediction of postinfarction mortality by heart rate variability: a comparison with the left ventricular ejection fraction. Br. Heart. J., 1994;71: 521–527.

    Article  PubMed  CAS  Google Scholar 

  346. Zuanetti, G., J.M. Neilson, R. Latini, E. Santoro, A.P. Maggioni, and D.J. Ewing, Prognostic significance of heart rate variability in post-myocardial infarction patients in the fibrinolytic era: The GISSI-2 results. Circulation, 1996;94: 432–436.

    Article  PubMed  CAS  Google Scholar 

  347. Copie, X., K. Hnatkova, A. Staunton, L. Fei, A.J. Camm, and M. Malik, Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction. Results of a two-year follow-up study. J. Am. Coll. Cardiol., 1996;27: 270–276.

    Article  PubMed  CAS  Google Scholar 

  348. Lanza, G.A., V. Guido, M. Galeazzi, M. Mustilli, R. Natali, C. Ierardi, C. Milici, F. Burzotta, V. Pasceri, F. Tomassini, A. Lupi, and A. Maseri, Prognostic role of heart rate variability in patients with a recent acute myocardial infarction. Am. J. Cardiol. 1998;82: 1323–1328.

    Article  PubMed  CAS  Google Scholar 

  349. Whang, W. and J.T. Jr. Bigger, Comparison of the prognostic value of RR-interval variability after acute myocardial infarction in patients with versus those without diabetes mellitus. Am. J. Cardiol., 2003;92: 247–252.

    Article  PubMed  Google Scholar 

  350. Balanescu, S., A.D. Corlan, M. DOrobantu, and L. Gherasim, Prognostic value of heart rate variability after acute myocardial infarction. Med. Sci. Monit., 2004;10: CR307–315.

    PubMed  Google Scholar 

  351. Stein, P.K., P.P. Domitrovich, H.V. Huikuri, and R.E. Kleiger for the CAST Investigators, Traditional and nonlinear heart rate variability. Are each independently associated with mortality after myocardial infarction. J. Cardiovasc. Electrophysiol., 2005;16: 13–20.

    Article  PubMed  Google Scholar 

  352. Huikuri, H.V., P. Raatikainen, R. Moechr-Joergensen, J. Hartikainen, V. Virtanen, J. Boland, O. Anttonen, N. Hoest, L.V.A. Boersma, E.S. Platou, M.D. Messier, P-E. Bloch-Thomsen, for the Cardiac Arrhythmias and Risk Stratification after Acute Myocardial Infarction (CARISMA) study group, Prediction of fatal or near-fatal cardiac arrhythmia events in patients with depressed left ventricular function after an acute myocardial infarction. Eur. Heart. J., 2009;30: 689–698.

    Article  PubMed  Google Scholar 

  353. Stein, K.M., J.S. Borer, C. Hochreiter, P.M. Okin, E.M. Herrold, R.B. Devereux, and P. Kligfield, Prognostic value and physiological correlated of heart rate variability in chronic severe mitral regurgitation. Circulation, 1993;88: 127–135.

    Article  PubMed  CAS  Google Scholar 

  354. Szabó, B.M., D.J. van Veldhuisen, N. van der Veer, J. Brouwer, P.A. De Graeff, H.J.G.M. Crijns, Prognostic value of heart rate variability in chronic congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am. J. Cardiol., 1997;79: 978–980.

    Article  PubMed  Google Scholar 

  355. Ponikowski, P., S.D. Anker, T.P. Chua, R. Szelemej, M. Piepoli, S. Adamopoulos, K. Webb-Peploe, D. Harrington, A. Banasiak, K. Wrabec, and A.J.S. Coats, Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol., 1997;79: 1645–1650.

    Article  PubMed  CAS  Google Scholar 

  356. Nolan, J., P.D. Batin, R. Andrews, S.J. Lindsay, P. Brooksby, M. Mullen, W. Baig, A.D. Flapan, A. Cowley, R.J. Prescott, J.M. Neilson, and K.A. Fox, Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation, 1998;98: 1510–1516.

    Article  PubMed  CAS  Google Scholar 

  357. Fauchier, L., D. Babuty, P. Cosnay, and J.P. Fauchier, Prognostic value of heart rate variability for sudden death and major arrhythmic events in patients with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol., 1999;33: 1203–1207.

    Article  PubMed  CAS  Google Scholar 

  358. Galinier, M., A. Pathak, J. Fourcade, C. Androdias, D. Curnier, S. Varnous, S. Boveda, P. Massabuau, M. Fauvel, J.M. Senard, and J.P. Bounhoure, Depressed low frequency power of heart rate variability as an independent predictor of sudden death in chronic heart failure. Eur. Heart. J., 2000;21: 475–482.

    Article  PubMed  CAS  Google Scholar 

  359. Mäkikallio, T.H., H.V. Huikuri, U. Hintze, J. Videbaek, R.D. Mitrani, A. Castellanos, R.J. Myerburg, M. Møller, and DIAMOND Study Group (Danish Investigations of Arrhythmia and Mortality ON Dofetilide), Fractal analysis and time- and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure. Am. J. Cardiol., 2001;87: 178–182.

    Article  PubMed  Google Scholar 

  360. Bilchick, K.C., B. Fetics, R. Djoukeng, S.G. Fisher, R.D. Fletcher, S.N. Singh, E. Nevo, and R.D. Berger, Prognostic value of heart rate variability in chronic congestive heart failure (Veterans Affairs’ Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure). Am. J. Cardiol., 2002;90: 24–28.

    Article  PubMed  Google Scholar 

  361. Aronson, D., M.A. Mittleman, and A.J. Burger, Heasures of heart period variability as predictors of mortality in hospitalized patients with decompensated congestive heart failure. Am. J. Cardiol., 2004;93: 59–63.

    Article  PubMed  Google Scholar 

  362. Algra, A., J.G.P. Tijssen, J.R.T.C. Roelandt, J. Pool, and J. Lubsen, Heart rate variability from 24-hour electrocardiography and the 2-year risk from sudden death. Circulation, 1993;88: 180–185.

    Article  PubMed  CAS  Google Scholar 

  363. Huikuri, H.V., T.H. Mäkikallio, K.E. Airaksinen, T. Seppänen, P. Puukka, I.J. Räihä, and L.B. Sourander, Power-law relationship of heart rate variability as a predictor of mortality in the elderly. Circulation, 1998;97: 2031–2036.

    Article  PubMed  CAS  Google Scholar 

  364. Sajadieh, A., O.W. Nielsen, V. Rasmussen, H.O. Hein, and J.F. Hansen, C-reactive protein, heart rate variability and prognosis in community subjects with no apparent heart disease. J. Intern. Med., 2006;260: 377–387.

    Article  PubMed  CAS  Google Scholar 

  365. Stein, P.K., J.K. Barzilay, P.H.M. Chaves, S.Q. Mistretta, P.P. Domitrovich, J.S. Gottdiened, M.W. Rich, and R.E. Kleiger, Novel measures of heart rate variability predict cardiovascular mortality in older adults independent of traditional cardiovascular risk factors: The Cardiovascular Health Study (CHS). J. Cardiovasc. Electropysiol., 2008;19: 1169–1174.

    Article  Google Scholar 

  366. Grimm, W., J. Sharkova, M. Christ, R. Schneider, G. Schmidt, and B. Maisch, Heart rate turbulence following ventricular premature beats in healthy controls. Ann. Noninvas. Electrocardiol., 2003;8: 127–131.

    Article  Google Scholar 

  367. Lindgren, K.S., T.H. Mäkikallio, T. Seppänen, M.J.P. Ratikainen, A. Castellanos, R.J. Myerburg, and H.V. Huikuri, Heart rate turbulence after ventricular and atrial premature beats in subjects without structural heart disease, J. Cardiovasc. Electrophysiol., 2003;14: 447–452.

    Article  PubMed  Google Scholar 

  368. Linden, D. and R.R. Diehl, Estimaton of baroreflex sensitivity using transfer function analysis: normal values and theoretical considerations. Clin. Auton. Res., 1996;6: 157–161.

    Article  PubMed  CAS  Google Scholar 

  369. Madden, K.M., W.C. Levy, A. Jacobson, J.R. Stratton, The effect of aging on phenylephrine response in normal subjects. J. Amer. Aging. Assoc., 2003;26: 3–10.

    CAS  Google Scholar 

  370. Wang, Y-P., Y-J. Cheng, and C-L. Huang, Spontaneous baroreflex measurement in the assessment of cardiac vagal control. Clin. Auton. Res., 2004;14: 189–193.

    Article  PubMed  Google Scholar 

  371. Cooper, V.L,. M.W. Elliot, S.B. Pearson, C.M. Taylor, and R. Hainsworth, Daytime variability of carotic baroreflex function in healthy human subjects. Clin. Auton. Res., 2007;17: 26–32.

    Article  PubMed  Google Scholar 

  372. Lauer, M.S., P.M. Okin, M.G. Larson, J.C. Evans, and D. Levy, Impaired heart rate response to graded exercise: prognostic implications of chronotropic incompetence in the Framingham Heart Study. Circulation, 1996;93: 1520–1526.

    Article  PubMed  CAS  Google Scholar 

  373. Morillo, C.A., D.L. Eckberg, K.A. Ellenbogen, L.A. Beightol, J.B. Hoag, K.U. Tahvanainen, T.A. Kuusela, and A.M. Diedrich, Vagal and sympathetic mechanisms in patients with orthostatic vasovagal syncope. Circulation, 1997;96: 2509–2513.

    Article  PubMed  CAS  Google Scholar 

  374. Machado, B.H. and M.J. Brody, Contribution of neurogenic mechanisms to control of intrinsic heart rate. Am. J. Physiol., 1989;256 (1 Pt 2): R231–235.

    PubMed  CAS  Google Scholar 

  375. Hagendorff, A., B. Schumacher, S. Kirchhoff, B. Luderitz, and K. Willecke, Conduction disturbances and increased atrial vulnerability in connexin40-deficient mice analyzed by transesophageal stimulation. Circulation, 1999;99: 1508–1515.

    Article  PubMed  CAS  Google Scholar 

  376. Dobrzynski, H., M.R. Boyett, and R.H. Anderson, New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation, 2007;115: 1921–1932.

    Article  PubMed  Google Scholar 

  377. Asseman, P., B. Berzin, D. Desry, D. VIlarem, P. Durand, C. Delmotte, E.H. Sarkis, J. Lekieffre, and C. Thery, Persistent sinus nodal electrograms during abnormally prolonged postpacing atrial pauses in sick sinus syndrome in humans: sinoatrial block vs overdrive suppression. Circulation, 1983;68:33–41.

    Article  PubMed  CAS  Google Scholar 

  378. Apfel, H. and M. Vassalle, Acetylcholine induces overdrive excitation in sheep Purkinje fibres. Cardiovasc. Res., 1988;22: 425–438.

    Article  PubMed  CAS  Google Scholar 

  379. Satoh, H., Sino-atrial nodal cells of mammalian hearts: ionic currents and gene expression of pacemaker ionic channels. J. Smooth. Muscle. Res., 2003;39: 175–193.

    Article  PubMed  Google Scholar 

  380. Barbuti, A. and D. DiFrancesco, Control of cardiac rate by “funny” channels in health and disease. Ann. N. Y. Acad. Sci., 2008;1123: 213–223.

    Article  PubMed  CAS  Google Scholar 

  381. Braun, A.P., T.D. Phan, and P.V. Sulakhe, Muscarinic acetylcholine receptors in the sino-atrial node and right atrium of bovine heart. Eur. J. Pharmacol., 1990;189: 201–215.

    Article  PubMed  CAS  Google Scholar 

  382. Maier, S.K., R.E. Westenbroek, T.T. Yamanushi, H. Dobrzynski, M.R. Boyett, W.A. Catterall, and T. Scheuer, An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc. Natl. Acad. Sci. USA., 2003;100: 3507–3512.

    Article  PubMed  CAS  Google Scholar 

  383. Riccioni, G., Focus on ivabradine: a new heart rate-controlling drug. Expert. Rev. Cardiovasc. Ther., 2009;7: 107–113.

    Article  PubMed  CAS  Google Scholar 

  384. Jalife, J., D.C. Michaels, and M. Delmar, Mechanisms of pacemaker synchronization in the sinus node. Prog. Clin. Biol. Res., 1988;275: 67–91.

    PubMed  CAS  Google Scholar 

  385. Guevara, M.R. and H.J. Jongsma, Phase resetting in a model of sinoatrial nodal membrane: ionic and topologic apects. Am. J. Physiol., 1990;258: H734–747.

    PubMed  CAS  Google Scholar 

  386. Fye, W.B., The origin of the heart beat: a tale of frogs, jelly-fish and turtles. Circulation, 1987;76: 493–500.

    Article  PubMed  CAS  Google Scholar 

  387. Boineau, J.P., R.B. Schuessler, T.E. Canavan, P.B. Corr, M.E. Cain, and J.L. Cox, The human atrial pacemaker complex. J. Electrocardiol., 1989;22 (Suppl): 189–197.

    Article  PubMed  Google Scholar 

  388. Schuessler, R.B., B.I. Bromberg, J.P. Boineau, Effect of neurotransmitters on the activation sequence of the isolated atrium. Am. J. Physiol., 1990;258: H1632–1641.

    PubMed  CAS  Google Scholar 

  389. Löffelholz, K. and A.J. Pappano, The parasympathetic neuroeffector junction of the heart. Pharmacol. Rev., 1985;37: 1–24.

    PubMed  Google Scholar 

  390. Miyazaki, T. and D.P. Zipes, Presynaptic modulation of efferent sympathetic and vagal neurotransmission in the canine heart by hypoxia, high K + , low pH, and adenosine. Possible relevance to ischemia-induced denervation. Circ. Res., 1990;66: 289–301.

    Article  PubMed  CAS  Google Scholar 

  391. Boyett, M.R., H. Honjo, and I. Kodama, The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc. Res., 2000;47: 658–687.

    Article  PubMed  CAS  Google Scholar 

  392. Jordan, D. and K.M. Spyer, Effects of acetylcholine on respiratory neurones in the nucleus ambiguus-retroambigualis complex of the cat. J. Physiol., 1981;320: 103–111.

    PubMed  CAS  Google Scholar 

  393. Rand, M.J., H. Majewski, and D.F. Story, Modulation of neuroeffector transmission, in Cardiovascular Pharmacology, M. Antonaccio, Editor. New York: Raven Press, 1990, pp. 229–292.

    Google Scholar 

  394. Bruck, H., A. Ulrich, S. Gerlach, J. Radke, and O.E. Brodde, Effects of atropine on human cardiac beta 1- and/or beta 2-adrenoceptor stimulation. Naunyn. Schmiedebergs. Arch. Pharmacol., 2003;367: 572–577.

    Article  PubMed  CAS  Google Scholar 

  395. Valenzuela, D., X. Han, U. Mende, C. Fankhauser, H. Mashimo, P. Huang, J. Pfeffer, E.J. Neer, and M.C. Fishman, G alpha(o) is necessary for muscarinic regulation of Ca2 + channels in mouse heart. Proc. Natl. Acad. Sci. USA., 1997;94: 1727–1732.

    Article  PubMed  CAS  Google Scholar 

  396. Zaza, A. and F. Lombardi, Autonomic indexes based on the analysis of heart rate variability: a view from the sinus node. Cardiovasc. Res., 2001;50: 434–442.

    Article  PubMed  CAS  Google Scholar 

  397. Hainsworth, R., Physiological basis of heart rate variability, in Dynamic Electrocardiography, M. Malik and A.J. Camm, Editors. London: Blackwell Futura Publishing, 2004, pp. 3–12.

    Google Scholar 

  398. Warner, M.R., Time-course and frequency dependence of sympathetic stimulation-evoked inhibition of vagal effects at the sinus node. J. Auton. Nerv. Syst., 1995;52: 23–33.

    Article  PubMed  CAS  Google Scholar 

  399. Kiviniemi, A.M., A.J. Hautala, T. Seppänen, T.H. Mäkikallio, H.V. Huikuri, and M.P. Tulppo, Saturation of high-frequency oscillations of R-R intervals in healthy subjects and patients after acute myocardial infarction during ambulatory conditions. Am. J. Physiol. Heart. Circ. Physiol., 2004;287: H1921–1927.

    Article  PubMed  CAS  Google Scholar 

  400. Zhang, H.and M. Vassalle, Mechanisms of adrenergic control of sino-atrial node discharge. J. Biomed. Sci., 2003;10: 179–192.

    Article  PubMed  CAS  Google Scholar 

  401. Ecker, P.M., .C-C. Lin, J. Powers, B.K. Kobilka, A.N. Dubin, and C. Bernstein, Effect of targeted deletions of β 1- and β 2-adrenrgic-receptor subtypes on heart rate variability. Am. J. Physiol. Heart. Circ. Physiol., 2006;290: H192–199.

    Article  PubMed  CAS  Google Scholar 

  402. Brown, R.A. and R.G. Carpentier, Alpha-adrenoceptor-mediated effects of norepinephrine on the guinea pig sinus node. J. Electrocardiol., 1988; 21: 213–217.

    Article  PubMed  CAS  Google Scholar 

  403. Allen, J.M., P. Gjörstrup, J.A. Björkman, L. Ek, T. Abrahamsson, and S.R. Bloom, Studies on cardiac distribution and function of neuropeptide Y. Acta. Physiol. Scand. 1986;126: 405–411.

    Article  PubMed  CAS  Google Scholar 

  404. Gray, A.L., T.A. Johnson, J.M. Lauenstein, S.S. Newton, J.L. Ardell, and V.J. Massari, Parasympathetic control of the heart. III. Neuropeptide Y-immunoreactive nerve terminals synapse on three populations of negative chronotropic vagal preganglionic neurons. J. Appl. Physiol., 2004;96: 2279–2287.

    Article  PubMed  CAS  Google Scholar 

  405. Kilborn, M.J., E.K. Potter, and D.I. McCloskey,. Neuromodulation of the cardiac vagus: comparison of neuropeptide Y and related peptides. Regul. Pept., 1985;12: 155–161.

    Article  PubMed  CAS  Google Scholar 

  406. Revington, M.L. and D.I. McCloskey, Sympathetic-parasympathetic interactions at the heart, possibly involving neuropeptide Y, in anaesthetized dogs. J. Physiol., 1990;428: 359–370.

    PubMed  CAS  Google Scholar 

  407. Warner, M.and M.N. Levy, Neuropeptide Y as a putative modulator of the vagal effects on heart rate. Circ. Res., 1989;64: 882–889.

    Article  PubMed  CAS  Google Scholar 

  408. Balligand, J.L., Regulation of cardiac beta-adrenergic response by nitric oxide. Cardiovasc. Res., 1999;43: 607–620.

    Article  PubMed  CAS  Google Scholar 

  409. Chowdhary, S. and J.N. Townend, Role of nitric oxide in the regulation of cardiovascular autonomic control. Clin. Sci. (Lond)., 1999;97: 5–17.

    Article  CAS  Google Scholar 

  410. Krukoff, T.L., Central actions of nitric oxide in regulation of autonomic functions. Brain. Res. Rev., 1999;30: 52–65.

    Article  PubMed  CAS  Google Scholar 

  411. Zanzinger, J., Role of nitric oxide in the neural control of cardiovascular function. Cardiovasc. Res., 1999;43: 639–649.

    Article  PubMed  CAS  Google Scholar 

  412. Sartori, C., M. Lepori, and U. Scherrer, Interactions between nitric oxide and the cholinergic and sympathetic nervous system in cardiovascular control in humans. Pharmacol. Therap., 2005;106: 209–220.

    Article  CAS  Google Scholar 

  413. Feron, O., C. Dessy, D.J. Opel, M.A. Arstall, R.A. Kelly, and T. Michel, Modulation of the endothelial nitric-oxide synthse-caeolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. J. Biol. Chem., 1998;273: 30249–30254.

    Article  PubMed  CAS  Google Scholar 

  414. Herring, N., S. Golding, and D.J. Paterson, Pre-synaptic NO-cGMP pathway modulates vagal control of heart rate in isolated adult guinea pig atria. J. Mol. Cell. Cardiol., 2000;32: 1795–1804.

    Article  PubMed  CAS  Google Scholar 

  415. Picker, O., T.W. Scheeren, and J.O. Arndt, Nitric oxide synthases in vagal neurons are crucial for the regulation of heart rate in awake dogs. Basic. Res. Cardiol., 2001;96: 395–404.

    Article  PubMed  CAS  Google Scholar 

  416. Heaton, D.A., S. Golding, C.P. Bradley, T.A. Dawson, S. Cai, K.M. Channon, and D.J. Paterson, Targeted nNOS gene transfer into the cardiac vagus rapidly increases parasympathetic function in the pig. J. Mol. Cell. Cardiol., 2005;39: 159–164.

    Article  PubMed  CAS  Google Scholar 

  417. Chowdhary, S., A.M. Marsh, J.H. Coote, and J.N. Townend, Nitric oxide and cardiac muscarinic control in humans. Hypertension, 2004;43: 1023–1028.

    Article  PubMed  CAS  Google Scholar 

  418. Chowdhary, S., S.L. Nuttall, J.H. Coote, and J.N. Townend, L-arginine augments cardiac vagal control in healthy human subjects. Hypertension, 2002;39: 51–56.

    Article  PubMed  CAS  Google Scholar 

  419. Vanoli, E., G.M. De Ferrari, M. Stramba-Badiale, S.S. Jr. Hull, R.D. Foreman, and P.J. Schwartz, Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ. Res., 1991;68: 1471–1481.

    Article  PubMed  CAS  Google Scholar 

  420. Li, M., C. Zheng, T. Sato, T. Kawada, M. Sugimachi, and K. Sunagawa, Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation, 2004;109: 120–124.

    Article  PubMed  Google Scholar 

  421. Binkley, P.F., E. Nunziatta, Y. Liu-Stratton, and G. Cooke, A polymorphism of the endothelial nitric oxide synthase promoter is associated with an increase in autonomic imbalance in patients with congestive heart failure. Am. Heart. J., 2005;149: 342–348.

    Article  PubMed  CAS  Google Scholar 

  422. Jordan, D., Vagal control of the heart: central serotonergic (5-HT) mechanisms. Exp. Physiol., 2005;90: 175–181.

    Article  PubMed  CAS  Google Scholar 

  423. Okoshi, K., M. Nakayama, X. Yan, M.P. Okoshi, A.J. Schuldt, M.A. Marchionni, and B.H. Lorell, Neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of beta-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation, 2004;110: 713–717.

    Article  PubMed  CAS  Google Scholar 

  424. Hrushesky, W.J., D.J. Fader, J.S. Berestka, M. Sommer, J. Hayes, and F.O. Cope, Diminishment of respiratory sinus arrhythmia foreshadows doxorubicin-induced cardiomyopathy. Circulation, 1991;84: 697–707.

    Article  PubMed  CAS  Google Scholar 

  425. Beaulieu, P. and C. Lambert, Peptidic regulation of heart rate and interactions with the autonomic nervous system Cardiovasc. Res., 1998;37: 578–585.

    Article  PubMed  CAS  Google Scholar 

  426. Herring, N. and D.J. Paterson, Neuromodulators of peripheral cardiac sympatho-vagal balance. Exp. Physiol., 2009;94: 46–53.

    Article  PubMed  CAS  Google Scholar 

  427. Woods, R.L., Cardioprotective functions of atrial natriuretic peptide and B-type natriuretic peptide: a brief review. Clin. Exp. Pharmacol. Physiol., 2004;31: 791–794.

    Article  PubMed  CAS  Google Scholar 

  428. Anja, G., A.G. Teschemacher, and C.D. Johnson, Cotransmission in the autonomic nervous system. Exp. Physiol., 2009;94:18–19.

    Article  Google Scholar 

  429. Lab, M.J., Mechanosensitivity as an integrative system in heart: an audit. Prog. Biophys. Mol. Biol., 1999;71: 7–27.

    Article  PubMed  CAS  Google Scholar 

  430. Kohl, P., P. Hunter, and D. Noble, Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog. Biophys. Mol. Biol., 1999;71:91–138.

    Article  PubMed  CAS  Google Scholar 

  431. Taggart, P. and P.M. Sutton, Cardiac mechano-electric feedback in man: clinical relevance. Prog. Biophys. Mol. Biol., 1999;71: 139–154.

    Article  PubMed  CAS  Google Scholar 

  432. Rajala, G.M., J.H. Kalbfleisch, and S. Kaplan, Evidence that blood pressure controls heart rate in the chick embryo prior to neural control. J. Embryol. Exp. Morphol., 1976;36: 685–695.

    PubMed  CAS  Google Scholar 

  433. Bernardi, L., F. Keller, M. Sanders, P.S. Reddy, B. Griffith, F. Meno, and M.R. Pinsky, Respiratory sinus arrhythmia in the denervated human heart. J. Appl. Physiol., 1989;67: 1447–1455.

    PubMed  CAS  Google Scholar 

  434. Conci, F., M. Di Rienzo, and P. Castiglioni, Blood pressure and heart rate variability and baroreflex sensitivity before and after brain death. J. Neurol. Neurosurg. Psychiatr., 2001;71: 621–631.

    Article  PubMed  CAS  Google Scholar 

  435. Harris, K.F. and K.A. Matthews, Interactions between autonomic nervous system activity and endothelial function: a model for the development of cardiovascular disease. Psychosom. Med., 2004;66: 153–164.

    Article  PubMed  Google Scholar 

  436. Story, D.F. and J. Ziogas, Interaction of angiotensin with noradrenergic neuroeffector transmission. Trends. Pharmacol. Sci., 1987;8: 269–271.

    Article  CAS  Google Scholar 

  437. Zimmermann, B.G., E.J. Sybertz, and P.C. Wong, Interaction between sympathetic and renin-angiotensin system. J. Hypertens., 1984;2: 581–587.

    Article  Google Scholar 

  438. Thayer, J.F., M.M. Merrit, J.J. III Sollers, A.B. Zonderman, M.K. Evans, S. Yie, and D.R. Abernethy, Effect of angiotensin-converting enzyme insertion/deletion polymorphism DD genotype on high-frequency heart rate variability in African Americans. Am. J. Cardiol., 2003;92: 1487–1490.

    Article  PubMed  CAS  Google Scholar 

  439. Ashley, E.A., A. Kardos, S.J. Jack, W. Habenbacher, M. Wheeler, M. Kim, J. Froning, J. Myers, G. Whyte, V. Froelicher, and P. Douglas, Angiotensin-converting enzyme genotype predicts cardiac and autonomic responses to prolonged exercise. J. Am. Coll. Cardiol., 2006;48: 523–531.

    Article  PubMed  CAS  Google Scholar 

  440. Osterziel, K.J., R. Dietz, W. Schmid, K. Mikulaschek, J. Manthey, and W. Kubler, ACE inhibition improves vagal reactivity in patients with heart failure. Am. Heart. J., 1990;120: 1120–1129.

    Article  PubMed  CAS  Google Scholar 

  441. Binkley, P.F., G.J. Haas, R.C. Starling, E. Nunziata, P.A. Hatton, C.V. Leier, and R.J. Cody, Sustained augmentation of parasympathetic tone with angiotensin-converting enzyme inhibition in patients with congestive heart failure. J. Am. Coll. Cardiol., 1993;21: 655–661.

    Article  PubMed  CAS  Google Scholar 

  442. Heusser, K., J. Vitkovsky, R.E. Schmieder, and H.P. Schobel, AT1 antagonism by eprosartan lowers heart rate variability and baroreflex gain. Auton. Neurosci., 2003;107: 45–51.

    Article  PubMed  CAS  Google Scholar 

  443. Schmidt, B.M., K. Horisberger, M. Feuring, A. Schultz, and M. Wehling, Aldosterone blunts human baroreflex sensitivity by a nongenomic mechanism. Exp. Clin. Endocrinol. Diabetes., 2005;113: 252–256.

    Article  PubMed  CAS  Google Scholar 

  444. Nakashima, A., J.A. Angus, C.I. Johnston, Chronotropic effects of angiotensin I, angiotensin II, bradykinin and vasopressin in guinea pig atria. Eur. J. Pharmcol., 1982;81: 479–485.

    Article  CAS  Google Scholar 

  445. Tesfamariam, B., G.T. Allen, and J.R. Powell, Bradykinin β 2 receptor-mediated chronotropic effect of bradykinin in isolated guinea pig atria. Eur. J. Pharmacol., 1995;281: 17–20.

    Article  PubMed  CAS  Google Scholar 

  446. Smagin, G.N., S.C. Heinrichs, and A.J. Dunn, The role of CRH in behavioral responses to stress. Peptides, 2001;22: 712–724.

    Article  Google Scholar 

  447. Grammatopoulos, D.K. and G.P. Chrousos, Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends. Endocrinol. Metab., 2002;13: 436–444.

    Article  PubMed  CAS  Google Scholar 

  448. Nijsen, M.J.M.A., G. Croiset, R. Stam, A. Bruijnzeel, M. Diamant, D. de Wied, and V.M. Wiegant, The Role of the CRH Type 1 receptor in autonomic responses to corticotropin- releasing hormone in the rat. Neuropsychopharmacology, 2000;22: 388–399.

    Article  PubMed  CAS  Google Scholar 

  449. Arlt, J., H. Jahn, M. Kellner, A. Ströhle, A. Yassouridis, and K. Wiedemann, Modulation of sympathetic activity by corticotropin-releasing hormone and atrial natriuretic peptide. Neuropeptides, 2003;37: 362–368.

    Article  PubMed  CAS  Google Scholar 

  450. Parkes, D.G., R.S. Weisinger, and C.N. May, Cardiovascular actions of CRH and urocortin: an update. Peptides, 22: 821–827.

    Google Scholar 

  451. Stiedl, O. and M. Meyer, Cardiac dynamics in corticotrophin-release factor receptor subtype-2 deficient mice. Neuropeptides, 2003;37: 3–16.

    Article  PubMed  CAS  Google Scholar 

  452. Schubert, C., M. Lambertz, R.A. Nelesen, W. Bardwell, J-B. Choi, J.E. Dimsdale, Effects of stress on heart rate complexity - a comparison between short-term and chronic stress. Biol. Psychol., 2009;80: 325–332.

    Article  PubMed  CAS  Google Scholar 

  453. Benton, L.A. and F.E. Yates, Ultradian adrenocortical and circulatory oscillations in conscious dogs. Am. J. Physiol. Regulatory. Integrative. Comp. Physiol., 1990;258: R578–590.

    CAS  Google Scholar 

  454. Fallo F, P. Maffei, A. Dalla Pozza, M. Carli, P. Della Mea, M. Lupia, F. Rabbia, and N. Sonino, Cardiovascular autonomic function in Cushing’s syndrome. J. Endocrinol. Invest., 2009;32: 41–45.

    PubMed  CAS  Google Scholar 

  455. Muniyappa, R., M. Montagnani, K.K. Koh, and M.J. Quon, Cardiovascular actions of insulin. Endocr. Rev., 2007;28: 463–491.

    Article  PubMed  CAS  Google Scholar 

  456. Muntzel, M.S., E.A. Anderson, A.K. Johnson, and A.L. Mark, Mechanisms of insulin action on sympathetic nerve activity. Clin. Exp. Hypertens., 1995;17: 39–50.

    Article  PubMed  CAS  Google Scholar 

  457. Scherrer, U. and C. Sartori, Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation, 1997;96: 4104–4113.

    Article  PubMed  CAS  Google Scholar 

  458. Van De Borne, P., M. Hausberg, R.P. Hoffman, A.L. Mark, and E.A. Anderson, Hyperinsulinemia produces cardiac vagal withdrawal and nonuniform sympathetic activation in normal subjects. Am. J. Physiol. Regulatory. Integrative. Comp. Physiol., 1999;276(1): R178–183.

    Google Scholar 

  459. Hausberg, M., R.P. Hoffman, V.K. Somers, C.A. Sinkey, A.L.Mark, and E.A. Anderson, Contrasting autonomic and hemodynamic effects of insulin in healthy elderly versus young subjects. Hypertension, 1997;29: 700–705.

    Article  PubMed  CAS  Google Scholar 

  460. Paolisso, G., M. Varricchio, and F. D’Onofrio, Glucose intolerance in the elderly: an open debate. Arch. Gerontol. Geriatr., 1990;11: 125–132.

    Article  PubMed  CAS  Google Scholar 

  461. Pathak, A., F. Smith, M. Galinier, P. Verwaerde, P. Rouet, P. Philip-Couderc, J.L. Monstastruc, and J.M. Senard, Insulin downregulated M2-muscarinic receptors in adult rat atrial cardiomyocytes: a link between obesity and cardiovascular complications. Int. J. Obes., 2005;29: 176–182.

    Article  CAS  Google Scholar 

  462. Bergholm, R., J. Westerbacka, S. Vehkavaara, A. Seppälä-Lindroos, T. Goto, and H. Yki-Järvinen, Insulin sensitivity regulates autonomic control of heart rate variation independent of body weight in normal subjects. J. Clin. Endocrinol. Metab., 2001;86: 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  463. Lindmark, S., U. Wiklund, P. Bjerle, and J.W. Eriksson, Does the autonomic nervous system play a role in the development of insulin resistance? A study on heart rate variability in first-degree relatives of Type 2 diabetes patients and control subjects. Diabet. Med., 2003;20: 399–405.

    Article  PubMed  CAS  Google Scholar 

  464. Rayner, D.V. and P. Trayhurn, Regulation of leptin production: sympathetic nervous system interactions. J. Mol. Med., 2001;79: 8–20.

    Article  PubMed  CAS  Google Scholar 

  465. Grassi, G., Leptin, sympathetic nervous sustem, and baroreflex function. Curr. Hypert. Rep., 2004;6: 236–240.

    Article  Google Scholar 

  466. Flanagan, D.E., J.C. Vaile, G.W. Petley, D.I. Phillips, I.F. Godsland, P. Owens, V.M. Moore, R.A. Cockington, and J.S. Robinson, Gender differences in the relationship between leptin, insulin resistance and the autonomic nervous system. Regulat. Peptides., 2007;140: 37–42.

    Article  CAS  Google Scholar 

  467. Takabatake, N., H. Nakamura, O. Minamihaba, M. Inage, S. Inoue, S. Kagaya, M. Yamaki, and H. Tomoile, A novel pathophysiologic phenomenon in cachexic patients with chronic obstructive pulmonary disease. The relationship between the circadian rhythm of circulating leptin and the very low frequency component of heart rate variability. Am. J. Respir. Crit. Care. Med., 2001;163: 1314–1319.

    PubMed  CAS  Google Scholar 

  468. Kadowaki, T. and T. Yamauchi, Adiponectin and adiponectin receptors. Endocr. Rev., 2005 May;26(3): 439–451.

    Article  CAS  Google Scholar 

  469. Katagiri, H., T. Yamada, and Y. Oka, Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ. Res., 2007; 101:27–39.

    Article  PubMed  CAS  Google Scholar 

  470. Hoyda, T.D., W.K. Samson, and A.V. Ferguson, Adiponectin depolarizes parvocellular paraventricular nucleus neurons controlling neuroendocrine and autonomic function. Endocrinology, 2009;150: 832–840.

    Article  PubMed  CAS  Google Scholar 

  471. Hoyda, T.D., P.M. Smith, and A.V. Ferguson, Adiponectin acts in the nucleus of the solitary tract to decrease blood pressure by modulating the excitability of neuropeptide Y neurons. Brain. Res., 2009;1256: 76–84.

    Article  PubMed  CAS  Google Scholar 

  472. Wakabayashi, S. and Y. Aso, Adiponectin concentrations in sera from patients with type 2 diabetes are negatively associated with sympathovagal balance as evaluated by power spectral analysis of heart rate variation. Diabetes. Care., 2004;27: 2392–2397.

    Article  PubMed  CAS  Google Scholar 

  473. Lam, J.C., A. Xu, S. Tam, P.I. Khong, T.J. Yao, D.C. Lam, A.Y. Lai, B. Lam, K.S. Lam, and S.M. Mary, Hypoadiponectinemia is related to sympathetic activation and severity of obstructive sleep apnea. Sleep, 2008;31: 1721–1727.

    PubMed  Google Scholar 

  474. Sprague, A.H. and R.A. Khalil, Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem. Pharmacol., 2009;78: 539–552.

    Article  PubMed  CAS  Google Scholar 

  475. Reyes-García, M.G. and F. García-Tamayo, A neurotransmitter system that regulates macrophage proinflammatory functions. J. Neuroimmunol., 2009;216: 20–31

    Article  PubMed  CAS  Google Scholar 

  476. Marsland, A.L., P.J. Gianaros, A.A. Prather, J.R. Jennings, S.A. Neumann, and S.B. Manuck, Stimulated production of proinflammatory cytokines covaries inversely with heart rate variability. Psychosom. Med., 2007;69: 709–716.

    Article  PubMed  CAS  Google Scholar 

  477. Heansel, A., P.J. Mills, R.A. Nelesen, M.G. Ziegler, and J.E. Dimsdale, The relationship between heart rate variability and inflammatory markers in cardiovascular disease. Psychoneuroendocrinol, 2008;33: 1305–1312.

    Article  CAS  Google Scholar 

  478. Dart, A.M., X-J. Du, and B.A. Kingwell, Gender, sex hormones and autonomic nervous control of the cardiovascular system. Cardiovasc. Res., 2002;53: 678–687.

    Article  PubMed  CAS  Google Scholar 

  479. McCabe, P.M., S.W. Porges, and C.S. Carter, Heart period variability during estrogen exposure and withdrawal in female rats. Physiol. Behav., 1981;26: 535–538.

    Article  PubMed  CAS  Google Scholar 

  480. Saeki, Y., F. Atogami, K. Takahashi, and T. Yoshizawa, Reflex control of autonomic function induced by posture change during the menstrual cycle. J. Auton. Nerv. Syst., 1997;66: 69–74.

    Article  PubMed  CAS  Google Scholar 

  481. Evans, J.M., M.G. Ziegler, A.R. Patwardhan, J.B. Ott, C.S. Kim, F.M. Leonelli, and C.F. Knapp, Gender differences in autonomic cardiovascular regulation: spectral, hormonal, and hemodynamic indexes. J. Appl. Physiol., 2001;91: 2611–2618.

    PubMed  CAS  Google Scholar 

  482. Leicht, A.S., D.A. Hirning, and G.D. Allen, Heart rate variability and endogenous sex hormones during the menstrual cycle in young women. Exp. Physiol., 2003;88: 441–446.

    Article  PubMed  CAS  Google Scholar 

  483. Christ, M., K. Seyffart, H-C. Tillmann, and M. Wehling, Hormone replacement in postmenoupasual women: impact of progestogens on autonomic tone and blood pressure regulation. Menopause, 2002;9: 127–136.

    Article  PubMed  Google Scholar 

  484. Fernandes, E.O., R.S. Moraes, E.L. Ferlin, M.C.O. Wender, and J.P. Ribeiro, Hormone replacement therapy does not affect the 24-hour heart rate variability in ostmenopausal women: results of a randomized, placebo-controlled trial with two regimens. Pacing Clin. Electrophysiol., 2005;28: S172–177.

    Article  PubMed  Google Scholar 

  485. Benarroch, E.E., Thermoregulation: recent concepts and remaining questions. Neurology, 2007;69: 1293–1297.

    Article  PubMed  Google Scholar 

  486. Kumar, V.M., R. Vetrivelan, and H.N. Mallick, Noradrenergic afferents and receptors in the medial preoptic area: neuroanatomical and neurochemical links between the regulation of sleep and body temperature. Neurochem. Int., 2007;50: 783–790.

    Article  PubMed  CAS  Google Scholar 

  487. Weinert, D. and J. Waterhouse, The circadian rhythm of core temperature: effects of physical activity and aging. Physiol. Behav., 2007;90: 246–256.

    Article  PubMed  CAS  Google Scholar 

  488. Potter, E.K., P. Parker, A.C. Caine, and E.R. Lumbers, Potentiation of cardiac vagal action by cold. Clin. Sci. (Lond)., 1985;68: 165–169.

    CAS  Google Scholar 

  489. Lee, K., D.N. Jackson, D.L. Cordero, T. Nishiyasu, J.K. Peters, and G.W. Mack, Change in spontaneous baroreflex control of pulse interval during heat stress in humans. J. Appl. Physiol., 2003;95: 1789–1798.

    PubMed  Google Scholar 

  490. Liu, W., Z. Lian, and Y. Liu, Heart rate variability at different thermal comfort levels. Eur. J. Appl. Physiol., 2008;103:361–366.

    Article  PubMed  Google Scholar 

  491. Tentolouris, N., C. Tsigos, D. Perea, E. Koukou, D. Kyriaki, E. Kitsou, S. Daskas, Z. Daifotis, K. Makrilakis, S.A. Raptis, and N. Katsilambros, Differential effects of high-fat and high-carbohydrate isoenergetic meals on cardiac autonomic nervous system activity in lean and obese women. Metabolism, 2003;52: 1426–1432.

    Article  PubMed  CAS  Google Scholar 

  492. Kitney, R.I. and O. Rompelman, Thermal entrainment patterns in heart rate variability. Proc. Physiol. Soc., 1977;270: 41–42.

    Google Scholar 

  493. Kawashima, T., The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat. Embryol. (Berl)., 2005. 209: 425–438.

    Article  Google Scholar 

  494. Wang, J., M. Irnaten, R.A. Neff, P. Venkatesan, C. Evans, A.D. Loewy, T.C. Mettenleiter, and D. Mendelowitz, Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Ann. NY. Acad. Sci., 2001;940: 237–246.

    Article  PubMed  CAS  Google Scholar 

  495. Cheng, Z., H. Zhang, S.Z. Guo, R. Wurster, and D. Gozal,. Differential control over vagal efferent postganglionic neurons in rat intrinsic cardiac ganglia by neurons in the NA and the DmnX: anatomical evidence. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004;286: R625–633.

    Article  PubMed  CAS  Google Scholar 

  496. Armour, J.A., D.A. Murphy, B.X. Yuan, S. Macdonald, and D.A. Hopkins, Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat. Rec., 1997;247: 289–298.

    Article  PubMed  CAS  Google Scholar 

  497. Hou, Y., B.J. Scherlag, J. Lin, Y. Zhang, Z. Lu, K. Truong, E. Patterson, R. Lazzara, W.M. Jackman, and S.S. Po, Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: Effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. J. Am. Coll. Cardiol., 2007;50: 61–68.

    Article  PubMed  Google Scholar 

  498. Levy, M.N., Neural control of cardiac function. Baillieres. Clin. Neurol., 1997;6: 227–244.

    PubMed  CAS  Google Scholar 

  499. Keyl, C., A. Schneider, M. Dambacher, and L. Bernardi, Time delay of vagally mediated cardiac baroreflex response varies with autonomic cardiovascular control. J. Appl. Physiol., 2001;91: 283–289.

    PubMed  CAS  Google Scholar 

  500. Taylor, W.E., D. Jordan, and J.H. Coote, Central control of the cardiovascular and respiratory systems and the interactions in vertebrates. Physiol. Rev., 1999;79: 855–916.

    PubMed  CAS  Google Scholar 

  501. Bałkowiec, A. and P. Szulczyk, Properties of postganglionic sympathetic neurons with axons in the right thoracic vagus. Neuroscience, 1992;48: 159–167.

    Article  PubMed  Google Scholar 

  502. Fu, L.W. and J.C. Longhurst, Regulation of cardiac afferent excitability in ischemia. Handb. Exp. Pharmacol., 2009;194: 185–225.

    Article  PubMed  CAS  Google Scholar 

  503. Arora, R.C., J.L. Ardell, and J.A. Armour, Cardiac denervation and cardac function. Curr. Interven. Cardiol. Rep., 2000;2: 188–195.

    Google Scholar 

  504. Kamath, M.V., G. Tougas, D. Fitzpatrick, E.L. Fallen, R. Watteel, G. Shine, and A.R. Upton, Assessment of the visceral afferent and autonomic pathways in response to esophageal stimulation in control subjects and in patients with diabetes. Clin. Invest. Med., 1998;21: 100–113.

    PubMed  CAS  Google Scholar 

  505. Fahim, M., Cardiovascular sensory receptors and their regulatory mechanisms. Indian. J. Physiol. Pharmacol., 2003;47: 124–146.

    PubMed  CAS  Google Scholar 

  506. Granzier, H.L. and S. Labeit, The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ. Res., 2004;94: 284–295.

    Article  PubMed  CAS  Google Scholar 

  507. Armour, J.A., Cardiac neuronal hierarchy in health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004;287: R262–271.

    Article  PubMed  CAS  Google Scholar 

  508. Pyetan, E., E. Toledo, O. Zoran, and S. Akselrod, Parametric description of cardiac vagal control. Auton. Neurosci., 2003;109: 42–52.

    Article  PubMed  Google Scholar 

  509. Paton, J.F., P. Boscan, A.E. Pickering, and E. Nalivaiko, The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain. Res. Brain. Res. Rev., 2005;49: 555–565.

    Article  PubMed  CAS  Google Scholar 

  510. Samuels, M.A., The brain-heart connection. Circulation, 2007;116: 77–84.

    Article  PubMed  Google Scholar 

  511. Baron, S.A., Z. Rogovski, and J. Hemli,. Autonomic consequences of cerebral hemisphere infarction. Stroke, 1994;25: 113–116.

    Article  Google Scholar 

  512. Svigelj, V., A. Grad, and T. Kiauta, Heart rate variability, norepinephrine and ECG changes in subarachnoid hemorrhage patients. Acta. Neurol. Scand., 1996;94: 120–126.

    Article  PubMed  CAS  Google Scholar 

  513. Tomson, T., M. Ericson, C. Ihrman, and L.E. Lindblad,. Heart rate variability in patients with epilepsy. Epilepsy. Res., 1998;30: 77–83.

    Article  PubMed  CAS  Google Scholar 

  514. Ako, J., K. Sudhir, H.M. Farouque, Y. Honda, and P.J. Fitzgerald, Transient left ventricular dysfunction under severe stress: brain-heart relationship revisited. Am. J. Med., 2006;119: 10–17.

    Article  PubMed  Google Scholar 

  515. Dabrowska, B., A. Dabrowski, P. Pruszczyk, A. Skrobowski, and B. Wocial, Heart rate variability before sudden blood pressure elevations or complex cardiac arrhythmias in phaeochromocytoma. J. Hum. Hypertens., 1996;10: 43–50.

    PubMed  CAS  Google Scholar 

  516. Nguyen, S.B., C. Cevik, M. Otahbachi, A. Kumar, L.A. Jenkins, and K. Nugent, Do comorbid psychiatric disorders contribute to the pathogenesis of tako-tsubo syndrome? A review of pathogenesis. Congest. Heart. Fail., 2009;15: 31–34.

    Article  PubMed  Google Scholar 

  517. Fuler, J.L., Genetic variability in some physiological constants of dogs. Am. J. Physiol., 1951;166: 20–24.

    Google Scholar 

  518. Kreutz, R., B. Struk, P. Stock, N. Hübner, D. Ganten, and K. Lindpaintner, Evidence for primary genetic determination of heart rate regulation: chromosomal mapping of a genetic locus in the rat. Circulation, 1997;96: 1078–1081.

    Article  PubMed  CAS  Google Scholar 

  519. Martin, L.J., A.G. Comuzzie, G.E. Sonnenberg, J. Myklebust, R. James, J. Marks, J. Blangero, and A.H. Kissebah, Major quantitative trait locus for resting heart rate maps to a region on chromosome 4. Hypertension, 2004;43: 1146–1151.

    Article  PubMed  CAS  Google Scholar 

  520. Wilk, J.B., R.H. Myers, Y. Zhang, C.E. Lewis, L. Atwood, P.N. Hopkins, and R.C. Ellison. Evidence for a gene influencing heart rate on chromosome 4 among hypertensives. Hum. Genet., 2002; 111: 207–213.

    Article  PubMed  CAS  Google Scholar 

  521. Rice, T., P. An, J. Gagnon, A.S. Leon, J.S. Skinner, J.H. Wilmore, C. Bouchard, and D.C. Rao, Heritability of HR and BP response to exercise training in the HERITAGE Family Study. Med. Sci. Sports. Exerc., 2002; 34: 972–979.

    Article  PubMed  Google Scholar 

  522. Rice, T., T. Rankinen, Y.C. Chagnon, M.A. Province, L. Pérusse, A.S. Leon, J.S. Skinner, J.H. Wilmore, C. Bouchard, and D.C. Rao, Genomewide linkage scan of resting blood pressure: HERITAGE Family Study. Health, Risk Factors, Exercise Training, and Genetics. Hypertension, 2002;39: 1037–1043.

    Article  PubMed  CAS  Google Scholar 

  523. Laramie, J.M., J.B. Wilk, S.C. Hunt, R.C. Ellison, A. Chakravarti, E. Boerwinkle, and R.H. Myers, Evidence for a gene influencing heart rate on chromosome 5p13–14 in a meta-analysis of genome-wide scans from the NHLBI Family Blood Pressure Program. BMC. Med. Genet., 2006;7: 17.

    Article  PubMed  CAS  Google Scholar 

  524. Sajadieh, A., V. Rasmussen, H.O. Hein, and J.F. Hansen, Familial predisposition to premature heart attack and reduced heart rate variability. Am. J. Cardiol., 2003;92: 234–236.

    Article  PubMed  Google Scholar 

  525. Singh, J.P., M.G. Larson, C.J. O’Donnell, H. Tsuji, D. Corey, and D. Levy, Genome scan linkage results for heart rate variability (the Framingham Heart Study). Am. J. Cardiol., 2002;90: 1290–1293.

    Article  PubMed  Google Scholar 

  526. Schoots, O., T. Voskoglou, and H.H. Van Tol, Genomic organization and promoter analysis of the human G-protein-coupled K + channel Kir3.1 (KCNJ3/HGIRK1). Genomics, 1997;39: 279–288.

    Article  PubMed  CAS  Google Scholar 

  527. Rempel, N., S. Heyers, H. Engels, E. Sleegers, and O.K. Steinlein, The structures of the human neuronal nicotinic acetylcholine receptor beta2- and alpha3-subunit genes (CHRNB2 and CHRNA3). Hum. Genet., 1998;103: 645–653.

    Article  PubMed  CAS  Google Scholar 

  528. Singh, J.P., M.G. Larson, C.J. O’Donnell, H. Tsuji, J.C. Evans, and D. Levy, Heritability of heart rate variability: the Framingham Heart Study. Circulation, 1999;99: 2251–2254.

    Article  PubMed  CAS  Google Scholar 

  529. Singh, J.P., M.G. Larson, C.J. O’Donnell, and D. Levy, Genetic factors contribute to the variance in frequency domain measures of heart rate variability. Auton. Neurosci., 2001;90: 122–126.

    Article  PubMed  CAS  Google Scholar 

  530. Sinnreich, R., Y. Friedlander, D. Sapoznikov, and J.D. Kark, Familial aggregation of heart rate variability based on short recordings–the kibbutzim family study. Hum. Genet., 1998;103: 34–40.

    Article  PubMed  CAS  Google Scholar 

  531. Piha, S.J., T. Rönnemaa, and M. Koskenvuo, Autonomic nervous system function in identical twins discordant for obesity. Int. J. Obes. Relat. Metab. Disord., 1994;18: 547–550.

    PubMed  CAS  Google Scholar 

  532. Boomsma, D.I., G.C. van Baal, and J.F. Orlebeke, Genetic influences on respiratory sinus arrhythmia across different task conditions. Acta. Genet. Med. Gemellol. (Roma)., 1990;39: 181–191.

    CAS  Google Scholar 

  533. Snieder, H., D.I. Boomsma, L.J. Van Doornen, and E.J. De Geus, Heritability of respiratory sinus arrhythmia: dependency on task and respiration rate. Psychophysiology, 1997;34: 317–328.

    Article  PubMed  CAS  Google Scholar 

  534. Kupper, N.H., G. Willemsen, M. van den Berg, D. de Boer, D. Posthuma, D.I/Boomsma, and E.J. de Geus, Heritability of ambulatory heart rate variability. Circulation, 2004;110: 2792–2796.

    Article  PubMed  Google Scholar 

  535. Wang, X., X. Ding, S. Su, Z. Li, H. Riese, J.F. Thayer, F. Treiber, and H. Snieder, Genetic influences on heart rate variability at rest and during stress. Psychophysiology, 2009;46: 458–465.

    Article  PubMed  Google Scholar 

  536. Vaccarino, V., R. Lampert, J.D. Bremner, F. Lee, S. Su, C. Maisano, N.V. Murrah, L. Jones, E. Jawed, N. Afzal, A. Ashraf, and J. Goldberg, Depressive symptoms and heart rate variability: evidence for a shared genetic substrate in a study of twins. Psychosom. Med., 2008;70: 628–636.

    Article  PubMed  Google Scholar 

  537. Fava, C., P. Burri, P. Almgren, G. Arcaro, L. Groop, U. Lennart Hulthén, and O. Melander, Dipping and variability of blood pressure and heart rate at night are heritable traits. Am. J. Hypertens., 2005;18: 1402–1407.

    Article  PubMed  Google Scholar 

  538. Dubreuil, E., B. Ditto, G. Dionne, R.O. Pihl, R.E. Tremblay, M. Boivin, D. Pérusse, Familiality of heart rate and cardiac-related autonomic activity in five-month-old twins: the Québec newborn twins study. Psychophysiology, 2003; 40: 849–862.

    Article  PubMed  Google Scholar 

  539. Neumann, S.A., E.C. Lawrence, J.R. Jennings, R.E. Ferrell, and S.B. Manuck, Heart rate variability is associated with polymorphic variation in the choline transporter gene. Psychosom. Med., 2005;67: 168–171.

    Article  PubMed  CAS  Google Scholar 

  540. Busjahn, A, A. Voss, H. Knoblauch, M. Knoblauch, E. Jeschke, N. Wessel, J. Bohlender, J. McCarron, H.D. Faulhaber, H. Schuster, R. Dietz, and F.C. Luft, Angiotensin-converting enzyme and angiotensinogen gene polymorphisms and heart rate variability in twins. Am. J. Cardiol., 1998;81: 755–760.

    Article  PubMed  CAS  Google Scholar 

  541. Matsunaga, T., N. Gu, H. Yamazaki, M. Tsuda, T. Adachi, K. Yasuda, T. Moritani, K. Tsuda, M. Nonaka, and T. Nishiyama, Association of UCP2 and UCP3 polymorphisms with heart rate variability in Japanese men. J. Hypertens., 2009;27: 305–313.

    Article  PubMed  CAS  Google Scholar 

  542. Walther, T., N. Wessel, N. Kang, A. Sander, C. Tschöpe, H. Malberg, M. Bader, and A. Voss, Altered heart rate and blood pressure variability in mice lacking the Mas protooncogene. Braz. J. Med. Biol. Res., 2000 Jan;33(1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  543. Hirsh, M., J. Karin, and S. Akselrod, Heart rate variability in the fetus, in Heart Rate Variability, M. Malik and A.J. Camm, Editors. Armonk, NY: Futura Publishing, 1995, pp. 517–531.

    Google Scholar 

  544. Lenard, Z., P. Studinger, B. Mersich, L. Kocsis, and M. Kollai, Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation, 2004;110: 2307–2312.

    Article  PubMed  Google Scholar 

  545. Thompson, C.R., J.S. Brown, H. Gee, and E.W. Taylor, Heart rate variability in healthy term newborns: the contribution of respiratory sinus arrhythmia. Early. Hum. Dev., 1993;31: 217–228.

    Article  PubMed  CAS  Google Scholar 

  546. Struijk, P.C., N.T. Ursem, J. Mathews, E.B. Clark, B.B. Keller, and J.W. Wladimiroff, Power spectrum analysis of heart rate and blood flow velocity variability measured in the umbilical and uterine arteries in early pregnancy: a comparative study. Ultrasound. Obstet. Gynecol., 2001;17: 316–321.

    Article  PubMed  CAS  Google Scholar 

  547. Van Leeuwen, P., D. Geue, S. Lange, W. Hatzmann, and D. Grönemeyer, Changes in the frequency power spectrum of fetal heart rate in the course of pregnancy. Prenat. Diagn., 2003;23: 909–916.

    Article  PubMed  Google Scholar 

  548. Lange, S., P. Van Leeuwen, D. Geue, W. Hatzmann, and D. Grönemeyer, Influence of gestational age, heart rate, gender and time of day on fetal heart rate variability. Med. Biol. Eng. Comput., 2005;43: 481–486.

    Article  PubMed  CAS  Google Scholar 

  549. Metsälä, T.H., J.P. Pirhonen, J.O. Jalonen, R.U. Erkkola, and I.A. Välimäki, Association of abnormal flow velocity waveforms in the uterine artery with frequency-specific fetal heart rate variability. Early. Hum. Dev., 1993;34: 217–225.

    Article  PubMed  Google Scholar 

  550. Nagy, E., H. Orvos, G. Bárdos, and P. Molnár, Gender-related heart rate differences in human neonates. Pediatr. Res., 2000;47: 778–780.

    Article  PubMed  CAS  Google Scholar 

  551. Witte, H. and M. Rother, High-frequency and low-frequency heart-rate fluctuation analysis in newborns: a review of possibilities and limitations 1992. Basic. Res. Cardiol., 1992;87: 193–204.

    Article  PubMed  CAS  Google Scholar 

  552. Galland, B.C., R.M. Hayman, B.J. Taylor, D.P.G Bolotn, R.M. Sayers, and S.M. Williams. Factors affecting heart rate variability response to tilting in infants aged 1 and 3 months. Pediatr. Res., 2000;48: 360–368.

    Article  PubMed  CAS  Google Scholar 

  553. Finley, J.P., S.T. Nugent, and W. Hellenbrand, Heart-rate variability in children. Spectral analysis of developmental changes between 5 and 24 years. Can. J. Physiol. Pharmacol., 1987;65: 2048–2052.

    Article  PubMed  CAS  Google Scholar 

  554. Finley, J.P. and S.T. Nugent, Heart rate variability in infants, children and young adults. J. Auton. Nerv. Syst., 1995;51: 103–108.

    Article  PubMed  CAS  Google Scholar 

  555. Korkushko, O.V. V.B. Shatilo, Yu.I. Plachinda, and T.V. Shatilo, Autonomic control of cardiac chronotropic function in man as a function of age: assessment by power spectral analysis of heart rate variability. J. Auton. Nerv. Syst., 1991;32: 191–198.

    Article  PubMed  CAS  Google Scholar 

  556. Ferrari, A.U., A. Radaelli, and M. Centola, Invited review: aging and the cardiovascular system. J. Appl. Physiol., 2003;95: 2591–2597.

    PubMed  Google Scholar 

  557. Lakatta, E.G., Deficient neurondocrine regulation of the cardiovascular system with advancing age in healthy humans. Circulation, 1993;87: 631–636.

    Article  PubMed  CAS  Google Scholar 

  558. Brodde, O.E. and K. Leineweber, Autonomic receptor systems in the failing and aging human heart: similarities and differences. Eur. J. Pharmacol., 2004;500: 167–176.

    Article  PubMed  CAS  Google Scholar 

  559. Kaye, D. and M. Esler, Autonomic control of the aging heart. Neuromol. Med., 2008;10: 179–186.

    Article  CAS  Google Scholar 

  560. Kelliher, G.J. and T.S. Conahan, Changes in vagal activity and response to muscarinic receptor agonists with age. J. Gerontol., 1980;35: 842–849.

    Article  PubMed  CAS  Google Scholar 

  561. Bouman, L.N. and H.J. Jongsma, Structure and function of the sino-atrial node: a review. Eur. Heart. J., 1986;7: 94–104.

    PubMed  CAS  Google Scholar 

  562. Rodefeld, M.D., S.L. Beau, R.B. Schuessler, J.P. Boineau, J.E. Saffitz, β-Adrenergic and muscarinic cholinergic receptor densities in the human sinoatrial node: identification of a high β 2-adrenergic receptor density. J. Cardiovasc. Electrophysiol., 1996;7: 1039–1049.

    Article  PubMed  CAS  Google Scholar 

  563. White, M., R. Roden, W. Minobe, F. Khan,P. Larrabee, M. Wollmering, D. Port, F. Anderson, D. Campbell, A.M. Feldman, and M.R. Bristow,. Age-related changes in β-adrenergic neuroeffector systems in the human heart. Circulation, 1994;90: 1225–1238.

    Article  PubMed  CAS  Google Scholar 

  564. Hardouin, S., F. Bourgeois, M. Toraasson, A. Oubenaissa, J.M. Elalouf, D. Fellmann, T. Dakhli, B. Swynghedauw, and J.M. Moalic, Beta-adrenergic and muscarinic receptor mRNA accumulation in the sinoatrial node area of adult and senescent rat hearts. Mech. Age. Dev., 1998;100: 277–297.

    Article  CAS  Google Scholar 

  565. Kaushal, P. and J.A. Taylor, Inter-relations amng declines in arterial distensibility, baroreflex function and respiratory sinus arrhythmia. J. Am. Coll. Cardiol., 2002;39: 1524–1530.

    Article  PubMed  Google Scholar 

  566. Gill, J.S., G.J. Hunter, G. Gane, and A.J. Camm, Heterogeneity of the human myocardial sympathetic innervation: in vivo demonstration by iodine 123-labeled meta-iodobenzylguanidine scintigraphy. Am. Heart. J., 1993;126: 390–398.

    Article  PubMed  CAS  Google Scholar 

  567. Jennett, S. and J.H. McKillop, Observations on the incidence and mechanism of sinus arrhythmia in man at rest. J. Physiol., 1971;213: 58–59.

    Google Scholar 

  568. Jarisch, W.R., J.J. Ferguson, R.P. Shannon, J.Y. Wei, and A.L. Goldberger, Age-related disappearance of Mayer-like heart rate waves. Experientia, 1978;43: 1207–1209.

    Article  Google Scholar 

  569. Waddington, J.L., M.J. MacCulloch, and J.E. Sambrooks, Resting heartrate variability in man declines with age. Experientia, 1979;35: 1197–1198.

    Article  PubMed  CAS  Google Scholar 

  570. Hrushesky, W.J.M., O. Schmitt, and V. Gilbertsen, The respiratory sinus arrhythmia: a measure of cardiac age. Science, 1984; 1001–1004.

    Google Scholar 

  571. Colosimo, A., A. Giuliani, A.M. Mancini, G. Piccirillo, and V. Marigliano, Estimating a cardiac age by means of heart rate variability. Am. J. Physiol. Heart. Circ. Physiol., 1997;273: H1841–1847.

    CAS  Google Scholar 

  572. Nasir, K., C. Vasamreddy, R.S. Blumenthal, and J.A. Rumberger, Comprehensive coronary risk determination in primary prevention: an imaging and clinical based definition combining computed tomographic coronary artery calcium score and national cholesterol education program risk score. Int. J. Cardiol., 2006;110: 129–136.

    Article  PubMed  Google Scholar 

  573. Tsuji, H., F.J. Venditti, E.S. Emnders, J.C. Evans, M.G. Larson, C.L. Feldman, and D. Levy, Determinants of heart rate variability. J. Am. Coll. Cardiol., 1996;28: 1539–1546.

    Article  PubMed  CAS  Google Scholar 

  574. Fukusaki, C., K. Kawakubo, and Y. Yamamoto, Assessment of the primary effect of aging on heart rate variability in humans. Clin. Auton. Res., 2000;10: 123–130.

    Article  PubMed  CAS  Google Scholar 

  575. Britton, A., M. Shipley, M. Malik, K. Hnatkova, H. Hemingway, and M. Marmot, Changes in heart rate and heart rate variability over time in middle-aged men and women in the general population (from the Whitehall II Cohort Study). Am. J. Cardiol., 2007;100(3): 524–527.

    Article  PubMed  Google Scholar 

  576. Koskinen, T., M. Kahonen, A. Jula, T. Laitinen, L. Keltikandas-Jarvinen, J. Viikaris, I. Valimaki, and O.T. Raitakari, Short-term heart rate variability in healthy young adults. The Cardiovascular Risk in Young Finns study. Auton. Neurosci., 2009;145:81–88.

    Article  PubMed  Google Scholar 

  577. Mølgaard, H., K. Hermansen, and P. Bjerregaard, Spectral components of short-term RR interval variability in healthy subjects and effects of risk factors. Eur. Heart. J., 1994;15: 1174–1183.

    PubMed  Google Scholar 

  578. Jokinen, V., L.B. Sourander, H. Karanko, T.H. Mäkikallio, and K.V. Huikuri, Changes in cardiovascular autonomic regulation among elderly subjects: follow-up of sixteen years. Ann. Med., 2005;37: 206–212.

    Article  PubMed  Google Scholar 

  579. Stein, P.K., J.I. Brzilay, P.H.M. Chaves, P.P. Domitrovich, and J.S. Gottdiener, Heart rate variability and its changes over 5 years in older adults. Age. Ageing, 2009;38: 212–218.

    Article  PubMed  Google Scholar 

  580. Ziegler, D., R. Piolot, K. Strasburger, H. Lambec, and K. Dannehl, Normal ranges and reproducibility of statistical, geometric, frequency domain, and non-linear measures of 24-hour heart rate variability. Horm. Metab. Res., 1999 Dec;31(12):672–679.

    Article  PubMed  CAS  Google Scholar 

  581. Kingwell, B.A., J.M. Thompson, D.M. Kaye, G.A. McPherson, G.L. Jennings, M.D. Esler, Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic neve activity during human sympathetic activation and failure. Circulation, 1994;90: 234–240.

    Article  PubMed  CAS  Google Scholar 

  582. Vuksanovic, V. and V. Gal, Nonlinear and chaos characteristics of heart period time series: healthy aging and postural changes. Auton. Neurosci:. Basic. Clin., 2005;121: 94–100.

    Article  Google Scholar 

  583. Beckers, F., B. Verheyden, and A.E. Aubert, Aging and nonlinear heart rate control in a healthy population. Am. J. Physiol. Heart. Circ. Physiol., 2006;290: H2560–2570.

    Article  PubMed  CAS  Google Scholar 

  584. Iyengar, N., C.K. Peng, R. Morin, A.L. Goldberger, and L.A. Lipsitz, Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol., 1996;271: R1078–1084.

    CAS  Google Scholar 

  585. Platsia, M.M. and V. Gal, Dependence of heart rate variability on heart period in disease and aging. Physiol. Meas., 2006;27: 989–998.

    Article  Google Scholar 

  586. Schmitt, D.T. and P.Ch.Ivanov, Fractal scale-invariant and nonlinear properties of cardiac dynamics remain stable with advanced age: a new mechanistic picture of cardiac control in healthy elderly. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007;293: R1923–1937.

    Article  PubMed  CAS  Google Scholar 

  587. Sakata, S., J. Hayano, S. Mukai, A. Okada, and T. Fujinami, Aging and spectral characteristics of the nonharmonic component of 24-hour heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol., 276: R1724–1731.

    Google Scholar 

  588. Giulliani, A., G. Piccirillo, V. Marigliano, and A. Coosimo, A nonlinear explanation of aging-induced changes in heart beat dynamics. Am. J. Physiol. Heart. Circ. Physiol., 1998;275: H1455–1461.

    Google Scholar 

  589. Monahan, K.D., Effect of aging on baroreflex function in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007;293: R3–12.

    Article  PubMed  CAS  Google Scholar 

  590. Gribbin, B., T.G. Pickering, P. Sleight, and R. Peto, Effect of age and high blood pressure on baroreflex sensitivity in man. Circ. Res., 1971;29: 424–431.

    Article  PubMed  CAS  Google Scholar 

  591. Jones, P.P., D.D. Christou, J. Jordan, and D.R. Seals, Baroreflex buffering is reduced with age in healthy men. Circulation, 2003;107: 1770–1774.

    Article  PubMed  Google Scholar 

  592. Monahan, K.D., F.A Dinenno, H. Tanaka, C.M. Clevenger, C.A. DeSouza, and D.R. Seals. Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensitivity in healthy men. J. Physiol., 2000;529: 263–271.

    Article  PubMed  CAS  Google Scholar 

  593. Laitinen, T., J. Hartikainen, E. Vanninen, L. Niskanen, G. Geelen, and E. Länsimies, Age and gender dependency of baroreflex sensitivity in healthy subjects. J. Appl. Physiol., 1998;84: 576–583.

    PubMed  CAS  Google Scholar 

  594. Huang, C.C., P. Sandroni, D.M. Sletten, S.D. Weigand, and P.A. Low, Effect of age on adrenergic and vagal baroreflex sensitivity in normal subjects. Muscle. Nerve., 2007;36: 637–642.

    Article  PubMed  Google Scholar 

  595. Piccirillo, G., V. Di Giuseppe, M. Nocco, M. Lionetti, A. Moisè, C. Naso, D. Tallarico, V. Marigliano, and M. Cacciafesta, Influence of aging and other cardiovascular risk factors on baroreflex sensitivity. J. Am. Geriatr. Soc., 2001;49: 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  596. Milic, M., P. Sun, F. Liu, C. Fainman, J. Dimsdale, P.J. Mills, and M.G. Ziegler, A comparison of pharmacologic and spontaneous baroreflex methods in aging and hypertension. J. Hypertens., 2009;27: 1243–1251.

    Article  PubMed  CAS  Google Scholar 

  597. Kornet, L., A.P. Hoeks, B.J. Janssen, A.J. Houben, P.W. De Leeuw, and R.S. Reneman, Neural activity of the cardiac baroreflex decreases with age in normotensive and hypertensive subjects. J. Hypertens., 2005;23: 815–823.

    Article  PubMed  CAS  Google Scholar 

  598. James, M.A., T.G. Robinson, R.B. Panerai, and J.F. Potter, Arterial baroreceptor-cardiac reflex sensitivity in the elderly. Hypertension, 1996;28: 953–960.

    Article  PubMed  CAS  Google Scholar 

  599. Gerritsen, J., B.J. TenVoorde, J.M. Dekker, R. Kingma, P.J. Kostense, L.M. Bouter, and R.M. Heethaar, Measures of cardiovascular autonomic nervous function: agreement, reproducibility, and reference values in middle age and elderly subjects. Diabetologia, 2003;46: 330–338.

    PubMed  CAS  Google Scholar 

  600. Fauvel, J-P, C. Cerutti, I. Mpio, and M. Duchr, Aging process on spectrally determined spontanus baroreflex sensitivity. A 5-year prospective study. Hypertension, 2007;50: 543–546.

    Article  PubMed  CAS  Google Scholar 

  601. Schwab, J.O., G. Eichner, N. Shlevkov, J. Schrickel, A. Yang, O. Balta, T. Lewalter, B. Lüderitz, Impact of age and basic heart rate on heart rate turbulence in healthy persons. Pacing. Clin. Electrophysiol., 2005;28 (Suppl 1): S198–201.

    Article  PubMed  Google Scholar 

  602. Kowalewski, M., M. Alifier, D. Bochen, and M. Urban, Heart rate turbulence in children–age and heart rate relationships. Pediatr. Res., 2007;62: 710–714.

    Article  PubMed  Google Scholar 

  603. Burke, J.H., J.J. Goldberger, F.A. Ehlert, J.T. Kruse, M.A. Parker, and A.H. Kadish, Gender differences in heart rate before and after autonomic blockade: evidence against an intrinsic gender effect. Am. J. Med., 1996;100 (5): 537–543.

    Article  PubMed  CAS  Google Scholar 

  604. Busha, B.F., E. Hage, and C. Hofmann, Gender and breathing route modulate cardio-respiratory variability in humans. Respir. Physiol. Neurobiol., 2009;166: 87–94.

    Article  PubMed  Google Scholar 

  605. Aitken, M.L., J.L. Franklin, D.J. Pierson, and R.B. Schoene, Influence of body size and gender on control of ventilation. J. Appl. Physiol., 1986;60: 1894–1899.

    PubMed  CAS  Google Scholar 

  606. White, D.P., N.J. Douglas, C.K. Pickett, J.V. Weil, and C.W. Zwillich, Sexual influence on the control of breathing. J. Appl. Physiol., 1983;54: 874–879.

    PubMed  CAS  Google Scholar 

  607. Sato, N., S. Miyake, J. Akatsu, and M. Kumashiro, Power spectral analysis of heart rate variability in healthy young women during the normal menstrual cycle. Psychosom. Med., 1995;57: 331–335.

    PubMed  CAS  Google Scholar 

  608. Vallejo, M., M.F. Márquez, V.H. Borja-Aburto, M. Cárdenas, and A.G. Hermosillo, Age, body mass index, and menstrual cycle influence young women’s heart rate variability –a multivariable analysis. Clin. Auton. Res., 2005;15: 292–298.

    Article  PubMed  Google Scholar 

  609. Felber Dietrich, D., C. Schindler, J. Schwartz, J.C. Barthélémy, J.M. Tschopp, F. Roche, A. von Eckardstein, O. Brändli, P. Leuenberger, D.R. Gold, J.M. Gaspoz, U. Ackermann-Liebrich, and SAPALDIA Team, Heart rate variability in an ageing population and its association with lifestyle and cardiovascular risk factors: results of the SAPALDIA study. Europace, 2006;8: 521–529.

    Article  PubMed  Google Scholar 

  610. Grossman, P., F.H. Wilhelm, I. Kawachi, and D. Sparrow, Gender differences in psychophysiological responses to speech stress among older social phobics: congruence and incongruence between self-evaluative and cardiovascular reactions. Psychosom. Med., 2001;63: 765–777.

    PubMed  CAS  Google Scholar 

  611. Dishman, R.K., Y. Nakamura, M.E. Garcia, R.W. Thompson, A.L. Dunn, and S.N. Blair, Heart rate variability, trait anxiety, and perceived stress among physically fit men and women. Int. J. Psychophysiol., 2000;37: 121–133.

    Article  PubMed  CAS  Google Scholar 

  612. Hinojosa-Laborde, C., I. Chapa, D. Lange, and J.R. Haywood, Gender differences in sympathetic nervous system regulation. Clin. Exp. Pharmacol. Physiol., 1999;26: 122–126.

    Article  PubMed  CAS  Google Scholar 

  613. Insulander, P. and H. Vallin, Gender differences in electrophysiologic effects of mental stress and autonomic tone inhibition: a study in health individuals. J. Cardiovasc. Electrophysiol., 2005;16: 59–63.

    Article  PubMed  Google Scholar 

  614. Fagard, R.H., K. Pardaens, J.A. Staessen, and L. Thijs, Power spectral analysis of heart rate variability by autoregressive modelling and fast Fourier transform: a comparative study. Acta. Cardiol., 1998;53: 211–218.

    PubMed  CAS  Google Scholar 

  615. Colhoun, H.M., D.P. Francis, M.B. Rubens, S.R. Underwood, and J.H. Fuller, The association of heart-rate variability with cardiovascular risk factors and coronary artery calcification: a study in type 1 diabetic patients and the general population. Diabetes. Care., 2001;24: 1108–1114.

    Article  PubMed  CAS  Google Scholar 

  616. Sloan, R.P., M.H. Huang, H. McCreath, S. Sidney, K. Liu, O. Dale Williams, T. Seeman, Cardiac autonomic control and the effects of age, race, and sex: the CARDIA study. Auton. Neurosci., 2008;139: 78–85.

    Article  PubMed  Google Scholar 

  617. Jensen-Urstad, K., N. Storck, F. Bouvier, M. Ericson, L.E. Lindblad, and M. Jensen-Urstad Heart rate variability in healthy subjects is related to age and gender. Acta. Physiol. Scand., 1997;160: 235–241.

    Article  PubMed  CAS  Google Scholar 

  618. Yamasaki, Y., M. Kodama, M. Matsuhisa, M. Kishimoto, H. Ozaki, A. Tani, N. Ueda, Y. Ishida, and T. Kamada, Diurnal heart rate variability in healthy subjects: effects of aging and sex difference. Am. J. Physiol., 1996;271: H303–310.

    PubMed  CAS  Google Scholar 

  619. Antelmi, I., R.S. de Paula, A.R. Shinzato, C.A. Peres, A.J. Mansur, and C.J. Grupi, Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am. J. Cardiol., 2004;93: 381–385.

    Article  PubMed  Google Scholar 

  620. Barantke, M., T. Krauss, J. Ortak, W. Lieb, M. Reppel, C. Burgdorf, P.P. Pramstaller, H. Schunkert, and H. Bonnemeier, Effects of gender and aging on diffeential autonomic responses to orthostatic maneuvers. J. Cardiovasc. Electrophysiol., 2008;19: 1296–1303.

    Article  PubMed  Google Scholar 

  621. Abdel-Rahman, A.R., R.H. Merrill, and W.R. Wooles, Gender-related differences in the baroreceptor reflex control of heart rate in normotensive humans. J. Appl. Physiol., 1994;77: 606–613.

    PubMed  CAS  Google Scholar 

  622. Convertino, V.A., Gender differences in autonomic functions associated with blood pressure regulation. Am. J. Physiol., 1998;275: R1909–1920.

    PubMed  CAS  Google Scholar 

  623. Ylitalo, A., K.E. Airaksinen, A. Hautanen, M. Kupari, M. Carson, J. Virolainen, M. Savolainen, H. Kauma, Y.A. Kesäniemi, P.C. White, and H.V. Huikuri, Baroreflex sensitivity and variants of the renin angiotensin system genes. J. Am. Coll. Cardiol., 2000;35: 194–200.

    Article  PubMed  CAS  Google Scholar 

  624. Beske, S.D., G.E. Alvarez, T.P. Ballard, and K.P. Davy, Gender difference in cardiovagal baroreflex gain in humans. J. Appl. Physiol., 2001;91: 2088–2092.

    PubMed  CAS  Google Scholar 

  625. Luzier, A.B., J.J. Nawarskas, J. Añonuevo, M.E. Wilson, and D.J. Kazierad, The effects of gender on adrenergic receptor responsiveness. J. Clin. Pharmacol., 1998;38: 618–624.

    PubMed  CAS  Google Scholar 

  626. Tank, J., A. Diedrich, E. Szczech, F.C. Luft, and J. Jordan, Baroreflex regulation of heart rate and sympathetic vasomotor tone in women and men. Hypertension, 2005;45: 1159–1164.

    Article  PubMed  CAS  Google Scholar 

  627. Sevre, K., J.D. Lefrandt, G. Nordby, I. Os, M. Mulder, R.O. Gans, M. Rostrup, and A.J. Smit, Autonomic function in hypertensive and normotensive subjects: the importance of gender. Hypertension, 2001;37: 1351–1356.

    Article  PubMed  CAS  Google Scholar 

  628. Wyndham, CHm., B. Metz, and A. Munro, Reactions to heat of Arabs and Caucasians. J. Appl. Physiol., 1964;19: 1051–1054.

    PubMed  CAS  Google Scholar 

  629. Cooper, R.S. and J.K. Ghali, Coronary heart disease: black-white differences. Cardiovasc. Clin., 1991;21: 205–225.

    PubMed  CAS  Google Scholar 

  630. Watson, K.E. and E.J. Topol, Pathobiology of atherosclerosis: are there racial and ethnic differences? Rev. Cardiovasc. Med., 2004;5 (Suppl 3): S14–21.

    PubMed  Google Scholar 

  631. Saunders, E. and E. Ofili, Epidemiology of atherothrombotic disease and the effectiveness and risks of antiplatelet therapy: race and ethnicity considerations. Cardiol. Rev., 2008;16:82–88.

    Article  PubMed  Google Scholar 

  632. Macfarlane, P.W., S.C. McLaughlin, B. Devine, and T.F. Yang, Effects of age, sex, and race on ECG interval measurements. J. Electrocardiol., 1994;27 (Suppl): 14–19.

    Article  PubMed  Google Scholar 

  633. Ogueh, O. and P.J. Steer, Ethnicity and fetal heart rate variation. Obstet. Gynecol., 1998;91: 324–328.

    Article  PubMed  CAS  Google Scholar 

  634. Schachter, J., J.L. Kerr, F.C. 3rd Wimberly, and JM 3rd Lachin, Phasic heart rate responses: different patterns in black and in white newborns. Psychosom. Med., 1975;37: 326–332.

    PubMed  CAS  Google Scholar 

  635. Du Plooy, W.J. and C.P. Venter, The effect of atropine on parasympathetic control of respiratory sinus arrhythmia in two ethnic groups. J. Clin. Pharmacol., 1995;35: 244–249.

    PubMed  CAS  Google Scholar 

  636. Guzzetti, S., J. Mayet, M. Shahi, S. Mezzetti, R.A. Foale, P.S. Sever, N.R. Poulter, A. Porta, A. Malliani, and S.A. Thom, Absence of sympathetic overactivity in Afro-Caribbean hypertensive subjects studied by heart rate variability. J. Hum. Hypertens., 2000;14: 337–342.

    Article  PubMed  CAS  Google Scholar 

  637. Thayer, J.F., M.M. Merritt, JJ 3rd Sollers, A.B. Zonderman, M.K. Evans, S. Yie, and D.R. Abernethy, Effect of angiotensin-converting enzyme insertion/deletion polymorphism DD genotype on high-frequency heart rate variability in African Americans. Am. J. Cardiol., 2003;92: 1487–1490.

    Article  PubMed  CAS  Google Scholar 

  638. Wang, X., J.F. Thayer, F. Treiber, and H. Snieder, Ethnic differences and heritability of heart rate variability in African- and European American youth. Am. J. Cardiol., 2005;96: 1166–1172.

    Article  PubMed  Google Scholar 

  639. Lampert, R., J. Ickovics, R. Horwitz, and F. Lee, Depressed autonomic nervous system function in African Americans and individuals of lower social class: a potential mechanism of race- and class-related disparities in health outcomes. Am. Heart. J., 2005;150: 153–160.

    Article  PubMed  Google Scholar 

  640. Utsey, S.O. and J.N. Hook, Heart rate variability as a physiological moderator of the relationship between race-related stress and psychological distress in African Americans. Cultur. Divers. Ethnic. Minor. Psychol., 2007;13: 250–253.

    Article  PubMed  Google Scholar 

  641. Zion, A.S., V. Bond, R.G. Adams, D. Williams, R.E. Fullilove, R.P. Sloan, M.N. Bartels, J.A. Downey, and R.E. De Meersman, Low arterial compliance in young African-American males. Am. J. Physiol. Heart. Circ. Physiol., 2003;285: H457–462.

    PubMed  CAS  Google Scholar 

  642. Franke, W.D., K. Lee, D.B. Buchanan, and J.P. Hernandez, Blacks and whites differ in responses, but not tolerance, to orthostatic stress. Clin. Auton. Res., 2004;14: 19–25.

    Article  PubMed  Google Scholar 

  643. Keyl, C., A. Schneider, R.E. Greene, C. Passino, G. Spadacini, G. Bandinelli, M. Bonfichi, L. Arcaini, L. Malcovati, and L. Bernardi, Effects of breathing control on cardiocirculatory modulation in Caucasian lowlanders and Himalayan Sherpas. Eur. J. Appl. Physiol., 2000;83: 481–486.

    Article  PubMed  CAS  Google Scholar 

  644. Pelat, M., R. Verwaerde, C. Merial, J. Galitzky, M. Berlan, J.L. Montastruc, J.M. Senard, Impaired atrial M(2)-cholinoceptor function in obesity-related hypertension. Hypertension, 1999;34: 1066–1072.

    Article  PubMed  CAS  Google Scholar 

  645. Paolisso, G., D. Manzella, N. Montano, A. Gambardella, and M. Varricchio, Plasma leptin concentrations and cardiac autonomic nervous system in healthy subjects with different body weights. J. Clin. Endocrinol. Metab., 2000;85: 1810–1814.

    Article  PubMed  CAS  Google Scholar 

  646. Martini, G., P. Riva, F. Rabbia, V. Molini, G.B. Ferrero, F. Cerutti, R. Carra, and F. Veglio. Heart rate variability in childhood obesity. Clin. Auton. Res., 2001;11: 87–91.

    Article  PubMed  CAS  Google Scholar 

  647. Li, Z., H. Snieder, S. Su, X. Ding, J.F. Thayer, F.A. Treiber, and X. Wang, A longitudinal study in youth of heart rate variability at rest and in response to stress. Int. J. Psychophysiol., 2009;73: 212–217.

    Article  PubMed  Google Scholar 

  648. Kuch, B., H.W. Hense, R. Sinnreich, J.D. Kark, A. von Eckardstein, D. Sapoznikov, and H.D. Bolte, Determinants of short-period heart rate variability in the general population. Cardiology, 2001;95: 131–138.

    Article  PubMed  CAS  Google Scholar 

  649. Liao, D., J. Cai, W.D. Rosamond, R.W. Barnes, R.G. Hutchinson, E.A. Whitsel, P. Rautaharju, and G. Heiss, Cardiac autonomic function and incident coronary heart disease: a population-based case-cohort study. The ARIC Study. Atherosclerosis Risk in Communities Study. Am. J. Epidemiol., 1997;145: 696–706.

    Article  PubMed  CAS  Google Scholar 

  650. De Bruyne, M.C., J.A. Kors, A.W. Hoes, P. Klootwijk, J.M. Dekker, A. Hofman, J.H. van Bemmel, and D.E Grobbee, Both decreased and increased heart rate variability on the standard 10-second electrocardiogram predict cardiac mortality in the elderly: the Rotterdam Study. Am. J. Epidemiol., 1999;150: 1282–1288.

    Article  PubMed  CAS  Google Scholar 

  651. Stolarz, K., J.A. Staessen, T. Kuznetsova, V. Tikhonoff, D. State, S. Babeanu, E. Casiglia, R.H. Fagard, K. Kawecka-Jaszcz, and Y. Nikitin, European Project on Genes in Hypertension (EPOGH) Investigators. Host and environmental determinants of heart rate and heart rate variability in four European populations. J. Hypertens., 2003;21: 525–535.

    Article  PubMed  CAS  Google Scholar 

  652. Byrne, E.A., J.L. Fleg, P.V. Vaitkevicius, J. Wright, and S.W. Porges, Role of aerobic capacity and body mass index in the age-associated decline in heart rate variability. J. Appl. Physiol., 1996;81: 743–750.

    PubMed  CAS  Google Scholar 

  653. Ziegler, D., C. Zentai, S. Perz, W. Rathmann, B. Haastert, C. Meisinger, H. Löwel, and KORA Study Group, Selective contribution of diabetes and other cardiovascular risk factors to cardiac autonomic dysfunction in the general population. Exp. Clin. Endocrinol. Diabetes., 2006;114: 153–159.

    Article  PubMed  CAS  Google Scholar 

  654. Fagard, R.H., K. Pardaens, and J.A. Staessen, Influence of demographic, anthropometric and lifestyle characteristics on heart rate and its variability in the population. J. Hypertens., 1999;17: 1589–1599.

    Article  PubMed  CAS  Google Scholar 

  655. Greiser, K.H., A. Kluttig, B. Schumann, C.A. Swenne, J.A. Kors, O. Kuss, J. Haerting, H. Schmidt, J. Thiery, and K. Werdan, Cardiovascular diseases, risk factors and short-term heart rate variability in an elderly general population: the CARLA study 2002–2006. Eur. J. Epidemiol., 2009;24: 123–142.

    Article  PubMed  Google Scholar 

  656. Hirsch, J., R.L. Leibel, R. Mackintosh, and A. Aguirre, Heart rate variability as a measure of autonomic function during weight change in humans. Am. J. Physiol., 1991;261: R1418–1423.

    PubMed  CAS  Google Scholar 

  657. Zahorska-Markiewicz, B., E. Kuagowska, C. Kucio, and M. Klin, Heart rate variability in obesity. Int. J. Obes. Relat. Metab. Disord., 1993;17: 21–23.

    PubMed  CAS  Google Scholar 

  658. Karason, K., H. Mølgaard, J. Wikstrand, and L. Sjöström, Heart rate variability in obesity and the effect of weight loss. Am. J. Cardiol., 1999;83: 1242–1247.

    Article  PubMed  CAS  Google Scholar 

  659. Poirier, P., T. Hernandez, K. Weil, T. Shepard, and R. Eckel, Impact of diet-induced weight loss on the cardiac autonomic nervous system in severe obesity. Obes. Res., 2003;11: 1040–1047.

    Article  PubMed  Google Scholar 

  660. Nault, I., E. Nadreau, C. Paquet, P. Brassard, P. Marceau, S. Marceau, S. Biron, F. Hould, S. Lebel, D. Richard, and P. Poirier, Impact of bariatric surgery–induced weight loss on heart rate variability. Metabolism, 2007;56: 1425–1430.

    Article  PubMed  CAS  Google Scholar 

  661. Bobbioni-Harsch, E., J. Sztajzel, V. Barthassat, V. Makoundou, G. Gastaldi, K. Sievert, G. Chassot, O. Huber, P. Morel, F. Assimacopoulos-Jeannet, and A. Golay, Independent evolution of heart autonomic function and insulin sensitivity during weight loss. Obesity, 2009;17: 247–253.

    PubMed  CAS  Google Scholar 

  662. Skrapari, I., N. Tentolouris, D. Perrea, C. Bakoyiannis, A. Papazafiropoulou, and N. Katsilambros, Baroreflex sensitivity in obesity: relationship with cardiac autonomic nervous system activity. Obesity, 2007;15: 1685–1693.

    Article  PubMed  Google Scholar 

  663. Laederach-Hofmann, K., L. Mussgay, and H. Rúddel, Autonomic cardiovascular regulation in obesity. J. Endocrinol., 2000;164: 59–66.

    Article  PubMed  CAS  Google Scholar 

  664. Beske, S.D., G.E. Alvarez, T.P. Ballard, and K.P. Davy, Reduced cardiovagal baroreflex gain in visceral obesity: implications for the metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol., 2002;282: H630–635.

    PubMed  CAS  Google Scholar 

  665. Grassi, G., G. Seravalle, M. Colombo, G. Bolla, B.M. Cattaneo, F. Cavagnini, and G. Mancia, Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation, 1998;97: 2037–2042.

    Article  PubMed  CAS  Google Scholar 

  666. Alvarez, G.E., B.M. Davy, T.P. Ballard, S.D. Beske, and K.P. Davy, Weight loss increases cardiovagal baroreflex function in obese young and older men. Am. J. Physiol. Endocrinol. Metab., 2005;289: E665–669.

    Article  PubMed  CAS  Google Scholar 

  667. Avsar, A., G. Acarturk, M. Melek, C. Kilit, A. Celik, and E. Onrat, Cardiac autonomic function evaluated by the heart rate turbulence method was not changed in obese patients without co-morbidities. J. Korean. Med. Sci., 2007;22: 629–632.

    Article  PubMed  Google Scholar 

  668. Coumel, P., P. Maison-Blanche, and D. Catuli, Heart rate and heart rate variability in normal young adults. J. Cardiovasc. Electrophysiol., 1994;5: 899–911.

    Article  PubMed  CAS  Google Scholar 

  669. Rosenblueth, A. and F.A. Simeone, The interrelations of vagal and accelerator effects on the cardiac rate. Am. J. Physiol., 1934, 110: 42–45.

    Google Scholar 

  670. Bootsma, M., C.A. Swenne, H.H. Van Bolhuis, P.C. Chang, V.M. Cats, A.V. Bruschke, Heart rate and heart rate variability as indexes of sympathovagal balance. Am. J. Physiol. Heart. Cric. Physiol., 1994;266: H1565–1571.

    CAS  Google Scholar 

  671. Goldberger, J.J., M.W. Ahmed, M.A. Parker, and A.H. Kadish, Dissociation of heart rate variability from parasympathetic tone. Am. J. Physiol. Heart. Circ. Physiol., 1994;266: H2152–2157.

    CAS  Google Scholar 

  672. Ahmed, M.W., A.H. Kadish, M.A. Parker, and J.J. Goldberger,. Effect of physiologic and pharmacologic adrenergic stimulation on heart rate variability. J. Am. Coll. Cardiol., 1994;24: 1082–1090.

    Article  PubMed  CAS  Google Scholar 

  673. Goldberger, J.J., Y.H. Kim, M.W. Ahmed, and A.H. Kadish, Effect of graded increases in parasympathetic tone on heart rate variability. J. Cardiovasc. Electrophysiol., 1996;7: 594–602.

    Article  PubMed  CAS  Google Scholar 

  674. Kim, Y.H., M.W. Ahmed, A.H. Kadish, and J.J. Goldberger, Characterization of the factors that determine the effect of sympathetic stimulation on heart rate variability. Pacing. Clin. Electrophysiol., 1997;20: 1936–1946.

    Article  PubMed  CAS  Google Scholar 

  675. Goldberger, J.J., S. Challapalli, R. Tung, M.A. Parker, and A.H. Kadish, Relationship of heart rate variability to parasympathetic effect. Circulation, 2001;103: 1977–1983.

    Article  PubMed  CAS  Google Scholar 

  676. Opthof, T. and R. Coronel, The normal range and determinants of the intrinsic heart rate in man. Cardiovasc. Res., 2000;45: 175–176.

    Article  PubMed  CAS  Google Scholar 

  677. Jose, A.D., Effect of combined sympathetic and parasympathetic blockade on heart rate and cardiac function in man. Am. J. Cardiol., 1966;18: 476–478.

    Article  PubMed  CAS  Google Scholar 

  678. Frick, M.H., J. Heikkilä, and A. Kahanpää, Combined parasympathetic and beta-receptor blockade as a clinical test. Acta. Med. Scand., 1967;182: 621–628.

    Article  PubMed  CAS  Google Scholar 

  679. Jose, A.D. and R.R. Taylor, Autonomic blockade by propranolol and atropine to study intrinsic myocardial function in man. J. Clin. Invest., 1969;48: 2019–2031.

    Article  PubMed  CAS  Google Scholar 

  680. Alboni, P., C. Malacarne, P. Pedroni, A. Masoni, and O.S. Narula, Electrophysiology of normal sinus node with and without autonomic blockade. Circulation, 1982;65: 1236–1242.

    Article  PubMed  CAS  Google Scholar 

  681. Marcus, B., P.C. Gillette, and A. Garson, Intrinsic heart rate in children and young adults: an index of sinus node function isolated from autonomic control. Am. Heart. J., 1990;119: 911–916.

    Article  PubMed  CAS  Google Scholar 

  682. Burke, J.H., J.J. Goldberger, F.A. Ehlert, J.T. Kruse, M.A. Parker, and A.H. Kadish, Gender differences in heart rate before and after autonomic blockade: evidence against an intrinsic gender effect. Am. J. Med., 1996;100: 537–543.

    Article  PubMed  CAS  Google Scholar 

  683. Craft, N. and J.B. Schwartz, Effects of age on intrinsic heart rate, heart rate variability, and AV conduction in healthy humans. Am. J. Physiol. Heart. Circ. Physiol., 1995;268: H1441–1452.

    CAS  Google Scholar 

  684. Jokkel, G., I. Bonyhay, and M. Kollai, Heart rate variability after complete autonomic blockade in man. J. Auton. Nerv. Syst., 1995;51: 85–89.

    Article  PubMed  CAS  Google Scholar 

  685. Wollenberger, A. and J. Jehl, Influence of age on rate of respiration of sliced cardiac muscle. Am. J. Physiol., 1952;170: 126–130.

    PubMed  CAS  Google Scholar 

  686. Evans, J.M., D.C. Randall, J.N. Funk, and C.F. Knapp, Influence of cardiac innervations on intrinsic heart rate in dogs. Am. J. Physiol. Heart. Circ. Physiol., 1990;258: H1132–1137.

    CAS  Google Scholar 

  687. Miyazaki, T., H.P. Pride, and D.P. Zipes, Prostaglandins in the pericardial fluid modulate neural regulation of cardiac electrophysiological properties. Circ. Res., 1990;66: 163–175.

    Article  PubMed  CAS  Google Scholar 

  688. Marin-Neto, J.A., J.J. Carneiro, B.C. Maciel, A.L. Secches, L. Gallo Jr., J. Terra-Filho, J.C. Manço, E.C. Lima-Filho, W.V. Vicente, A.A. Sader, et al., Impairment of baroreflex control of the sinoatrial node after cardiac operations with extracorporeal circulation in man. J. Thorac. Cardiovasc. Surg., 1983;86: 718–726.

    PubMed  CAS  Google Scholar 

  689. Sosnowski, M., T. Petelenz, Z. Czyż, S. Woś, B. Białkowska, B. Grzybek, Noninvasive evaluation of autonomic control of heart rate in patients with mitral valvular disease treated surgically (authors’ material, Petelenz T [Ed], Mitral valve disease: an old disease and modern medicine, Medical University of Silesia, 1992).

    Google Scholar 

  690. Niemelä, M.J., K.E. Airaksinen, K.U. Tahvanainen, M.K. Linnaluoto, and J.T. Takkunen, Effect of coronary artery bypass grafting on cardiac parasympathetic nervous function. Eur. Heart. J., 1992;13: 932–935.

    PubMed  Google Scholar 

  691. Petelenz, T., K. Singer, B. Gabrylewicz, T. Twardela, T. Pawłowski, S. Woś, M. Sosnowski, and Z. Nowak, Effect of aorto-coronary by-pass grafting on ventricular function assessed by means of noninvasive evalation in a 2-year follow-up. Pol. Tyg. Lek., 1993;48: 681–685 (in Polish).

    PubMed  CAS  Google Scholar 

  692. Tuinenburg, A.E., I.C. Van Gelder, M.P. Van Den Berg, J.G. Grandjean, R.G. Tieleman, A.J. Smit, R.C. Huet, J.M. Van Der Maaten, C.P. Volkers, T. Ebels, and H.J. Crijns, Sinus node function after cardiac surgery: is impairment specific for the maze procedure? Int. J. Cardiol., 2004;95: 101–108.

    Article  PubMed  Google Scholar 

  693. Davila, D.F., C.F. Gottberg, J.H. Donis, A. Torres, A.J. Fuenmayor, and O. Rossell, Vagal stimulation and heart rate slowing in acute experimental chagasic myocarditis. J. Auton. Nerv. Syst., 1988;25: 233–234.

    Article  PubMed  CAS  Google Scholar 

  694. Gao, X., L. Peng, Q. Zeng, and Z.K. Wu, Autonomic nervous function and arrhythmias in patients with acute viral myocarditis during a 6-month follow-up period. Cardiology, 2009;113: 66–71.

    Article  PubMed  Google Scholar 

  695. Jinbo, Y., Y. Kobayashi, A. Miyata, K. Chiyoda, H. Nakagawa, K. Tanno, K. Kurano, S. Kikushima, T. Baba, and T. Katagiri, Decreasing parasympathetic tone activity and proarrhythmic effect after radiofrequency catheter ablation–differences in ablation site. Jpn. Circ. J., 1998;62: 733–740.

    Article  PubMed  CAS  Google Scholar 

  696. Miyanaga, S., T. Yamane, T. Date, M. Tokuda, Y. Aramaki, K. Inada, K. Shibayama, S. Matsuo, H. Miyazaki, K. Abe, K. Sugimoto, S. Mochizuki, and M. Yoshimura, Impact of pulmonary vein isolation on the autonomic modulation in patients with paroxysmal atrial fibrillation and prolonged sinus pauses. Europace, 2009;11: 576–581.

    Article  PubMed  Google Scholar 

  697. Sosnowski, M., T. Petelenz, and Z. Czyz, Patterns of non-linear heart rate behaviour in sinoatrial node dysfunction: effects of orthostatic test and autonomic blockade. Comput. Cardiol., 1993: 5–8.

    Google Scholar 

  698. Bernardi, L., F. Valle, S. Leuzzi, M. Rinaldi, E. Marchesi, C. Falcone, L. Martinelli, M. Viganó, G. Finardi, and A. Radaelli, Non-respiratory components of heart rate variability in heart transplant recipients: evidence of autonomic reinnervation? Clin. Sci., 1994;86: 537–545.

    PubMed  CAS  Google Scholar 

  699. Jose, A.D., F. Stitt, and D. Collison, The effects of exercise and changes in body temperature on the intrinsic heart rate in man. Am. Heart. J., 1970;79: 488–498.

    Article  PubMed  CAS  Google Scholar 

  700. Julu, P.O. and R.G. Hondo, Effects of atropine on autonomic indices based on electrocardiographic R-R intervals in healthy volunteers. J. Neurol. Neurosurg. Psychiatr., 1992;55: 31–35.

    Article  PubMed  CAS  Google Scholar 

  701. Hayano, J., Y. Sakakibara, A. Yamada, M. Yamada, S. Mukai, T. Fujinami, K. Yokoyama, Y. Watanabe, and K. Takata, Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am. J. Cardiol., 1991;67: 199–204.

    Article  PubMed  CAS  Google Scholar 

  702. Pierpont, G.L. and E.J. Voth, Assessing autonomic function by analysis of heart rate recovery from exercise in healthy subjects. Am. J. Cardiol., 2004;94: 64–68.

    Article  PubMed  Google Scholar 

  703. Furlan, R., S. Guzzetti, W. Crivellaro, S. Dassi, M. Tinelli, G. Baselli, S. Cerutti, F. Lombardi, M. Pagani, and A. Malliani, Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation, 1990;81: 537–547.

    Article  PubMed  CAS  Google Scholar 

  704. Adamson, P.B., M.H. Huang, E. Vanoli, R.D. Foreman, P.J. Schwartz, and S.S. Jr.Hull, Unexpected interaction between beta-adrenergic blockade and heart rate variability before and after myocardial infarction. A longitudinal study in dogs at high and low risk for sudden death. Circulation, 1994;90: 976–982.

    Article  PubMed  CAS  Google Scholar 

  705. Rodriguez, R.D. and D.D. Schocken, Update on sick sinus syndrome, a cardiac disorder of aging. Geriatrics, 1990;45: 26–30, 33–6.

    PubMed  CAS  Google Scholar 

  706. Abildstrom, S.Z., B.T. Jensen, E. Agner, C. Torp-Pedersen, O. Nyvad, K. Wachtell, M.M. Ottesen, J.K. Kanters and BEAT Study Group, Heart rate versus heart rate variability in risk prediction after myocardial infarction. J. Cardiovasc. Electrophysiol., 2003;14: 168–173.

    Article  PubMed  Google Scholar 

  707. Goto, M., M. Nagashima, R. Baba, Y. Nagano, M. Yokota, K. Nishibata, and A. Tsuji, Analysis of heart rate variability demonstrates effects of development on vagal modulation of heart rate in healthy children. J. Pediatr., 1997;130: 725–729.

    Article  PubMed  CAS  Google Scholar 

  708. Pagani, M., G. Mazzuero, A. Ferrari, D. Liberati, S. Cerutti, D. Vaitl, L. Tavazzi, and A. Malliani, Sympathovagal interaction during mental stress. A study using spectral analysis of heart rate variability in healthy control subjects and patients with a prior myocardial infarction. Circulation, 1991;83 (4 Suppl): II43–51.

    PubMed  CAS  Google Scholar 

  709. Chiu, H.W., T.H. Wang, L.C. Huang, H.W. Tso, and T. Kao, The influence of mean heart rate on measures of heart rate variability as markers of autonomic function: a model study. Med. Eng. Phys., 2003;25: 475–481.

    Article  PubMed  Google Scholar 

  710. Eaton, G.M., R.J. Cody, E. Nunziata, and P.F. Binkley, Early left ventricular dysfunction elicits activation of sympathetic drive and attenuation of parasympathetic tone in the paced canine model of congestive heart failure. Circulation, 1995;92: 555–561.

    Article  PubMed  CAS  Google Scholar 

  711. Sosnowski, M. and T. Petelenz, Heart rate variability. Is it influenced by disturbed sinoatrial node function? J. Electrocardiol., 1995;28: 245–251.

    Article  PubMed  CAS  Google Scholar 

  712. Panina, G., U.N. Khot, E. Nunziata, R.J. Cody, and P.F. Binkley, Assessment of autonomic tone over a 24-hour period in patients with congestive heart failure: relation between mean heart rate and measures of heart rate variability. Am. Heart. J., 1995;129: 748–753.

    Article  PubMed  CAS  Google Scholar 

  713. Vanninen, E., A. Tuunainen, M. Kansanen, M. Uusitupa, and E. Länsimies, Cardiac sympathovagal balance during sleep apnea episodes. Clin. Physiol., 1996;16: 209–216.

    Article  PubMed  CAS  Google Scholar 

  714. Bauer, T., S. Ewig, H. Schäfer, E. Jelen, H. Omran, and B. Lüderitz, Heart rate variability in patients with sleep-related breathing disorders. Cardiology, 1996;87: 492–496.

    Article  PubMed  CAS  Google Scholar 

  715. Heinz, G., M. Hirschl, P. Buxbaum, G. Laufer, S. Gasic, and A. Laczkovics, Sinus node dysfunction after orthotopic cardiac transplantation: postoperative incidence and long-term implications. Pacing. Clin. Electrophysiol., 1992;15: 731–737.

    Article  PubMed  CAS  Google Scholar 

  716. Scott, C.D., J.H. Dark, and J.M. McComb, Sinus node function after cardiac transplantation. J. Am. Coll. Cardiol., 1994;24: 1334–1341.

    Article  PubMed  CAS  Google Scholar 

  717. Cohen, M.A. and J.A. Taylor, Short-term cardiovascular osllation in man: measuring and modeling the physiologies. J. Physiol., 2002;542: 669–683.

    Article  PubMed  CAS  Google Scholar 

  718. Hirsch, J.A. and B. Bishop, Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol., 1981;241: H620–629.

    PubMed  CAS  Google Scholar 

  719. Grossman, P. and M. Kollai, Respiratory sinus arrhythmia, cardiac vagal tone, and respiration: within- and between-individual relations. Psychophysiology, 1993;30: 486–495.

    Article  PubMed  CAS  Google Scholar 

  720. Eckberg, D.L., Human sinus arrhythmia as an index of vagal cardiac outflow. J. Appl. Physiol., 1983;54: 961–966.

    PubMed  CAS  Google Scholar 

  721. Hayano, J., Y. Sakakibara, A. Yamada, M. Yamada, S. Mukai, T. Fujinami, K. Yokoyama, Y. Watanabe, and K. Takata, Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am. J. Cardiol., 1991;67: 199–204.

    Article  PubMed  CAS  Google Scholar 

  722. Malpas, S.C., Neural influences on cardiovascular variability: possibility and pitfalls. Am. J. Physiol. Heart. Circ. Physiol., 2002;282: H6–20.

    PubMed  CAS  Google Scholar 

  723. Grossman, P., F.H. Wilhelm, and M. Spoerle, Respiratory sinus arrhythmia, cardiac vagal control, and daily activity. Am. J. Physiol. Heart. Circ. Physiol., 2004;287: H728–734.

    Article  PubMed  CAS  Google Scholar 

  724. Houtveen, J.H., S. Rietveld, and E.J. de Geus, Contribution of tonic vagal modulation of heart rate, central respiratory drive, respiratory depth, and respiratory frequency to respiratory sinus arrhythmia during mental stress and physical exercise. Psychophysiology, 2002;39: 427–436.

    Article  PubMed  Google Scholar 

  725. Ewing, D.J., D.Q. Borsey, F. Bellavere, and B.F. Clarke, Cardiac autonomic neuropathy in diabetes: comparison of measures of R-R interval variation. Diabetologia, 1981;21: 18–24.

    Article  PubMed  CAS  Google Scholar 

  726. Löllgen, D., M. Müeck-Weymann, and R.D. Beise, The deep breathing test: median-based expiration-inspiration difference is the measure of choice. Muscle. Nerve., 2009;39: 536–544.

    Article  PubMed  Google Scholar 

  727. Grossman, P., J. Karemaker, and W. Wieling, Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology, 1991;28: 201–216.

    Article  PubMed  CAS  Google Scholar 

  728. Sosnowski, M., J. Skrzypek-Wańha, Z. Czyż, B. Korzeniowska, and M. Tendera, Respiratory rate-heart rate interaction is responsible for reduced heart rate variability in patients with coronary heart disease and depressed left ventricular systolic function. Eur. Heart. J., 1997;18 (Suppl.): 575 (abstr).

    Google Scholar 

  729. Saul, J.P., R.D. Berger, M.H. Chen, and R.J. Cohen, Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia. Am. J. Physiol., 1989;256: H153–161.

    PubMed  CAS  Google Scholar 

  730. El-Omar, M., A. Kardos, and B. Casadei, Mechanisms of respiratory sinus arrhythmia in patients with mild heart failure. Am. J. Physiol. Heart. Circ. Physiol., 2001;280: H125–131.

    PubMed  CAS  Google Scholar 

  731. Mortara, A., P. Sleight, G.D. Pinna, R. Maestri, A. Prpa, M.T. La Rovere, F. Cobelli, and L. Tavazzi, Abnormal awake respiratory patterns are common in chronic heart failure and may prevent evaluation of autonomic tone by measures of heart rate variability. Circulation, 1997;96: 246–252.

    Article  PubMed  CAS  Google Scholar 

  732. Shiomi, T., C. Guilleminault, R. Sasanabe, I. Hirota, M. Maekawa, and T. Kobayashi, Augmented very low frequency component of heart rate variability during obstructive sleep apnea. Sleep, 1996;19: 370–377.

    PubMed  CAS  Google Scholar 

  733. Ponikowski, P., T.P. Chua, A.A. Amadi, M. Piepoli, D. Harrington, M. Volterrani, R. Colombo, G. Mazzuero, A. Giordano, and A.J. Coats, Detection and significance of a discrete very low frequency rhythm in RR interval variability in chronic congestive heart failure. Am. J. Cardiol., 1996;77: 1320–1326.

    Article  PubMed  CAS  Google Scholar 

  734. Tateishi, O., T. Shouda, Y. Honda, T. Sakai, S. Mochizuki, and K. Machida, Apnea-related heart rate variability and its clinical utility in congestive heart failure outpatients. Ann. Noninvasive. Electrocardiol., 2002;7: 127–132.

    Article  PubMed  Google Scholar 

  735. Perakakis, P., M. Taylor, E. Martinez-Nieto, I. Revithi, and J. Vila, Breathing frequency bias in fractal analysis of heart rate variability. Biol. Psychol., 2009;82: 82–88.

    Article  PubMed  Google Scholar 

  736. Casadei, B., J. Moon, A. Caiazza, and P. Sleight, Is respiratory sinus arrhythmia a good index of cardiac vagal activity during exercise? J. Appl. Physiol., 1996;81: 556–564.

    PubMed  CAS  Google Scholar 

  737. Ponikowski, P., T.P. Chua, M. Piepoli, W. Banasiak, S.D. Anker, R. Szelemej, W. Molenda, K. Wrabec, A. Capucci, and A.J. Coats, Ventilatory response to exercise correlates with impaired heart rate variability in patients with chronic congestive heart failure. Am. J. Cardiol., 1998;82: 338–344.

    Article  PubMed  CAS  Google Scholar 

  738. Tzeng, Y.C., P.D. Larsen, and D.C. Galletly, Cardioventilatory coupling in resting human subjects. Exp. Physiol., 2003;88: 775–782.

    Article  PubMed  CAS  Google Scholar 

  739. Fallen, E.L. and M.V. Kamath, Circadian rhythms of heart rate variability, in Heart Rate Variability, M. Malik and A.J. Camm, Editors. Armonk, NY: Futura Publishing, 1995, pp. 293–309.

    Google Scholar 

  740. Hartikainen, J., I. Tarkiainen, K. Tahvanainen, M. Mäntysaari, E. Länsimies, and K. Pyörälä, Circadian variation of cardiac autonomic regulation during 24-h bed rest. Clin. Physiol., 1993;13: 185–196.

    Article  PubMed  CAS  Google Scholar 

  741. Freitas, J., P. Lago, J. Puig, M.J. Carvalho, O. Costa, and A.F. de Freitas, Circadian heart rate variability rhythm in shift workers. J. Electrocardiol., 1997;30: 39–44.

    Article  PubMed  CAS  Google Scholar 

  742. Zhong, X., H.J. Hilton, G.J. Gates, S. Jelic, Y. Stern, M.N. Bartels, R.E. DeMeersman, and R.C. Basner, Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. J. Appl. Physiol., 2005;98: 2024–2032.

    Article  PubMed  Google Scholar 

  743. Viola, A.U., L.M. James, S.N. Archer, and D.J. Dijk, PER3 polymorphism and cardiac autonomic control: effects of sleep debt and circadian phase. Am. J. Physiol. Heart. Circ. Physiol., 2008;295: H2156–2163.

    Article  PubMed  CAS  Google Scholar 

  744. Vandewalle, G., B. Middleton, S.M. Rajaratnam, B.M. Stone, B. Thorleifsdottir, J. Arendt, and D.J. Dijk, Robust circadian rhythm in heart rate and its variability: influence of exogenous melatonin and photoperiod. J. Sleep. Res., 2007;16: 148–155.

    Article  PubMed  Google Scholar 

  745. Hu, K., P.Ch. Ivanov, M.F. Hilton, Z. Chen, R.T. Ayers, H.E. Stanley, and S.A. Shea, Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior. Proc. Natl. Acad. Sci. U. S. A., 2004;101: 18223–18227.

    Article  PubMed  CAS  Google Scholar 

  746. Huikuri, H.V., M.J. Niemelä, S. Ojala, A. Rantala, M.J. Ikäheimo, and K.E. Airaksinen, Circadian rhythms of frequency domain measures of heart rate variability in healthy subjects and patients with coronary artery disease. Effects of arousal and upright posture. Circulation, 1994;90: 121–126.

    Article  PubMed  CAS  Google Scholar 

  747. Bernardi, L., L. Ricordi, P. Lazzari, P. Solda, A. Calciati, M.R. Ferrari, I.Vandea, G. Finardi, and P. Fratino, Impaired circadian modulation of sympathovagal activity in diabetes: a possible explanation for altered temporal onset of cardiovascular disease. Circulation, 1992;86: 1443–1452.

    Article  PubMed  CAS  Google Scholar 

  748. Lombardi, F., G. Sandrone, A. Mortara, M.T. La Rovere, E. Colombo, S. Guzzetti, and A. Malliani, Circadian variation of spectral indices of heart rate variability after myocardial infarction. Am. Heart. J., 1992;123: 1521–1528.

    Article  PubMed  CAS  Google Scholar 

  749. Chakko, S., R.F. Mulingtapang, H.V. Huikuri, K.M. Kessler, B.J. Materson, and R.J. Myerburg, Alterations in heart rate variability and its circadian rhythm in hypertensive patients with left ventricular hypertrophy free of coronary artery disease. Am. Heart. J., 1993;126: 1364–1372.

    Article  PubMed  CAS  Google Scholar 

  750. Malik, M., T. Farrell, and A.J. Camm, Circadian rhythm of heart rate variability after acute myocardial infarction and its influence on the prognostic value of heart rate variability. Am. J. Cardiol., 1990;66: 1049–1054.

    Article  PubMed  CAS  Google Scholar 

  751. Burr, R., P. Hamilton, M. Cowan, A. Buzaitis, M.R. Strasser, A. Sulkhanova, and K. Pike, Nycthemeral profile of nonspectral heart rate variability measures in women and men. Description of a normal sample and two sudden cardiac arrest subsamples. J. Electrocardiol., 1994;27(Suppl): 54–62.

    Article  PubMed  Google Scholar 

  752. Klingenheben, T., U. Rapp, and S.H. Hohnloser, Circadian variation of heart rate variability in postinfarction patients with and without life-threatening ventricular tachyarrhythmias. J. Cardiovasc. Electrophysiol., 1995;6: 357–364.

    Article  PubMed  CAS  Google Scholar 

  753. Sarma, J.S., N. Singh, M.P. Schoenbaum, K. Venkataraman, and B.N. Singh, Circadian and power spectral changes of RR and QT intervals during treatment of patients with angina pectoris with nadolol providing evidence for differential autonomic modulation of heart rate and ventricular repolarization. Am. J. Cardiol., 1994;74: 131–136.

    Article  PubMed  CAS  Google Scholar 

  754. Pagani, M., V. Somers, R. Furlan, S. Dell’Orto, J. Conway, G. Baselli, S. Ceruti, P. Sleight, and A. Malliani, Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension, 1988;12: 600–610.

    Article  PubMed  CAS  Google Scholar 

  755. Seals, D.R. and P.B. Chase, Influence of physical training on heart rate variability and baroreflex circulatory control. J. Appl. Physiol., 1989;66: 1886–1895.

    Article  PubMed  CAS  Google Scholar 

  756. Henje Blom, E., E.M. Olsson, E. Serlachius, M. Ericson, and M. Ingvar, Heart rate variability is related to self-reported physical activity in a healthy adolescent population. Eur. J. Appl. Physiol., 2009;106: 877–883.

    Article  PubMed  Google Scholar 

  757. Rennie, K.L., H. Hemingway, M. Kumari, E. Brunner, M. Malik, and M. Marmot, Effects of moderate and vigorous physical activity on heart rate variability in a British study of civil servants. Am. J. Epidemiol., 2003;158: 135–143.

    Article  PubMed  Google Scholar 

  758. Horsten, M., M. Ericson, A. Perski, S.P. Wamala, K. Schenck-Gustafsson, and K. Orth-Gomér, Psychosocial factors and heart rate variability in healthy women. Psychosom. Med., 1999;61: 49–57.

    PubMed  CAS  Google Scholar 

  759. De Meersman, R.E., Heart rate variability and aerobic fitness. Am. Heart. J., 1993;125: 726–731.

    Article  PubMed  CAS  Google Scholar 

  760. Galetta, F., F. Franzoni, F.R. Femia, N. Roccella, F. Pentimone, and G. Santoro, Lifelong physical training prevents the age-related impairment of heart rate variability and exercise capacity in elderly people. J. Sports. Med. Phys. Fitness., 2005;45: 217–221.

    PubMed  CAS  Google Scholar 

  761. Boutcher, S.H. and P. Stein, Association between heart rate variability and training response in sedentary middle-aged men. Eur. J. Appl. Physiol. Occup. Physiol., 1995;70: 75–80.

    Article  PubMed  CAS  Google Scholar 

  762. Davy, K.P., W.L. Willis, and D.R. Seals, Influence of exercise training on heart rate variability in post-menopausal women with elevated arterial blood pressure. Clin. Physiol., 1997;17:31–40.

    Article  PubMed  CAS  Google Scholar 

  763. Verheyden, B., B.O. Eijnde, F. Beckers, L. Vanhees, and A.E. Aubert, Low-dose exercise training does not influence cardiac autonomic control in healthy sedentary men aged 55–75 years. J. Sports. Sci., 2006;24: 1137–1147.

    Article  PubMed  Google Scholar 

  764. Melanson, E.L. and P.S. Freedson, The effect of endurance training on resting heart rate variability in sedentary adult males. Eur. J. Appl. Physiol., 2001;85: 442–449.

    Article  PubMed  CAS  Google Scholar 

  765. Soares-Miranda, L., G. Sandercock, H. Valente, S. Vale, R. Santos, and J. Mota, Vigorous physical activity and vagal modulation in young adults. Eur. J. Cardiovasc. Prev. Rehabil., 2009 Sep 4. [Epub ahead of print].

    Google Scholar 

  766. Gamelin, F.X., G. Baquet, S. Berthoin, D. Thevenet, C. Nourry, S. Nottin, and L. Bosquet, Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur. J. Appl. Physiol., 2009;105: 731–738.

    Article  PubMed  Google Scholar 

  767. Jurca, R., T.S. Church, G.M. Morss, A.N. Jordan, and C.P. Earnest, Eight weeks of moderate-intensity exercise training increases heart rate variability in sedentary postmenopausal women. Am. Heart. J., 2004;147: e21.

    Article  PubMed  Google Scholar 

  768. Earnest, C.P., C.J. Lavie, S.N. Blair, and T.S. Church, Heart rate variability characteristics in sedentary postmenopausal women following six months of exercise training: the DREW study. PLoS. One., 2008;3: e2288.

    Article  PubMed  CAS  Google Scholar 

  769. Melo, R.C., R.J. Quitério, A.C. Takahashi, E. Silva, L.E. Martins, and A.M. Catai. High eccentric strength training reduces heart rate variability in healthy older men. Br. J. Sports. Med., 2008;42: 59–63.

    Article  PubMed  CAS  Google Scholar 

  770. Piotrowicz, E., R. Baranowski, M. Piotrowska, T. Zieliński, and R. Piotrowicz, Variable effects of physical training of heart rate variability, heart rate recovery, and heart rate turbulence in chronic heart failure. Pacing. Clin. Electrophysiol., 2009;32 (Suppl 1): S113–115.

    Article  PubMed  Google Scholar 

  771. Dewey, F.E., J.V. Freeman, G. Engel, R. Oviedo, N. Abrol, N. Ahmed, J. Myers, and V.F., Froelicher, Novel predictor of prognosis from exercise stress testing: heart rate variability response to the exercise treadmill test. Am. Heart. J., 2007;153: 281–288.

    Article  PubMed  Google Scholar 

  772. Leino, J., M. Virtanen, M. Kähönen, K. Nikus, T. Lehtimäki, T. Kööbi, R. Lehtinen, V. Turjanmaa, J. Viik, and T. Nieminen, Exercise-test-related heart rate variability and mortality The Finnish cardiovascular study. Int. J. Cardiol., 2009. [Epub ahead of print].

    Google Scholar 

  773. Cottin, F., C. Médigue, and Y. Papelier, Effect of heavy exercise on spectral baroreflex sensitivity, heart rate, and blood pressure variability in well-trained humans. Am. J. Physiol. Heart. Circ. Physiol., 2008;295: H1150–1155.

    Article  PubMed  CAS  Google Scholar 

  774. Raven, P.B., P.J. Fadel, and S. Ogoh, Arterial baroreflex resetting during exercise: a current perspective. Exp. Physiol., 2006;91:37–49.

    Article  PubMed  Google Scholar 

  775. Raven, P.B., D. ROhm-Young, and C.G. Blomqvist, Physical fitness and cardiovascular response to lower body negative pressure. J. Appl. Physiol., 1984;56: 138–144.

    PubMed  CAS  Google Scholar 

  776. Mack, G.W., C.A. Thompson, D.F. Doerr, E.E. Nadel, and V.A. Conveertino, Diminished baroreflex control of forearm resistance following training. Med. Sci. Sports. Exer., 1991;23: 1367–1374.

    CAS  Google Scholar 

  777. Lightfoot, J.T., R.P. Claytor, D.J. Torak, T.W. Journell, and S.W. Fortney, Ten weeks of aerobic training do not affect lower body negative pressure response. J. Appl. Physiol., 1989;67: 894–901.

    PubMed  CAS  Google Scholar 

  778. Bowman, A.J., R.H. Clayton, A. Murray, J.W. Reed, M.M. Subhan, and G.A. Ford, Effects of aerobic exercise training and yoga on the baroreflex in healthy elderly persons. Eur. J. Clin. Invest., 1997;27: 443–449.

    Article  PubMed  CAS  Google Scholar 

  779. Smith, S.A., R.G. Querry, P.J. Fadel, R.M. Welch-O’Connor, A. Olivencia-Yurvati, X. Shi, and P.B. Raven, Differential baroreflex control of heart rate in sedentary and aerobically fit individuals. Med. Sci. Sports. Exerc., 2000;32: 1419–1430.

    Article  PubMed  CAS  Google Scholar 

  780. O’Sullivan, S.E. and C. Bell, The effects of exercise and training on human cardiovascular reflex control. J. Auton. Nerv. Syst., 2000;81: 16–24.

    Article  PubMed  Google Scholar 

  781. Ueno, L.M. and T. Moritani, Effects of long-term exercise training on cardiac autonomic nervous activities and baroreflex sensitivity. Eur. J. Appl. Physiol., 2003;89: 109–114.

    Article  PubMed  Google Scholar 

  782. Pichot, V., F. Roche, C. Denis, M. Garet, D. Duverney, F. Costes, and J.C. Barthélémy, Interval training in elderly men increases both heart rate variability and baroreflex activity. Clin. Auton. Res., 2005;15: 107–115.

    Article  PubMed  Google Scholar 

  783. Iwasaki, K., R. Zhang, J.H. Zuckerman, and B.D. Levine, Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit? J. Appl. Physiol., 2003;95: 1575–1583.

    PubMed  Google Scholar 

  784. Pagani, M., D. Lucini, O. Rimoldi, R. Furlan, S. Piazza, and L. Biancardi, Effects of physical and mental stress of heart rate variability, in Heart Rate Variability, M. Malik and A.J. Camm, Editors. Armonk, NY: Futura Publishing, 1995, pp. 245–266.

    Google Scholar 

  785. Hemingway, H., M. Malik, and M. Marmot, Social and psychosocial influences on sudden cardiac death, ventricular arrhythmia and cardiac autonomic function. Eur. Heart. J., 2001;22: 1082–1101.

    Article  PubMed  CAS  Google Scholar 

  786. Bernardi, L., J. Wdowczyk-Szulc, C. Valenti, S. Castoldi, C. Passino, G. Spadacini, and P. Sleight, Effects of controlled breathing, mental activity and mental stress with or without verbalization on heart rate variability. J. Am. Coll. Cardiol., 2000;35: 1462–1469.

    Article  PubMed  CAS  Google Scholar 

  787. Lantelme, P., H. Milon, C. Gharib, C. Gayet, and J.O. Fortrat JO, White coat effect and reactivity to stress: cardiovascular and autonomic nervous system responses. Hypertension, 1998;31: 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  788. Kageyama, T., N. Nishikido, T. Kobayashi, Y. Kurokawa, T. Kaneko, and M. Kabuto, Self-reported sleep quality, job stress, and daytime autonomic activities assessed in terms of short-term heart rate variability among male white-collar workers. Ind. Health., 1998;36: 263–272.

    Article  PubMed  CAS  Google Scholar 

  789. Cohen, H., J. Benjamin, A.B. Geva, M.A. Matar, Z. Kaplan, and M. Kotler, Autonomic dysregulation in panic disorder and in post-traumatic stress disorder: application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attacks. Psychiatry. Res., 2000;96: 1–13.

    Article  PubMed  CAS  Google Scholar 

  790. Cohen, H., M. Kotler, M. Matar, and Z. Kaplan, Normalization of heart rate variability in post-traumatic stress disorder patients following fluoxetine treatment: preliminary results. Isr. Med. Assoc. J., 2000;2: 296–301.

    PubMed  CAS  Google Scholar 

  791. Madden, K. and G.K. Savard, Effects of mental state on heart rate and blood pressure variability in men and women. Clin. Physiol., 1995;15: 557–569.

    Article  PubMed  CAS  Google Scholar 

  792. Friedman, B.H., An autonomic flexibility–neurovisceral integration model of anxiety and cardiac vagal tone. Biol. Psychol., 2007;74: 185–199.

    Article  PubMed  Google Scholar 

  793. McCraty, R., M. Atkinson, W.A. Tiller, G. Rein, and A.D. Watkins, The effects of emotions on short-term power spectrum analysis of heart rate variability. Am. J. Cardiol., 1995;76: 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  794. De Meersman, R.E., S. Reisman, M. Daum, and R. Zorowitz, Vagal withdrawal as a function of audience. Am. J. Physiol. Heart. Circ. Physiol., 1996;270: H1381–1383.

    CAS  Google Scholar 

  795. Delaney, J.P. and D.A. Brodie, Effects of short-term psychological stress on the time and frequency domains of heart-rate variability. Percept. Mot. Skills., 2000;91: 515–524.

    Article  PubMed  CAS  Google Scholar 

  796. Shinba, T., N. Kariya, Y. Matsui, N. Ozawa, Y. Matsuda, and K.Yamamoto, Decrease in heart rate variability response to task is related to anxiety and depressiveness in normal subjects. Psychiatry. Clin. Neurosci., 2008;62: 603–609.

    Article  PubMed  Google Scholar 

  797. Yeragani, V.K., R.B. Pohl, R. Berger, R. Balon, C. Ramesh, D. Glitz, K. Srinivasan, and P. Weinberg, Decreased heart rate variability in panic disorder patients: a study of power spectral analysis of heart rate. Psychiatr. Res., 1993;46: 89–103.

    Article  CAS  Google Scholar 

  798. Kawachi, I., D. Sparrow, P.S. Vokonas, and S.T. Weiss, Decreased heart rate variability in men with phobic anxiety (data from the Normative Aging Study). Am. J. Cardiol., 1995;75: 882–885.

    Article  PubMed  CAS  Google Scholar 

  799. McCraty, R., M. Atkinson, D. Tomasino, and W.P. Stuppy, Analysis of twenty-four hour heart rate variability in patients with panic disorder. Biol. Psychol., 2001;56: 131–150.

    Article  PubMed  CAS  Google Scholar 

  800. Asmundson, G.J.G. and M.B. Stein, Vagal attenuation in panic disorder: an assessment of parasympathetic nervous system function and subjective reactivity to respiratory manipulations. Psychosom. Med., 1994;56: 187–193.

    PubMed  CAS  Google Scholar 

  801. Dishman, R.K., Y. Nakamura, M.E. Garcia, R.W. Thompson, A.L. Dunn, and S.N. Blair, Heart rate variability, trait anxiety, and perceived stress among physically fit men and women. Int. J. Psychophysiol., 2000;37: 121–133.

    Article  PubMed  CAS  Google Scholar 

  802. Agelink, M.W., C. Boz, H. Ullrich, and J. Andrich, Relationship between major depression and heart rate variability. Clinical consequences and implications for antidepressive treatment. Psychiatry. Res., 2002;113: 139–149.

    Article  PubMed  Google Scholar 

  803. Carney, R.M., J.A. Blumenthal, P.K. Stein, L. Watkins, D. Catellier, L.E. Berkman, S.M. Czajkowski, C. O’Connor, P.H. Stone, and K.E. Freedland, Depression, heart rate variability, and acute myocardial infarction. Circulation, 2001;104: 2024–2028.

    Article  PubMed  CAS  Google Scholar 

  804. O’Connor, M.F., J.J. Allen, and A.W. Kaszniak, Autonomic and emotion regulation in bereavement and depression. J. Psychosom. Res., 2002;52: 183–185.

    Article  PubMed  Google Scholar 

  805. Moser, M., M. Lehofer, R. Hoehn-Saric, D.R. McLeod, G. Hildebrandt, B. Steinbrenner, M. Voica, P. Liebmann, and H.G. Zapotoczky, Increased heart rate in depressed subjects in spite of unchanged autonomic balance? J. Affect. Disord., 1998;48: 115–124.

    Article  PubMed  CAS  Google Scholar 

  806. Watkins, L.L, P. Grossman, R. Krishnan, and J.A. Blumenthal, Anxiety reduces baroreflex cardiac control in older adults with major depression. Psychosom. Med., 1999;61: 334–340.

    PubMed  CAS  Google Scholar 

  807. Zhong, X., H.J. Hilton, G.J. Gates, S. Jelic, Y. Stern, M.N. Bartels, R.E. Demeersman, and R.C. Basner, Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. J. Appl. Physiol., 2005;98: 2024–2032.

    Article  PubMed  Google Scholar 

  808. Gillum, R.F., Epidemiology of resting pulse rate of persons ages 25–74–data from NHANES 1971–74. Public. Health. Rep., 1992;107: 193–201.

    PubMed  CAS  Google Scholar 

  809. Robertson, D., C.J. Tseng, and M. Appalsamy, Smoking and mechanisms of cardiovascular control. Am. Heart. J., 1988;115: 258–263.

    Article  PubMed  CAS  Google Scholar 

  810. Hayano, J., M. Yamada, Y. Sakakibara, T. Fujinami, K. Yokoyama, Y. Watanabe, and K. Takata, Short- and long-term effects of cigarette smoking on heart rate variability. Am. J. Cardiol., 1990;65: 84–88.

    Article  PubMed  CAS  Google Scholar 

  811. Gallagher, D., T. Terenzi, and R. de Meersman, Heart rate variability in smokers, sedentary and aerobically fit individuals. Clin. Auton. Res., 1992;2: 383–387.

    Article  PubMed  CAS  Google Scholar 

  812. Carnethon, M.R., D. Liao, G.W. Evans, W.E. Cascio, L.E. Chambless, and G. Heiss, Correlates of the shift in heart rate variability with an active postural change in a healthy population sample: the Atherosclerosis Risk In Communities study. Am. Heart. J., 2002;143: 808–813.

    Article  PubMed  Google Scholar 

  813. Barutcu, I., A.M. Esen, D. Kaya, M. Turkmen, O. Karakaya, M. Melek, O.B. Esen, and Y. Basaran, Cigarette smoking and heart rate variability: dynamic influence of parasympathetic and sympathetic maneuvers. Ann. Noninvas. Electrocardiol., 2005;10: 324–329.

    Article  Google Scholar 

  814. Eryonucu, B., M. Bilge, N. Güler, K. Uzun, and M. Gencer, Effects of cigarette smoking on the circadian rhythm of heart rate variability. Acta. Cardiol., 2000;55: 301–305.

    Article  PubMed  CAS  Google Scholar 

  815. Christensen, J.H., H.A. Skou, L. Fog, V. Hansen, T. Vesterlund, J. Dyerberg, E. Toft, and E.B. Schmidt, Marine n-3 fatty acids, wine intake, and heart rate variability in patients referred for coronary angiography. Circulation, 2001;103: 651–657.

    Article  PubMed  CAS  Google Scholar 

  816. Murata, K., P.J. Landrigan, and S. Araki, Effects of age, heart rate, gender, tobacco and alcohol ingestion on R-R interval variability in human ECG. J. Auton. Nerv. Syst., 1991;37:199–206.

    Article  Google Scholar 

  817. Kageyama, T., N. Nishikido, Y. Honda, Y. Kurokawa, H. Imai, T. Kobayashi, T. Kaneko, and M. Kabuto, Effects of obesity, current smoking status, and alcohol consumption on heart rate variability in male white-collar workers. Int. Arch. Occup. Environ. Health., 1997;69: 447–454.

    Article  PubMed  CAS  Google Scholar 

  818. Hamaad, A., M. Sosin, A.D. Blann, J. Patel, G.Y. Lip, and R.J. MacFadyen, Markers of inflammation in acute coronary syndromes: association with increased heart rate and reductions in heart rate variability. Clin. Cardiol., 2005;28: 570–576.

    Article  PubMed  Google Scholar 

  819. Gehi, A., J. Ix, M. Shlipak, S.S. Pipkin, and M.A. Whooley, Relation of anemia to low heart rate variability in patients with coronary heart disease (from the Heart and Soul study). Am. J. Cardiol., 2005;95: 1474–1477.

    Article  PubMed  Google Scholar 

  820. Stein, P.K., J.I. Barzilay, P.H. Chaves, J. Traber, P.P. Domitrovich, S.R. Heckbert, and J.S. Gottdiener, Higher levels of inflammation factors and greater insulin resistance are independently associated with higher heart rate and lower heart rate variability in normoglycemic older individuals: the Cardiovascular Health Study. J. Am. Geriatr. Soc., 2008;56: 315–321.

    Article  PubMed  Google Scholar 

  821. Liao, D., J. Cai, F.L. Brancati, A. Folsom, R.W. Barnes, H.A. Tyroler, and G. Heiss, Association of vagal tone with serum insulin, glucose, and diabetes mellitus–The ARIC Study. Diabetes. Res. Clin. Pract., 1995;30: 211–221.

    Article  PubMed  CAS  Google Scholar 

  822. Odemuyiwa, O., M. Malik, T. Farrell, Y. Bashir, J. Poloniecki, and J. Camm, Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am. J. Cardiol., 1991;68: 434–439.

    Article  PubMed  CAS  Google Scholar 

Appendix 1 List of references cited only in tables and figures

  1. Bigger, J.T. Jr, J.L. Fleiss, R.C. Steinman, L.M. Rolnitzky, R.E. Kleiger, and J.N. Rottman, Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation, 1992;85: 164–171.

    Google Scholar 

  2. Vaishnav, S., R. Stevenson, B. Marchant, K. Lagi, K. Ranjadayalan, and A.D. Timmis, Relation between heart rate variability early after acute myocardial infarction and long-term mortality. Am. J. Cardiol., 1994;73: 653–657.

    Article  PubMed  CAS  Google Scholar 

  3. Touboul, P., X. Andre-Fouët, A. Leizorovicz, R. Itti, M. Lopez, Y. Sayegh, H. Milon, and G. Kirkorian, Risk stratification after myocardial infarction. A reappraisal in the era of thrombolysis. The Groupe d’Etude du Pronostic de l’Infarctus du Myocarde (GREPI). Eur. Heart. J., 1997;18: 99–107.

    Google Scholar 

  4. Tsuji, H., F.J. Venditti Jr., E.S. Manders, J.C. Evans, M.G. Larson, C.L. Feldman, and D. Levy, Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation, 1994;90: 878–883.

    Google Scholar 

  5. Nollo, G., M. Del Greco, M. Disertori, E. Santoro, A.P. Maggioni, G.P.Sanna, and GISSI-3 Arrhythmias Substudy Investigators, Absence of slowest oscillations in short term heart rate variability of post-myocardial infarction patients. GISSI-3 arrhythmias substudy. GISSI-3 Arrhythmias Substudy Investigators. Auton. Neurosci., 2001;90: 127–131.

    Google Scholar 

  6. Forslund, L., I. Björkander, M. Ericson, C. Held, T. Kahan, N. Rehnqvist, and P. Hjemdahl, Prognostic implications of autonomic function assessed by analyses of catecholamines and heart rate variability in stable angina pectoris. Heart, 2002;87: 415–422.

    Article  PubMed  CAS  Google Scholar 

  7. Lampert, R., J.R. Ickovics, C.J. Viscoli, R.I. Horwitz, and F.A. Lee, Effects of propranolol on recovery of heart rate variability following acute myocardial infarction and relation to outcome in the Beta-Blocker Heart Attack Trial. Am. J. Cardiol., 2003;91: 137–142.

    Article  PubMed  CAS  Google Scholar 

  8. La Rovere, M.T., G.D. Pinna, R. Maestri, A. Mortara, S. Capomolla, O. Febo, R. Ferrari, M. Franchini, M. Gnemmi, C. Opasich, R.G. Riccardi, E. Traversi, and F. Cobelli, Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation, 2003;107: 565–570.

    Article  PubMed  Google Scholar 

  9. Jokinen, V., J.M. Tapanainen, T. Seppänen, and H.V. Huikuri, Temporal changes and prognostic significance of measures of heart rate dynamics after acute myocardial infarction in the beta-blocking era. Am. J. Cardiol., 2003;92: 907–912.

    Article  PubMed  Google Scholar 

  10. Schroeder, E.B., D. Liao, L.E. Chambless, R.J. Prineas, G.W. Evans, and G. Heiss, Hypertension, blood pressure, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study. Hypertension, 2003;42: 1106–1011.

    Article  PubMed  CAS  Google Scholar 

  11. Stein, P.K., P.P. Domitrovich, R.E. Kleiger, and CAST Investigators, Including patients with diabetes mellitus or coronary artery bypass grafting decreases the association between heart rate variability and mortality after myocardial infarction. Am. Heart. J., 2004;147: 309–316.

    Google Scholar 

  12. Carpeggiani, C., A. L’Abbate, P. Landi, C. Michelassi, M. Raciti, A. Macerata, and M. Emdin, Early assessment of heart rate variability is predictive of in-hospital death and major complications after acute myocardial infarction. Int. J. Cardiol., 2004;96: 361–368.

    Article  PubMed  Google Scholar 

  13. Casaleggio, A., R. Maestri, M.T. La Rovere, P. Rossi, and G.D. Pinna, Prediction of sudden death in heart failure patients: a novel perspective from the assessment of the peak ectopy rate. Europace, 2007;9: 385–390.

    Article  PubMed  Google Scholar 

  14. Barthel, P., R. Schneider, A. Bauer, K. Ulm, C. Schmitt, A. Schömig, and G. Schmidt. Risk stratification after acute myocardial infarction by heart rate turbulence. Circulation, 2003;108: 1221–1226.

    Article  PubMed  Google Scholar 

  15. Exner, D.V., K.M. Kavanagh, M.P. Slawnych, L.B. Mitchell, D. Ramadan, S.G. Aggarwal, C. Noullett, A. Van Schaik, R.T. Mitchell, M.A. Shibata, S. Gulamhussein, J. McMeekin, W. Tymchak, G. Schnell, A.M. Gillis, R.S. Sheldon, G.H. Fick, H.J. Duff, and REFINE Investigators, Noninvasive risk assessment early after a myocardial infarction the REFINE study. J. Am. Coll. Cardiol., 2007;50: 2275–2284.

    Google Scholar 

  16. Mäkikallio, T.H., P. Barthel, R. Schneider, A. Bauer, J.M. Tapanainen, M.P. Tulppo, J.S. Perkiömäki, G. Schmidt, and H.V. Huikuri, Frequency of sudden cardiac death among acute myocardial infarction survivors with optimized medical and revascularization therapy. Am. J. Cardiol., 2006;97: 480–484.

    Article  PubMed  Google Scholar 

  17. Klingenheben, T., P. Ptaszynski, and S.H. Hohnloser, Heart rate turbulence and other autonomic risk markers for arrhythmia risk stratification in dilated cardiomyopathy. J. Electrocardiol., 2008;41: 306–311.

    Article  PubMed  Google Scholar 

  18. Kanters, J.K., M.V. Højgaard, E. Agner, and N.H. Holstein-Rathlou, Short- and long-term variations in nonlinear dynamics of heart rate variability. Cardiovasc. Res., 1996;31: 400–409.

    PubMed  CAS  Google Scholar 

  19. Zöllei, E., A. Csillik, S. Rabi, Z. Gingl, and L. Rudas, Respiratory effects on the reproducibility of cardiovascular autonomic parameters. Clin. Physiol. Funct. Imaging., 2007;27: 205–210.

    Article  PubMed  Google Scholar 

  20. Kobayashi, H., Inter- and intra-individual variations of heart rate variability in Japanese males. J. Physiol. Anthropol., 2007;26: 173–177.

    Article  PubMed  Google Scholar 

  21. Kleiger, R.E., J.T. Bigger, M.S. Bosner, M.K. Chung, J.R. Cook, L.M. Rolnitzky, R. Steinman, and J.L. Fleiss, Stability over time of variables measuring heart rate variability in normal subjects. Am. J. Cardiol., 1991;68: 626–630.

    Article  PubMed  CAS  Google Scholar 

  22. Kowalewski, M.A. and M. Urban, Short- and long-term reproducibility of autonomic measures in supine and standing positions. Clin. Sci. (Lond)., 2004;106: 61–66.

    Google Scholar 

  23. Burger, A.J., M. Charlamb, L.A. Weinrauch, and J.A. D’Elia, Short- and long-term reproducibility of heart rate variability in patients with long-standing type I diabetes mellitus. Am. J. Cardiol., 1997;80: 1198–1202.

    Article  PubMed  CAS  Google Scholar 

  24. Macfarlane, P.W., J. Norrie, and WOSCOPS Executive Committee, The value of the electrocardiogram in risk assessment in primary prevention: experience from the West of Scotland Coronary Prevention Study. J. Electrocardiol., 2007;40: 101–109.

    Google Scholar 

  25. Dekker, J.M., E.G. Schouten, P. Klootwijk, J. Pool, C.A. Swenne, and D. Kromhout, Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen Study. Am. J. Epidemiol., 1997;145: 899–908.

    Google Scholar 

  26. Korkushko, O.V., V.B. Shatilo, Yu.I. Plachinda, and T.V. Shatilo, Autonomic control of cardiac chronotropic function in man as a function of age: assessment by power spectral analysis of heart rate variability. J. Auton. Nerv. Syst., 1991;32: 191–198.

    Article  PubMed  CAS  Google Scholar 

  27. Ryan, S.M., A.L. Goldberger, S.M. Pincus, J. Mietus, and L.A. Lipsitz. Gender- and age-related differences in heart rate dynamics: are women more complex than men? J. Am. Coll. Cardiol., 1994;24: 1700–1707.

    Article  PubMed  CAS  Google Scholar 

  28. Hotta, N., K. Otsuka, S. Murakami, G. Yamanaka, Y. Kubo, O. Matsuoka, T. Yamanaka, M. Shinagawa, S. Nunoda, Y. Nishimura, K. Shibata, H. Saitoh, M. Nishinaga, M. Ishine, T. Wada, K. Okumiya, K. Matsubayashi, S. Yano, K. Ichihara, G. Cornélissen, and F. Halberg, Fractal analysis of heart rate variability and mortality in elderly community-dwelling people – Longitudinal Investigation for the Longevity and Aging in Hokkaido County (LILAC) study. Biomed. Pharmacother., 2005;59 (Suppl 1): S45–48.

    Article  PubMed  Google Scholar 

  29. Stein, P.K., Assessing heart rate variability from real-world Holter reports. Card. Electrophysiol. Rev., 2002;6: 239–244.

    Article  PubMed  Google Scholar 

  30. Uijtdehaage, S.H.J., and J.F. Thayer. Accentuated antagonism in the control of human heart rate. Clin. Autonom. Res., 2000; 10: 107–110.

    Article  CAS  Google Scholar 

  31. Corino, V.D.A., M. Matteucci, L. Cravello, E. Ferrari, A.A. Ferrari, and L.T. Mainardi. Long-term heart rate variability as a predictor of patient age. Comp. Meth. Prog. Biomed., 2006; 82: 248–257.

    Article  Google Scholar 

  32. Voss, A., J. Kurths, H.J. Kleiner, A. Witt, N. Wessel, P. Saparin, K.J. Osterziel, R. Schurath, and R. Dietz, The application of methods of nonlinear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc. Res., 1996;31: 419–433.

    PubMed  CAS  Google Scholar 

  33. Schneider, R.A. and J.P. Costiloe,. Relationship of sinus arrhythmia to age and its prognostic significance in ischemie heart disease (abstr). Clin. Res., 1965;13: 219.

    Google Scholar 

  34. Acharya U.R., K.P. Joseph, N. Kannathal, C.M. Lim, J.S. Suri. Heart rate variability: a review. Med. Biol. Eng. Comput., 2006;44: 1031–1051.

    Google Scholar 

  35. Hoyer D, Friedrich H, Zwiener U, Pompe B, Baranowski R, Werdan K, Müller-Werdan U, Schmidt H. Prognostic impact of autonomic information flow in multiple organ dysfunction syndrome patients. Int J Cardiol., 2006;108: 359–369.

    Article  PubMed  Google Scholar 

  36. Akay, M. Wavelets in biomedical engineering. Ann. Biomed. Eng., 1995:23: 531–542.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Ltd.

About this entry

Cite this entry

Sosnowski, M. (2010). 35 Heart Rate Variability. In: Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J. (eds) Comprehensive Electrocardiology. Springer, London. https://doi.org/10.1007/978-1-84882-046-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-046-3_35

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-045-6

  • Online ISBN: 978-1-84882-046-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics