Skip to main content

Cellular Electrophysiology

  • Reference work entry
Comprehensive Electrocardiology

1 3.1 Introduction

The beginning of the era of cardiac electrophysiology can be attributed to the end of the nineteenth century, when Einthoven discovered the ECG and described its configuration [1], defining it more quantitatively in a later study [2]. While the ECG remains an essential clinical tool and a symbol of cardiac electrophysiology, the discipline has evolved to address the function of single myocytes, or even of specific processes within myocytes.

Myocytes represent the functional unit of the cardiac muscle; nonetheless, the heart behaves more or less like an electrical syncytium, whose global activity depends on low resistance coupling between the myocytes. The phrase “more or less” is used here intentionally to imply that, while the activity intrinsic to individual myocytes is affected by coupling, its features remain recognizable within the context of the whole heart and are important to determine its function.

The ECG signal represents the electrical activity of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einthoven, W., Über die Form des menschlichen Electrocardiogramms. Pflug. Arch. Ges. Phys., 1895;60: 101–123.

    Article  Google Scholar 

  2. Einthoven, W., The different forms of the human electrocardiogram and their signification. Lancet, 1912;1: 853–861.

    Article  Google Scholar 

  3. Burgess, M.J., K. Millar, and J.A. Abildskov, Cancellation of electrocardiographic effects during ventricular recovery. J. Electrocardiol., 1969;2: 101–107.

    Article  PubMed  CAS  Google Scholar 

  4. Van Oosterom, A., Genesis of the T wave as based on an equivalent surface source model. J. Electrocardiol., 2001;34(Suppl.): 217–226.

    Article  PubMed  Google Scholar 

  5. Fabiato, A. and F. Fabiato, Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol., 1975;249:469– 495.

    PubMed  CAS  Google Scholar 

  6. Cheng, H., W.J. Lederer, and M.B. Cannell, Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science, 1993;262: 740–744.

    Article  PubMed  CAS  Google Scholar 

  7. Van Veen, A.A.B., H.V.M. Van Rijen, and T. Opthof, Cardiac gap junction channels: modulation of expression and channel properties. Cardiovasc. Res., 2001;51: 217–229.

    Article  PubMed  CAS  Google Scholar 

  8. Keith, A. and M. Flack, The form and nature of the muscular connection between the primary divisions of the vertebrate heart. J. Anat. Physiol., 1907;41: 172–189.

    PubMed  CAS  Google Scholar 

  9. Tawara, S., Das Reizleitungssystem des Säugetierherzen. Jena, 1906.

    Google Scholar 

  10. Eyster, J.A.E. and W.J. Meek, The origin and conduction of the heart beat. Physiol. Rev., 1921;1: 1–43.

    Google Scholar 

  11. Ling, G. and R.W. Gerard, The normal membrane potential of frog sartorius muscle. J. Cell. Compar. Physiol., 1949;34: 383–396.

    Article  CAS  Google Scholar 

  12. Powell, T. and V.W. Twist, A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochem. Biophys. Res. Commun., 1976;72: 327–333.

    Article  PubMed  CAS  Google Scholar 

  13. Neher, E., B. Sakmann, and J.H. Steinbach, The extracellular patch-clamp: a method for resolving currents through individual open channels in biological membranes. Pflug. Arch., 1978;375: 219–228.

    Article  CAS  Google Scholar 

  14. Boyett, M.R., H. Honjo, and I. Kodama, The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc. Res., 2000;47: 658–687.

    Article  PubMed  CAS  Google Scholar 

  15. Meijler, F.L. and M.J. Janse, Morphology and electrophysiology of the mammalian atriventricular node. Physiol. Rev., 1988;68: 608–647.

    PubMed  CAS  Google Scholar 

  16. Schuilenburg, R.M. and D. Durrer, Atrial echo beats in the human heart elicited by induced atrial premature beats. Circulation, 1968;37: 680–693.

    Article  PubMed  CAS  Google Scholar 

  17. Tranum-Jensen J., A.A.M. Wilde, J.T. Vermeulen, and M.J. Janse, Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts. Circ. Res., 1991;69: 429–437.

    Article  PubMed  CAS  Google Scholar 

  18. Harris, H.W., Jr., Molecular aspects of water transport. Pediatr. Nephrol., 1992;6: 304–310.

    Article  PubMed  Google Scholar 

  19. Benga, G., Birth of water channel proteins-the aquaporins. Cell. Biol. Int., 2003;27: 701–709.

    Article  PubMed  CAS  Google Scholar 

  20. Calaghan, S.C., J.Y. Le Guennec, and E. White, Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog. Biophys. Mol. Biol., 2004;84: 29–59.

    Article  PubMed  CAS  Google Scholar 

  21. Fozzard, H.A. and R.B. Gunn, Membrane transport, in The Heart, 2nd ed., H.A. Fozzard, E. Haber, R.B. Jennings, A.M.J. Katz, and H.E. Morgan, Editors. New York: Raven Press, 1991, pp. 99–110.

    Google Scholar 

  22. Matsuda, H. and J.D.S. Cruz, Voltage-dependent block by internal Ca+ + ions of inwardly rectifying K+ channels in guinea-pig ventricular cells. J. Physiol., 1993;470: 295–311.

    PubMed  CAS  Google Scholar 

  23. Lopatin, A.N., E.N. Makhina, and C.G. Nichols, Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature, 1994;372: 366–369.

    Article  PubMed  CAS  Google Scholar 

  24. Zaza, A., M. Rocchetti, A. Brioschi, A. Cantadori, and A. Ferroni, Dynamic Ca2 + -induced inward rectification of K+ current during the ventricular action potential. Circ. Res., 1998;82: 947–956.

    Article  PubMed  CAS  Google Scholar 

  25. Litovsky, S.H. and C. Antzelevitch, Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ. Res., 1988;62: 116–126.

    Article  PubMed  CAS  Google Scholar 

  26. Sanguinetti, M.C. and N.K. Jurkiewicz, Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J. Gen. Physiol., 1990;96: 195–215.

    Article  PubMed  CAS  Google Scholar 

  27. Attwell, D., I.S. Cohen, D.A. Eisner, M. Ohba, and C. Ojeda, The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflug. Arch., 1979;379: 137–142.

    Article  CAS  Google Scholar 

  28. Hirano, Y., A. Moscucci, and C.T. January, Direct measurement of L-type Ca+ + window current in heart cells. Circ. Res., 1992;70: 445–455.

    Article  PubMed  CAS  Google Scholar 

  29. Gintant, G.A., N.B. Datyner, and I.S. Cohen, Slow inactivation of a tetrodotoxin-sensitive current in canine Purkinje fibers. Biophys. J., 1984;45: 509–512.

    Article  PubMed  CAS  Google Scholar 

  30. Bers, D.M., Sarcolemmal Na/Ca exchange and Ca-pump, in Excitation-Contraction Coupling and Cardiac Contractile Force, D.M. Bers, Editor. Boston: Kluwer Academic Publishers, 2002, pp. 133–160.

    Google Scholar 

  31. Ishihara, K., T. Mitsuiye, A. Noma, and M. Takano, The Mg2 + block and intrinsic gating underlying inward rectification of the K+ current in guinea-pig cardiac myocytes. J. Physiol., 1989;419: 297–320.

    PubMed  CAS  Google Scholar 

  32. Smith, P.L., T. Baukrowitz, and G. Yellen, The inward rectification mechanism of the HERG cardiac potassium channel. Nature, 1996;37: 833–836.

    Article  Google Scholar 

  33. Rocchetti, M, A. Besana, G.B. Gurrola, L.D. Possani, and A. Zaza, Rate-dependency of delayed rectifier currents during the guinea-pig ventricular action potential. J. Physiol., 2001;534: 721–732.

    Article  PubMed  CAS  Google Scholar 

  34. Shimoni, Y., R.B. Clark, and W.R. Giles, Role of inwardly rectifying potassium current in rabbit ventricular action potential. J. Physiol., 1992;448: 709–727.

    PubMed  CAS  Google Scholar 

  35. Noma, A., T. Nakayama, Y. Kurachi, and H. Irisawa, Resting K conductances in pacemaker and non-pacemaker heart cells of the rabbit. Jpn. J. Physiol., 1984;34: 245–254.

    Article  PubMed  CAS  Google Scholar 

  36. Cordeiro, J.M., K.W. Spitzer, and W.R. Giles, Repolarizing K+ currents in rabbit heart Purkinje cells. J. Physiol., 1998;508: 811–823.

    Article  PubMed  CAS  Google Scholar 

  37. Miake, J., E. Marbán, and H.B. Nuss, Biological pacemaker created by gene transfer. Nature, 2002;419: 132–133.

    Article  PubMed  CAS  Google Scholar 

  38. Janse, M.J., T. Opthof, and A.G. Kléber, Animal models of cardiac arrhythmias. Cardiovasc. Res., 1998;39: 165–177.

    Article  PubMed  CAS  Google Scholar 

  39. Janse, M.J. and A.L. Wit, Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol. Rev., 1989;69: 1049–1169.

    PubMed  CAS  Google Scholar 

  40. Wiener, N. and A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex., 1946;16: 205–265.

    PubMed  CAS  Google Scholar 

  41. Moe, G.K. and C. Mendez, Basis of pharmacotherapy of cardiac arrhythmias. Mod. Conc. Cardiov. Dis., 1962;31:739–744.

    PubMed  CAS  Google Scholar 

  42. Allessie, M.A., F.I.M. Bonke, and F.J.G. Schopman, Circus movement in rabbit atrial muscle as a mechanism of tachycardia. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ. Res., 1977;41: 9–18.

    Article  PubMed  CAS  Google Scholar 

  43. Conrath, C.E. and T. Opthof, Ventricular repolarization. An overview of (patho)physiology, sympathetic effects, and genetic aspects. Prog. Biophys. Mol. Biol., 2005;92(3): 269–307. doi:10.1016/jpbiomolbio.2005.05.009.

    Article  PubMed  CAS  Google Scholar 

  44. Stengl, M., P.G. Volders, M.B. Thomsen, R.L. Spätjens, K.R. Sipido, and M.A. Vos, Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes. J. Physiol., 2003;551: 777–786.

    Article  PubMed  CAS  Google Scholar 

  45. Virág, L., N. Iost, M. Opincariu, J. Szolnoky, J. Szécsi, G. Bogáts, P. Szenohradszky, A. Varró, and J.G. Papp, The slow component of the delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovasc. Res., 2001;49: 790–797.

    Article  PubMed  Google Scholar 

  46. Lu, Z., K. Kamiya, T. Opthof, K. Yasui, and I. Kodama, Density and kinetics of IKr and IKs in guinea pi45d r rabbit ventricular myocytes explain different efficacy of IKs blockade at high heart rate in guinea pig and rabbit. Circulation, 2001;104:951–956.

    Article  PubMed  CAS  Google Scholar 

  47. Volders, P.G., M. Stengl, J.M. van Opstal, U. Gerlach, R.L. Spätjens, J.D. Beekman, K.R. Sipido, and M.A. Vos, Probing the contribution of IKs to canine ventricular repolarization: key role for ß-adrenergic receptor stimulation. Circulation, 2003;107: 2753–2760.

    Article  PubMed  Google Scholar 

  48. Nitta, J.-I., T. Furukawa, F. Marumo, T. Sawanobori, and M. Hiraoka, Subcellular mechanism for Ca2 + -dependent enhancement of delayed rectifier K+ current in isolated membrane patches of guinea pig ventricular myocytes. Circ. Res., 1994;74: 96–104.

    Article  PubMed  CAS  Google Scholar 

  49. Jost, N., L. Virág, M. Bitay, J. Takács, C. Lengyel, P. Biliczki, Z. Nagy, G. Bogáts, D.A. Lathrop, J.G. Papp, and A. Varró, Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation, 2005;112: 1392–1399.

    Article  PubMed  Google Scholar 

  50. Saitoh, H, J.C. Bailey, and B. Surawicz, Alternans of action potential duration after abrupt shortening of cycle length: differences between dog Purkinje and ventricular muscle fibers. Circ. Res., 1988;62: 1027–1040.

    Article  PubMed  CAS  Google Scholar 

  51. Curran, M.E., I. Splawski, K.W. Timothy, M.G. Vincent, E.D. Green, and M.T. Keating, A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 1995;80: 795–803.

    Article  PubMed  CAS  Google Scholar 

  52. Jurkiewicz, N.K. and M.C. Sanguinetti, Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier current by dofetilide. Circ. Res., 1993;72:75–83.

    Article  PubMed  CAS  Google Scholar 

  53. Biliczki, P., L. Virág, N. Iost, J.G. Papp, and A. Varró, Interaction of different potassium channels in cardiac repolarization in dog ventricular preparations: role of repolarization reserve. Br. J. Pharmacol., 2002;137: 361–368.

    Article  PubMed  CAS  Google Scholar 

  54. Bennett, P.B., K. Yazawa, N. Makita, and A.L. George, Jr., Molecular mechanism for an inherited cardiac arrhythmia. Nature, 1995;376: 683–685.

    Article  PubMed  CAS  Google Scholar 

  55. Clancy, C.E., M. Tateyama, H. Liu, X.H. Wehrens, and R.S. Kass, Non-equilibrium gating in cardiac Na+ channels: an original mechanism of arrhythmia. Circulation, 2003;107:2233–2237.

    Article  PubMed  CAS  Google Scholar 

  56. Berecki, N.G., J.G. Zegers, Z.A. Bhuiyan, A.O. Verkerk, R. Wilders, and A.C.G. van Ginneken, Long-QT syndrome related sodium channel mutations probed ny dynamic action potential clamp technique. J. Physiol., 2006;570: 237–250.

    PubMed  CAS  Google Scholar 

  57. Lee, K.S., E. Marbán, and R.W. Tsien, Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J. Physiol., 1985;364: 395–411.

    PubMed  CAS  Google Scholar 

  58. Zuhlke, R.D., G.S. Pitt, K. Deisseroth, R.W. Tsien, and H. Reuter, Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature, 1999;399: 159–162.

    Article  PubMed  CAS  Google Scholar 

  59. Goldhaber, J.I., L.H. Xie, T. Duong, C. Motter, K. Khuu, and J.N. Weiss, Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling. Circ. Res., 2005;96: 459–466.

    Article  PubMed  CAS  Google Scholar 

  60. January, C.T. and J.M. Riddle, Early after depolarizations: mechanism of induction and block A role for L-type Ca2 + current. Circ. Res., 1989;64: 977–990.

    Article  PubMed  CAS  Google Scholar 

  61. Keith, A., The sino-auricular node: a historical note. Br. Heart J., 1942;4: 77–79.

    Article  PubMed  CAS  Google Scholar 

  62. Trautwein, W. and K. Uchizono, Electron microscopic and electrophysiologic study of the pacemaker in the sinoatrial node of the rabbit heart. Z. Zellforsch. Mikrosk. Anat., 1963;61: 96–109.

    Article  PubMed  CAS  Google Scholar 

  63. Taylor, J.J., L.S. d’Agrosa, and E.M. Berns, The pacemaker cell of the sinoatrial node of the rabbit. Am. J. Physiol., 1978;235: H407–H412.

    PubMed  CAS  Google Scholar 

  64. Maltsev, V.A., A.M. Wobus, J. Rohwedel, M. Bader, and J. Hescheler, Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res., 1994;75: 233–244.

    Article  PubMed  CAS  Google Scholar 

  65. DiFrancesco, D., Pacemaker mechanisms in cardiac tissue. Annu. Rev. Physiol., 1993;55: 451–467.

    Article  Google Scholar 

  66. Irisawa, H., H.F. Brown, and W. Giles, Cardiac pacemaking in the sinoatrial node. Physiol. Rev., 1993;73: 197–227.

    PubMed  CAS  Google Scholar 

  67. Yu, H., F. Chang, and I.S. Cohen, Pacemaker current if in adult canine cardiac ventricular myocytes. J. Physiol., 1995;485: 469–483.

    PubMed  CAS  Google Scholar 

  68. Robinson, R.B., H. Yu, F. Chang, and I.S. Cohen, Developmental change in the voltage-dependence of the pacemaker current, if, in rat ventricle cells. Pflug. Arch., 1997;433: 533–535.

    Article  CAS  Google Scholar 

  69. DiFrancesco, D., The cardiac hyperpolarizing-activated current I f . Prog. Biophys. Mol. Biol., 1985;46: 163–183.

    Article  PubMed  CAS  Google Scholar 

  70. Zaza, A., M. Micheletti, A. Brioschi, and M. Rocchetti, Ionic currents during sustained pacemaker activity in rabbit sino-atrial myocytes. J. Physiol., 1997;505: 677–688.

    Article  PubMed  CAS  Google Scholar 

  71. DiFrancesco, D. and M. Mangoni, Modulation of single hyperpolarization-activated channels (If) by cAMP in the rabbit sino-atrial node. J. Physiol., 1994;474: 473–482.

    PubMed  CAS  Google Scholar 

  72. Zaza, A., R.B. Robinson, and D. DiFrancesco, Basal responses of the L-type Ca2 + and hyperpolarization-activated currents to autonomic agonists in the rabbit sinoatrial node. J. Physiol., 1996;491: 347–355.

    PubMed  CAS  Google Scholar 

  73. Zaza, A., M. Rocchetti, and D. DiFrancesco, Modulation of the hyperpolarization activated current (If) by adenosine in rabbit sinoatrial myocytes. Circulation, 1996;94: 734–741.

    Article  PubMed  CAS  Google Scholar 

  74. Verheijck, E.E., A.C.G. van Ginneken, R. Wilders, and L.N. Bouman, Contribution of L-type Ca2 + current to electrical activity in sinoatrial nodal myocytes of rabbits. Am. J. Physiol., 1999;276: H1064–H1077.

    PubMed  CAS  Google Scholar 

  75. Reuter, H., Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature, 1983;301: 569–574.

    Article  PubMed  CAS  Google Scholar 

  76. Verheijck, E.E., A.C.G. van Ginneken, J. Bourier, and L.N. Bouman, Effects of delayed rectifier current blockade by E-4031 on impulse generation in single sinoatrial nodal myocytes of the rabbit. Circ. Res., 1995;76: 607–615.

    Article  PubMed  CAS  Google Scholar 

  77. Noble, D., J.C. Denyer, H.F. Brown, and D. DiFrancesco, Reciprocal role of the inward currents Ib,Na and If in controlling and stabilizing pacemaker frequency of rabbit sino-atrial node cells. Proc. R. Soc. Lond. B Biol. Sci., 1992;250:199–207.

    Article  CAS  Google Scholar 

  78. Nishida, M. and R. MacKinnon, Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell, 2002;111:957–965.

    Article  PubMed  CAS  Google Scholar 

  79. Duivenvoorden, J.J., L.N. Bouman, T. Opthof, F.F. Bukauskas, and H.J. Jongsma, Effect of transmural vagal stimulation on electrotonic current spread in the rabbit sinoatrial node. Cardiovasc. Res., 1992;26: 678–686.

    Article  PubMed  CAS  Google Scholar 

  80. DiFrancesco, D., P. Ducouret, and R.B. Robinson, Muscarinic modulation of cardiac rate at low acetylcholine concentrations. Science, 1989;243: 669–671.

    Article  PubMed  CAS  Google Scholar 

  81. Boyett, M.R., I. Kodama, H. Honjo, A. Arai, R. Suzuki, and J. Toyama, Ionic basis of the chronotropic effect of acetylcholine on the rabbit sinoatrial node. Cardiovasc. Res., 1995;29:867–878.

    PubMed  CAS  Google Scholar 

  82. Zaza, A. and M. Rocchetti, Regulation of the sinoatrial pacemaker: selective If inhibition by ivaradine, in Heart Rate Management in Stable Angina, K. Fox and R. Ferrari, Editors. London: Taylor & Francis, 2005, pp. 51–67.

    Google Scholar 

  83. Huser, J., L.A. Blatter, and S.L. Lipsius, Intracellular Ca2 + release contributes to automaticity in cat atrial pacemaker cells. J. Physiol., 2000;524: 415–422.

    Article  PubMed  CAS  Google Scholar 

  84. Bogdanov, K.Y., T.M. Vinogradova, and E.G. Lakatta, Sinoatrial nodal cell ryanodine receptor and Na+ -Ca2 + exchanger: molecular partners in pacemaker regulation. Circ. Res., 2001;88: 1254–1258.

    Article  PubMed  CAS  Google Scholar 

  85. Lakatta, E.G., V.A. Maltsev, K.Y. Bogdanov, M.D. Stern, and T.M. Vinogradova, Cyclic variation of intracellular calcium: a critical factor for cardiac pacemaker cell dominance. Circ. Res., 2003;92: e45–e50.

    Article  PubMed  CAS  Google Scholar 

  86. Vinogradova, T.M., Y.Y. Zhou, V. Maltsev, A. Lyashkov, M. Stern, and E.G. Lakatta, Rhythmic ryanodine receptor Ca2 + releases during diastolic depolarization of sinoatrial pacemaker cells do not require membrane depolarization. Circ. Res., 2004;94: 802–809.

    Article  PubMed  CAS  Google Scholar 

  87. Vinogradova, T.M., K.Y. Bogdanov, and E.G. Lakatta, Beta-adrenergic stimulation modulates ryanodine receptor Ca2 + release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells. Circ. Res., 2002;90: 73–79.

    Article  PubMed  CAS  Google Scholar 

  88. Michaels, D.C., E.P. Matyas, and J. Jalife, Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circ. Res., 1987;61: 704–714.

    Article  PubMed  CAS  Google Scholar 

  89. Masson-Pévet, M.A., W.K. Bleeker, and D. Gros, The plasma membrane of leading pacemaker cells in the rabbit sinus node. A quantitative structural analysis. Circ. Res., 1979;45: 621–629.

    Article  PubMed  Google Scholar 

  90. Honjo, H., M.R. Boyett, S.R. Coppen, Y. Takagishi, T. Opthof, N.J. Severs, and I. Kodama, Heterogeneous expression of connexins in rabbit sinoatrial node cells: correlation between connexin isoform and cell size. Cardiovasc. Res., 2002;53: 89–96.

    Article  PubMed  CAS  Google Scholar 

  91. Masson-Pévet, M.A., W.K. Bleeker, E. Besselsen, B.W. Treytel, H.J. Jongsma, and L.N. Bouman, Pacemaker cell types in the rabbit sinus node: a correlative ultrastructural and electrophysiological study. J. Mol. Cell. Cardiol., 1984;16: 53–63.

    Article  PubMed  Google Scholar 

  92. Kirchhof, C.J. and M.A. Allessie, Sinus node automaticity during atrial fibrillation in isolated rabbit hearts. Circulation, 1992;86: 263–271.

    Article  PubMed  CAS  Google Scholar 

  93. Opthof, T., A.C.G. VanGinneken, L.N. Bouman, and H.J. Jongsma, The intrinsic cycle length in small pieces isolated from the rabbit sinoatrial node. J. Mol. Cell. Cardiol., 1987;19: 923–934.

    Article  PubMed  CAS  Google Scholar 

  94. Kodama, I. and M.R. Boyett, Regional differences in the electrical activity of the rabbit sinus node. Pflug. Arch., 1985;404: 214–226.

    Article  CAS  Google Scholar 

  95. Joyner, R.W. and F.J.L. van Capelle, Propagation through electrically coupled cells: how a small SA node drives a large atrium. Biophys. J., 1986;50: 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  96. Wilders, R. and H.J. Jongsma, Beating irregularity of single pacemaker cells isolated from the rabbit sinoatrial node. Biophys. J., 1993;65: 2601–2613.

    Article  PubMed  CAS  Google Scholar 

  97. Opthof, T., The mammalian sinoatrial node. Cardiovasc. Drugs Ther., 1988;1: 573–597.

    Article  PubMed  CAS  Google Scholar 

  98. Mackaay, A.J.C., T. Opthof, W.K. Bleeker, H.J. Jongsma, and L.N. Bouman, Interaction of adrenaline and acetylcholine on cardiac pacemaker function. J. Pharmacol. Exp. Ther., 1980;214: 417–422.

    PubMed  CAS  Google Scholar 

  99. Mackaay, A.J.C., T. Opthof, W.K. Bleeker, H.J. Jongsma, and L.N. Bouman, Interaction of adrenaline and acetylcholine on sinus node function, in Cardiac Rate and Rhythm, L.N. Bouman and H.J. Jongsma, Editors. The Hague: Nijhoff, 1982, pp. 507–523.

    Chapter  Google Scholar 

  100. Katzung, G.B. and H.A. Morgenstern, Effects of extracellular potassium on ventricular automaticity and evidence of a pacemaker current in mammalian ventricular myocardium. Circ. Res., 1977;40: 105–111.

    Article  PubMed  CAS  Google Scholar 

  101. Cerbai, E, R. Pino, F. Porciatti, G. Sani, M. Toscano, M. Maccherini, G. Giunti, and A. Mugelli, Characterization of the hyperpolarization-activated current, If, in ventricular myocytes from human failing heart. Circulation, 1997;95: 568–571.

    Article  PubMed  CAS  Google Scholar 

  102. Imanishi, S., Calcium-sensitive discharges in canine Purkinje fibers. Jpn. J. Physiol., 1971;21: 443–463.

    Article  PubMed  CAS  Google Scholar 

  103. Dangman, K.H. and B.F. Hoffman, Studies on overdrive stimulation of canine cardiac Purkinje fibers: maximal diastolic potential as a determinant of the response. J. Am. Coll. Cardiol., 1983;2: 1183–1190.

    Article  PubMed  CAS  Google Scholar 

  104. Cheung, D.W., Electrical activity of the pulmonary vein and its interaction with the right atrium in the guinea-pig. J. Physiol., 1981;314: 445–456.

    PubMed  CAS  Google Scholar 

  105. Haissaguerre, M., P. Jais, D.C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Metayer, and J. Clementy, Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New Engl. J. Med., 1998;339: 659–666.

    Article  PubMed  CAS  Google Scholar 

  106. Logothetis, D.E., Y. Kurachi, J. Galper, E.J. Neer, and D.E. Clapham, The beta-gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature, 1987;325: 321–326.

    Article  PubMed  CAS  Google Scholar 

  107. Bender, K., M.C. Wellner-Kienitz, L.I. Bosche, A. Rinne, C. Beckmann, and L. Pott, Acute desensitization of GIRK current in rat atrial myocytes is related to K+ current flow. J. Physiol., 2004;561: 471–483.

    Article  PubMed  CAS  Google Scholar 

  108. Müllner, C., D. Vorobiov, A.K. Bera, Y. Uezono, D. Yakubovich, B. Frohnwieser-Steinecker, N. Dascal, and W. Schreibmayer, Heterologous facilitation of G protein-activated K+ channels by beta-adrenergic stimulation via cAMP-dependent protein kinase. J. Gen. Physiol., 2000;115: 547–558.

    Article  PubMed  Google Scholar 

  109. Cho, H., D. Lee, S.H. Lee, and W.K. Ho, Receptor-induced depletion of phosphatidylinositol 4,5-bisphosphate inhibits inwardly rectifying K+ channels in a receptor-specific manner. Proc. Natl. Acad. Sci. USA, 2005;102: 4643–4648.

    Article  PubMed  CAS  Google Scholar 

  110. Gintant, G.A., Two components of delayed rectifier current in canine atrium and ventricle. Does IKs play a role in the reverse rate dependence of class III agents? Circ. Res., 1996;78: 26–37.

    Article  PubMed  CAS  Google Scholar 

  111. Wang, Z., B. Fermini, and S. Nattel, Rapid and slow components of delayed rectifier current in human atrial myocytes. Cardiovasc. Res., 1994;28: 1540–1546.

    Article  PubMed  CAS  Google Scholar 

  112. Wang, Z., B. Fermini, and S. Nattel, Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ. Res., 1993;73: 1061–1076.

    Article  PubMed  CAS  Google Scholar 

  113. Crumb, W.J., Jr., B. Wible, D.J. Arnold, J.P. Payne, and A.M. Brown, Blockade of multiple human cardiac potassium currents by the antihistamine terfenadine: possible mechanism for terfenadine-associated cardiotoxicity. Mol. Pharmacol., 1995;47: 181–190.

    PubMed  CAS  Google Scholar 

  114. Amos, G.J., E. Wettwer, F. Metzger, Q. Li, H.M. Himmel, and U. Ravens, Differences between outward currents of human atrial and subepicardial ventricular myocytes. J. Physiol., 1996;491: 31–50.

    PubMed  CAS  Google Scholar 

  115. Koidl, B., P. Flaschberger, P. Schaffer, B. Pelzmann, E. Bernhart, H. Machler, and B. Rigler, Effects of the class III antiarrhythmic drug ambasilide on outward currents in human atrial myocytes. Naunyn Schmiedebergs Arch. Pharmacol., 1996;353:226–232.

    Article  PubMed  CAS  Google Scholar 

  116. Antzelevitch, C., S. Sicouri, S.H. Litovsky, A. Lukas, S.C. Krishnan, J.M. Di Diego, G.A. Gintant, and D.W. Liu. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ. Res., 1991;69: 1427–1449.

    Article  PubMed  CAS  Google Scholar 

  117. Rosati, B., F. Grau, S. Rodriguez, H. Li, J.M. Nerbonne, and D. McKinnon, Concordant expression of KChIP2 mRNA, protein and transient outward current throughout the canine ventricle. J. Physiol., 2003;548: 815–822.

    Article  PubMed  CAS  Google Scholar 

  118. Liu, D.W. and C. Antzelevitch, Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential in the M cell. Circ. Res., 1995;76: 351–365.

    Article  PubMed  CAS  Google Scholar 

  119. Sicouri, S. and C. Antzelevitch, A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ. Res., 1991;68: 1729–1741.

    Article  PubMed  CAS  Google Scholar 

  120. Anyukhovsky, E.P., E.A. Sosunov, R.Z. Gainullin, and M.R. Rosen, The controversial M cell. J. Cardiovasc. Electrophysiol., 1999;10: 244–260.

    Article  PubMed  CAS  Google Scholar 

  121. Antzelevitch, C., W. Shimuzu, G.-X. Yan, S. Sicouri, J. Weissenburger, V.V. Nesterenko, A. Burashnikov, J. Di Diego, J. Saffitz, and G.P. Thomas, The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J. Cardiovasc. Electrophysiol., 1999;10: 1124–1152.

    Article  PubMed  CAS  Google Scholar 

  122. Janse, M.J., E.A. Sosunov, R. Coronel, T. Opthof, E.P. Anyukhovsky, J.M.T. de Bakker, A.N. Plotnikov, I.N. Shlapakova, P. Danilo, Jr., J.G.P. Tijssen, and M.R. Rosen, Repolarization gradients in the canine left ventricle before and after induction of short-term cardiac memory. Circulation, 2005;112: 1711–1718.

    Article  PubMed  Google Scholar 

  123. Drouin, E., F. Charpentier, C. Gauthier, K. Laurent, and H. Le Marec, Electrophysiological characteristics of cells spanning the left ventricular wall of human heart: evidence for the presence of M cells. J. Am. Coll. Cardiol., 1995;26: 185–192.

    Article  PubMed  CAS  Google Scholar 

  124. Taggart, P., P.M.I. Sutton, T. Optof, R. Coronel, R. Trimlett, W. Pugsley, and P. Kallis, Transmural repolarisation in the left ventricle in humans during normoxia and ischaemia. Cardiovasc. Res., 2001;50: 454–462.

    Article  PubMed  CAS  Google Scholar 

  125. Conrath, C.E., R. Wilders, R. Coronel, J.M.T. De Bakker, P. Taggart, J.R. De Groot, and T. Opthof, Intercellular coupling through gap junctions masks M cells in the human heart. Cardiovasc. Res., 2004;62: 407–414.

    Article  PubMed  CAS  Google Scholar 

  126. Bauer, A., R. Becker, K.D. Freigang, J.C. Senges, F. Voss, A. Hansen, M. Müller, H.J. Lang, U. Gerlach, A. Busch, P. Kraft, W. Kubler, and W. Schols, Rate- and site-dependent effects of Propafenone, Dofetilide and the new IKs-blocking agent Chromanol 293b on individual muscle layers of the intact canine heart. Circulation, 1999;100: 2184–2190.

    Article  PubMed  CAS  Google Scholar 

  127. Roden, D.M., J.R. Balser, A.L. George, Jr., and M.E. Anderson, Cardiac ion channels. Annu. Rev. Physiol., 2002;64: 431–475.

    Article  PubMed  CAS  Google Scholar 

  128. Catterall, W.A. and G. Gutman, Introduction to the IUPHAR compendium of voltage-gated ion channels. Pharmacol. Rev., 2005;57: 385.

    Article  Google Scholar 

  129. Hanlon, M.R. and B.A. Wallace, Structure and function of voltage-dependent ion channel regulatory β subunits. Biochemistry, 2002;41: 2886–2894.

    Article  PubMed  CAS  Google Scholar 

  130. Qu, J., C. Altomare, A. Bucchi, D. DiFrancesco, and R.B. Robinson, Functional comparison of HCN isoforms expressed in ventricular and HEK 293 cells. Pflug. Arch., 2002;444: 597–601.

    Article  CAS  Google Scholar 

  131. Yang, T., D. Snyders, and D.M. Roden, Drug block of IKr: model systems and relevance to human arrhythmias. J. Cardiovasc. Pharm., 2001;38: 737–744.

    Article  CAS  Google Scholar 

  132. Kléber, A.G., M.J. Janse, and V.G. Fast, Normal and abnormal conduction in the heart, in Handbook of Physiology. Section 2 The Cardiovascular System, vol. 1 The Heart. Oxford: Oxford University Press, 2001, pp. 455–530.

    Google Scholar 

  133. Kléber, A.G. and Y. Rudy, Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev., 2004;84: 431–488.

    Article  PubMed  Google Scholar 

  134. Weidmann, S., Electrical constants of trabecular muscle from mammalian heart. J. Physiol., 1952;118: 348–360.

    PubMed  CAS  Google Scholar 

  135. Sampson, K.J. and C.S. Henriquez, Electrotonic influences on action potential duration dispersion in small hearts: a simulation study. Am. J. Physiol. Heart Circ. Physiol., 2005;289: H350–H360.

    Article  PubMed  CAS  Google Scholar 

  136. Taggart, P., P.M.I. Sutton, T. Opthof, R. Coronel, R. Trimlett, W. Pugsley, and P. Kallis, Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. J. Mol. Cell. Cardiol., 2000;32: 621–630.

    Article  PubMed  CAS  Google Scholar 

  137. Spach, M.S., Transition from continuous to discontinuous understanding of cardiac conduction. Circ. Res., 2003;92:125–126.

    Article  PubMed  CAS  Google Scholar 

  138. Winterton, S.J., M.A. Turner, D.J. O’Gorman, N.A. Flores, and D.J. Sheridan. Hypertrophy causes delayed conduction in human and guinea pig myocardium: accentuation during ischaemic perfusion. Cardiovasc. Res., 1994;28: 47–54.

    Article  PubMed  CAS  Google Scholar 

  139. Wiegerinck, R.F., A.O. Verkerk, C.N. Belterman, T.A.B. van Veen, A. Baartscheer, T. Opthof, R. Wilders, J. de Bakker, and R. Coronel, Larger cell size in rabbits with heart failure increases myocardial conduction velocity and QRS duration. Circulation, 2006;113: 806–813.

    Article  PubMed  Google Scholar 

  140. Wang, Y. and Y. Rudy, Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. Am. J. Physiol. Heart Circ. Physiol., 2000;278: H1019–H1029.

    PubMed  CAS  Google Scholar 

  141. Shaw, R.M. and Y. Rudy, Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reducted excitability and decreased gap junction coupling. Circ. Res., 1997;81: 727–741.

    Article  PubMed  CAS  Google Scholar 

  142. Spach, M.S., W.T. Miller, III, D.B. Geselowitz, R.C. Barr, J.M. Kootsey, and E.A. Johnson, The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circ. Res., 1981;48: 39–54.

    Article  PubMed  CAS  Google Scholar 

  143. Spach, M.S., P.C. Dolber, and J.F. Heidlage, Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation. Circ. Res., 1988;62:811–832.

    Article  PubMed  CAS  Google Scholar 

  144. Sugiura, H. and R.W. Joyner, Action potential conduction between guinea pig ventricular cells can be modulated by calcium current. Am. J. Physiol., 1992;263: H1591–H1604.

    PubMed  CAS  Google Scholar 

  145. Rohr, S. and J.P. Kucera, Involvement of the calcium inward current in cardiac impulse propagation: induction of unidirectional conduction block by nifedipine and reversal by Bay K 8644. Biophys. J., 1997;72: 754–766.

    Article  PubMed  CAS  Google Scholar 

  146. Spach, M.S., Transition from a continuous to discontinuous understanding of cardiac conduction. Circ. Res., 2003;92:125–126.

    Article  PubMed  CAS  Google Scholar 

  147. van der Pol, B. and J. van der Mark, The heartbeat considered as a relaxation oscillation and an electrical model of the heart. Philos. Mag., 1928;6: 763–775.

    Google Scholar 

  148. FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1961;1: 445–466.

    Article  PubMed  CAS  Google Scholar 

  149. van Capelle, F.J.L. and D. Durrer, Computer simulation of arrhythmias in a network of coupled excitable elements. Circ. Res., 1980;47: 454–466.

    Article  PubMed  CAS  Google Scholar 

  150. Hodgkin, A.L. and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952;117: 500–544.

    PubMed  CAS  Google Scholar 

  151. Noble, D., Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature, 1960;188: 495–497.

    Article  CAS  Google Scholar 

  152. Noble, D., A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol., 1962;160: 317–352.

    PubMed  CAS  Google Scholar 

  153. McAllister, R.E., D. Noble, and R.W. Tsien, Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol., 1975;251: 1–59.

    PubMed  CAS  Google Scholar 

  154. DiFrancesco, D. and D. Noble, A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1985;307: 353–398.

    Article  PubMed  CAS  Google Scholar 

  155. Beeler, G.W. and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol., 1977;268:177–210.

    PubMed  CAS  Google Scholar 

  156. Drouhard, J.P. and F.A. Roberge, Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. Comput. Biomed. Res., 1987;20: 333–350.

    Article  PubMed  CAS  Google Scholar 

  157. Hilgemann, D.W. and D. Noble, Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of the basic cellular mechanisms. Proc. R. Soc. Lond. B Biol. Sci., 1987;230: 163–205.

    Article  PubMed  CAS  Google Scholar 

  158. Yanagihara, K., A. Noma, and H. Irisawa, Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments. Jpn. J. Physiol., 1980;30: 841–857.

    Article  PubMed  CAS  Google Scholar 

  159. Irisawa, H. and A. Noma, Pacemaker mechanisms of rabbit sinoatrial node cells, in Cardiac Rate and Rhythm, L.N. Bouman and H.J. Jongsma, Editors. The Hague: Nijhoff, 1982, pp. 35–51.

    Chapter  Google Scholar 

  160. Bristow, D.G. and J.W. Clark, A mathematical model of primary pacemaking cell in SA node of the heart. Am. J. Physiol., 1982;243: H207–H218.

    PubMed  CAS  Google Scholar 

  161. Noble, D. and S.J. Noble, A model of sino-atrial node electrical activity based on a modification of the DiFrancesco-Noble (1984) equations. Proc. R. Soc. Lond. B Biol. Sci., 1984;222: 295–304.

    Article  PubMed  CAS  Google Scholar 

  162. Noble, D., D. DiFrancesco, and J.C. Denyer, Ionic mechanisms in normal and abnormal cardiac pacemaker activity, in Neuronal and Cellular Oscillators, J.W. Jacklet, Editor. New York: Marcel Dekker, 1989, pp. 59–85.

    Google Scholar 

  163. Noble, D., S.J. Noble, G.C. Bett, Y.E. Earm, W.K. Ho, and I.K. So, The role of sodium-calcium exchange during the cardiac action potential. Ann. NY Acad. Sci., 1991;639: 334–353.

    Article  PubMed  CAS  Google Scholar 

  164. Earm, Y.E. and D. Noble, A model of the single atrial cell: relation between calcium current and calcium release. Proc. R. Soc. Lond. B Biol. Sci., 1990;240: 83–96.

    Article  PubMed  CAS  Google Scholar 

  165. Luo, C.-H. and Y. Rudy, A model of the ventricular cardiac action potential: depolarization, repolarization and their interaction. Circ. Res., 1991;68: 1501–1526.

    Article  PubMed  CAS  Google Scholar 

  166. Nordin, C., Computer model of membrane current and intracellular Ca2 + flux in the isolated guinea pig ventricular myocyte. Am. J. Physiol., 1993;265: H2117–H2136.

    PubMed  CAS  Google Scholar 

  167. Luo, C.-H. and Y. Rudy, A dynamic model of the cardiac ventricular action potential, I: simulations of ionic currents and concentration changes. Circ. Res., 1994;74: 1071–1096.

    Article  PubMed  CAS  Google Scholar 

  168. Jafri, S., J.R. Rice, and R.L. Winslow, Cardiac Ca2 + dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys. J., 1998;74: 1149–1168.

    Article  PubMed  CAS  Google Scholar 

  169. Noble, D., A. Varghese, P. Kohl, and P. Noble, Improved guinea-pig ventricular cell model incorporating a diadic space, iKr and iKs, and length- and tension-dependent processes. Can. J. Cardiol., 1998;14: 123–134.

    PubMed  CAS  Google Scholar 

  170. Priebe, L. and D.J. Beuckelmann, Simulation study of cellular electric properties in heart failure. Circ. Res., 1998;82: 1206– 1223.

    Article  PubMed  CAS  Google Scholar 

  171. Winslow, R.L., J. Rice, S. Jafri, E. Marbán, and B. O’Rourke, Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ. Res., 1999;84: 571–586.

    Article  PubMed  CAS  Google Scholar 

  172. Pandit, S.V., R.B. Clark, W.R. Giles, and S.S. Demir, A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J., 2001;81: 3029–3051.

    Article  PubMed  CAS  Google Scholar 

  173. Demir, S.S., J.W. Clark, C.R. Murphey, and W.R. Giles, A mathematical model of a rabbit sinoatrial node cell. Am. J. Physiol., 1994;266: C832–C852.

    PubMed  CAS  Google Scholar 

  174. Puglisi, J.L. and D.M. Bers, LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. Am. J. Physiol. Cell Physiol. 2001;281: C2049– C2060.

    PubMed  CAS  Google Scholar 

  175. Bernus, O., R. Wilders, C.W. Zemlin, H. Verschelde, and A.V. Panfilov, A computationally efficient electrophysiological model of human ventricular cells. Am. J. Physiol. Heart Circ. Physiol., 2002;282: H2296–H2308.

    PubMed  CAS  Google Scholar 

  176. Matsuoka, S., N. Sarai, S. Kuratomi, K. Ono, and A. Noma, Role of individual ionic current systems in ventricular cells hypothesized by a model study. Jpn. J. Physiol., 2003;53:105–123.

    Article  PubMed  CAS  Google Scholar 

  177. Bondarenko, V.E., G.P. Szigeti, G.C. Bett, S.J. Kim, and R.L. Rasmusson, Computer model of action potential of mouse ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol., 2004;287: H1378–H1403.

    Article  PubMed  CAS  Google Scholar 

  178. Shannon, T.R., F. Wang, J. Puglisi, C. Weber, and D.M. Bers, A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys. J., 2004;87: 3351–3371.

    Article  PubMed  CAS  Google Scholar 

  179. ten Tusscher, K.H., D. Noble, P.J. Noble, and A.V. Panfilov, A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol., 2004;286: H1573–H1589.

    Article  PubMed  CAS  Google Scholar 

  180. Iyer, V., R. Mazhari, and R.L. Winslow, A computational model of the human left-ventricular epicardial myocyte. Biophys. J., 2004;87: 1507–1525.

    Article  PubMed  CAS  Google Scholar 

  181. Hund, T.J. and Y. Rudy, Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation, 2004;110: 3168–3174.

    Article  PubMed  CAS  Google Scholar 

  182. Lindblad, D.S., C.R. Murphey, J.W. Clark, and W.R. Giles, A model of the action potential and underlying membrane currents in a rabbit atrial cell. Am. J. Physiol., 1996;271: H1666–H1691.

    PubMed  CAS  Google Scholar 

  183. Courtemanche, M., R.J. Ramirez, and S. Nattel, Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol., 1998;275: H301–H321.

    PubMed  CAS  Google Scholar 

  184. Nygren, A., C. Fiset, L. Firek, J.W. Clark, D.S. Lindblad, R.B. Clark, and W.R. Giles, Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res., 1998;82: 63–81.

    Article  PubMed  CAS  Google Scholar 

  185. Ramirez, R.J., S. Nattel, and M. Courtemanche, Mathematical analysis of canine atrial action potentials: rate, regional factors, and electrical remodeling. Am. J. Physiol. Heart Circ. Physiol., 2000;279: H1767–H1785.

    PubMed  CAS  Google Scholar 

  186. Wilders, R., H.J. Jongsma, and A.C.G. van Ginneken, Pacemaker activity of the rabbit sinoatrial node: a comparison of mathematical models. Biophys. J., 1991;60: 1202–1216.

    Article  PubMed  CAS  Google Scholar 

  187. Dokos, S., B. Celler, and N. Lovell, Ion currents underlying sinoatrial node pacemaker activity: a new single cell mathematical model. J. Theor. Biol., 1996;181: 245–272.

    Article  PubMed  CAS  Google Scholar 

  188. Demir, S.S., J.W. Clark, and W.R. Giles, Parasympathetic modulation of sinoatrial node pacemaker activity in rabbit heart: a unifying model. Am. J. Physiol., 1999;276: H2221–H2244.

    PubMed  CAS  Google Scholar 

  189. Zhang, H., A.V. Holden, I. Kodama, H. Honjo, M. Lei, T. Varghese, and M.R. Boyett, Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. Am. J. Physiol. Heart Circ. Physiol., 2000;279: H397–H421.

    PubMed  CAS  Google Scholar 

  190. Zhang, H., A.V. Holden, D. Noble, and M.R. Boyett, Analysis of the chronotropic effect of acetylcholine on sinoatrial node cells. J. Cardiovasc. Electrophysiol., 2002;13: 465–474.

    Article  PubMed  Google Scholar 

  191. Zhang, H., A.V. Holden, and M.R. Boyett, Sustained inward current and pacemaker activity of mammalian sinoatrial node. J. Cardiovasc. Electrophysiol., 2002;13: 809–812.

    Article  PubMed  Google Scholar 

  192. Kurata, Y., I. Hisatome, S. Imanishi, and T. Shibamoto, Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. Am. J. Physiol. Heart Circ. Physiol., 2002;283: H2074–H2101.

    PubMed  CAS  Google Scholar 

  193. Sarai, N., S. Matsuoka, S. Kuratomi, K. Ono, and A. Noma, Role of individual ionic current systems in the SA node hypothesized by a model study. Jpn. J. Physiol., 2003;53:125–134.

    Article  PubMed  Google Scholar 

  194. Lovell, N.H., S.L. Cloherty, B.G. Celler, and S. Dokos, A gradient model of cardiac pacemaker myocytes. Prog. Biophys. Mol. Biol., 2004;85: 301–323.

    Article  PubMed  Google Scholar 

  195. Krogh-Madsen, T., P. Schaffer, A.D. Skriver, L.K. Taylor, B. Pelzmann, B. Koidl, and M.R. Guevara, An ionic model for rhythmic activity in small clusters of embryonic chick ventricular cells. Am. J. Physiol. Heart Circ. Physiol., 2005;289: H398–H413.

    Article  PubMed  CAS  Google Scholar 

  196. Kneller, J., R.J. Ramirez, D. Chartier, M. Courtemanche, and S. Nattel, Time-dependent transients in an ionically based mathematical model of the canine atrial action potential. Am. J. Physiol. Heart Circ. Physiol., 2002;282: H1437–H1451.

    PubMed  CAS  Google Scholar 

  197. Endresen, L.P., K. Hall, J.S. Hoye, and J. Myrheim, A theory for the membrane potential of living cells. Eur. Biophys. J., 2000;29: 90–103.

    Article  PubMed  CAS  Google Scholar 

  198. ten Tusscher, K.H., O. Bernus, R. Hren, and A.V. Panfilov, Comparison of electrophysiological models for human ventricular cells and tissues. Prog. Biophys. Mol. Biol., 2006;90: 326–345.

    Article  PubMed  Google Scholar 

  199. Wilders, R. and H.J. Jongsma, Beating irregularity of single pacemaker cells isolated from the rabbit sinoatrial node. Biophys. J., 1993;65: 2601–2613.

    Article  PubMed  CAS  Google Scholar 

  200. Zaniboni, M., A.E. Pollard, L. Yang, and K.W. Spitzer, Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling. Am. J. Physiol. Heart Circ. Physiol., 2000;278: H677–H687.

    PubMed  CAS  Google Scholar 

  201. Guevara, M.R. and T.J. Lewis, A minimal single-channel model for the regularity of beating in the sinoatrial node. Chaos, 1995;5: 174–83.

    Article  PubMed  Google Scholar 

  202. Greenstein, J.L. and R.L. Winslow, An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2 + release. Biophys. J., 2002;83: 2918–2945.

    Article  PubMed  CAS  Google Scholar 

  203. Henriquez, C.S., Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng., 1993;21: 1–77.

    PubMed  CAS  Google Scholar 

  204. Potse, M., B. Dubé, J. Richer, A. Vinet, and R.M. Gulrajani, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng., 2006;53(12): 2425–2435.

    Article  PubMed  Google Scholar 

  205. Fenton, F. and A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos, 1998;8: 20–47.

    Article  PubMed  Google Scholar 

  206. Sarai, N., S. Matsuoka, and A. Noma, SimBio: a Java package for the development of detailed cell models. Prog. Biophys. Mol. Biol., 2006;90: 360–377.

    Article  PubMed  Google Scholar 

  207. Mazhari, R., J.L. Greenstein, R.L. Winslow, E. Marbán, and H.B. Nuss, Molecular interactions between two long-QT syndrome gene products, HERG and KCNE2, rationalized by in vitro and in silico analysis. Circ. Res., 2001;89: 33–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Ltd.

About this entry

Cite this entry

Zaza, A., Wilders, R., Opthof, T. (2010). Cellular Electrophysiology. In: Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J. (eds) Comprehensive Electrocardiology. Springer, London. https://doi.org/10.1007/978-1-84882-046-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-046-3_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-045-6

  • Online ISBN: 978-1-84882-046-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics