Skip to main content

Bonediol Production in Bonellia macrocarpa Hairy Root Culture

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Abstract

The genus Bonellia belongs to the family Theophrastaceae, which consists of 22 species distributed in Mesoamerica, in the north and in the west of South America and the Greater Antilles. Bonellia macrocarpa (Cavanilles) Ståhl and Källersjö has generated a great interest derived from the biological activities that present the secondary metabolites of this species. Bonediol is an alkyl catechol produced by Bonellia macrocarpa with antiproliferative activity against cell lines of nasopharynx carcinoma. Hairy root culture is an alternative for study and production of bonediol. The aim of this work is to present a revision on the induction of Bonellia macrocarpa hairy root culture as an alternative strategy for bonediol production. For the production of hairy roots of B. macrocarpa, some factors have an effect on the production, such as the explant type and chemical additives on the percent of explants forming roots. The rhizogenic response of cotyledon, hypocotyl, and roots was different. For cotyledon explants, the rhizogenic response was observed from the 4th to the 6th week; however, for hypocotyl explants, the rhizogenic response was observed from the 5th to the 6th week, and finally for the root explants, the rhizogenic response was observed from the 3rd to the 4th week. Two chemical auxiliaries, glutamine and acetosyringone, had a statistically significant effect on percent of explants forming roots. The addition of 100 mg/L glutamine or 100 μM acetosyringone to the culture media generated the highest percent of explants forming roots in cotyledon; in contrast, other factors such as cysteine, dithiothreitol, and A. rhizogenes density did not have a statistically significant effect on the response. Bonediol can be produced via hairy root culture. Methanol extracts of hairy roots can produce 2.78 mg bonediol/g dried weight of transformed root, and therefore Bonellia macrocarpa hairy root culture is an alternative for bonediol production; however, it is necessary to carry out more studies that allow the scaling of the process in order to have biomass in large quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hill AF (1937) Economic botany: a textbook of useful plants and plant products. McGrwHill, New York

    Google Scholar 

  2. Kabera J, Semana E, Mussa A, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  3. Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Meta 2:303–336

    CAS  Google Scholar 

  4. Sánchez-Medina A, García-Sosa K, May-Pat F, Peña-Rodríguez LM (2001) Evaluation of biological activity of crude extracts from plants used in Yucatecan traditional medicine part I. Antioxidant, antimicrobial and β-glucosidase inhibition activities. Phytomedicine 8:236–239

    Article  Google Scholar 

  5. Khan MY, Aliabbas S, Kumar V, Rajkumar S (2009) Recent advances in medicinal plant biotechnology. Indian J Biotechnol 8:9–22

    CAS  Google Scholar 

  6. Ceballos G, García A (2013) Challenges and opportunities for conservation of Mexican biodiversity. In: Conservation biology: voices from the tropics, 1st edn. Wiley, New York

    Google Scholar 

  7. Fokunang CN, Ndikum V, Tabi OY, Jiofack RB, Ngameni B, Guedje NM, Tembe-Fokunang EA, Tomkins P, Barkwan S, Kechia F, Asongalem E, Ngoupayou J, Torimiro NJ, Gonsu KH, Sielinou V, Ngadjui BT, Angwafor F 3rd, Nkongmenech A, Abena OM, Ngogang J, Asonganyi T, Colizzi V, Lohoue J, Kamsu-Kom (2011) Traditional medicine: past, present and future research and development prospects and integration in the National Health System of Cameroon. Afr J Tradit Complement Altern Med 8:284–295

    Article  CAS  Google Scholar 

  8. Vera-Ku M, Méndez-González M, Moo-Puc R, Rosado-Vallado M, Simá-Polanco P, Ceidllo-Rivera R, Peraza-Sáchez SR (2010) Medicinal potions used against infectious bowel diseases in Mayan traditional medicine. J Ethnopharmacol 132:303–308

    Article  Google Scholar 

  9. Hussein RA, El-Anssary AA (2018) Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. In: Herbal medicine. InthecOpen, London

    Google Scholar 

  10. Velu G, Palanichamy V, Rajan AP (2018) Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In: Bioorganic phase in natural food: an overview. Springer, Cham/New York

    Google Scholar 

  11. Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicine 2:251–286

    CAS  Google Scholar 

  12. Ståhl B, Kallersjo M (2004) Reinstatement of Bonellia (Theophrastaceae). Novon 14:115–118

    Google Scholar 

  13. Fernandez-Concha GC, Hernandez-Aguilar S, Munoz JLT (2007) A new Jacquinia (Theophrastaceae) from the Yucatan Peninsula with a synopsis of pale-flowered species in Mesoamerica. Novon 13:289

    Article  Google Scholar 

  14. Caamal-Fuentes E, Torres-Tapia LW, Cedillo-Rivera R, Moo-Puc R, Peraza-Sánchez SR (2011) Bonediol, a new alkyl catechol from Bonellia macrocarpa. Phytochem Lett 4:345–347

    Article  CAS  Google Scholar 

  15. Moo-Puc R, Chale-Dzul J, Caamal-Fuentes E (2013) Bonellia albiflora: a mayan medicinal plant that induces apoptosis in cancer cells. Evid Based Complement Alternat Med 2013:1–8

    Article  Google Scholar 

  16. García-Sosa K, Sánchez-Medina A, Álvarez SL, Zacchino S, Veitch NC, Simá-Polanco P, Peña Rodriguez LM (2011) Antifungal activity of sakurasosaponin from the root extract of Jacquinia flammea. Nat Prod Res 25:1185–1189

    Article  Google Scholar 

  17. Rodríguez Hann L, Sánchez C, Romo J (1965) Isolation and structure of jacquinic acid. Tetrahedron 21:1735–1740

    Article  Google Scholar 

  18. Okunade A, Wiemer D (1985) Jacquinonic acid, an ant-repellent triterpenoid from Jacquinia pungens. Phytochemistry 24:1203–1205

    Article  CAS  Google Scholar 

  19. Sharma RS, Mishra V, Singh R, Seth N, Babu CR (2008) Antifungal activity of some Himalayan medicinal plants and cultivated ornamental species. Fitoterapia 7-8:589–591

    Article  Google Scholar 

  20. Sánchez-Medina A, Peña-Rodriguez LM, May-Pat F, Karagianis G, Waterman PG, Mallet AI, Habtemariam S (2010) Identification of sakurasosaponin as a cytotoxic principle from Jacquinia flammea. Nat Prod Commun 5:365–368

    PubMed  Google Scholar 

  21. Moo-Koh FA, Alejo JC, Reyes-Ramírez A, Tun-Suárez JM, Sandoval-Luna R, Ramírez-Pool JA (2014) Actividad in vitro del extracto acuoso de Bonellia flammea contra hongos fitopatogenos. Agrociencia 48:833–845

    Google Scholar 

  22. Ohtani K, Mavi S, Hostettrnann K (1993) Molluscicidal and antifungal triterpenoid Saponins from Rapanea melanophloeos leaves. Phytochemistry 33:83–86

    Article  CAS  Google Scholar 

  23. Castillo-Campos G, Medina ME (1998) A new species of Jacquinia (Theophrastaceae). Novon 8:129–132

    Article  Google Scholar 

  24. Caamal-Fuentes E, Torres-Tapia LW, Simá-Polanco P, Peraza-Sánchez SR, Moo-Puc R (2011) Screening of plants used in Mayan traditional medicine to treat cancer-like symptoms. J Ethnopharmacol 135:719–724

    Article  Google Scholar 

  25. Moo-Puc R, Caaal-Fuentes E, Peraza-Sanchez S, Slusarz A, Jackson G, Drenkahahn SK, Lubahn DB (2015) Antiproliferative and antiestrogenic activities of bonediol an alkyl catechol from Bonellia macrocarpa. Biomed Res Int 2015:1–6

    Article  Google Scholar 

  26. Buitimea-Cantúa GV, Rosas-Burgos EC, Cinco-Moroyoqui FJ, Galvez JC (2013) In vitro effect of antifungal fractions from the plants Baccharis glutinosa and Jacquinia macrocarpa on chitin and β-1,3-glucan hydrolysis of maize phytopathogenic fungi and on the fungal β-1,3-glucanase and chitinase activities. J Food Saf 33:526–535

    Article  Google Scholar 

  27. Valenzuela-Cota DF, Buitimea-Cantúa GV, Rosas-Burgos EC, Cinco-Moroyoqui FJ, Yépiz-Gómez MS, Cortes-Rocha MO, Plascencia-Jatomea M, Burgos-Hernandez A (2014) The antifungal effect of Jacquinia macrocarpa plant extracts on the growth of Aspergillus flavus, A. parasiticus and Fusarium verticillioides. Rev Mex Micol 39:2–11

    Google Scholar 

  28. Frías-Escalante ML, Burgos-Hernández MP, Plascencia-Jatomea A, Aldana-Madrid M, Cortez-Rocha MO (2015) Antifungal, acute toxicity and mutagenicity activity of extracts from Datura stramonium, Jacquinia macrocarpa and Krameria erecta on Fusarium verticillioides. Afr J Biotechnol 14:2251–2257

    Article  Google Scholar 

  29. Aldana-Madrid ML, Cota-Arriola O, Quintana-Obregón EA, Cortez-rocha MO (2016) Antifungal activity of methanolic extracts of Jacquinia macrocarpa and Krameria erecta on the growth of Fusarium verticillioides and effect on fumonisin production. Rev Mex Micol 43:1–9

    Google Scholar 

  30. Rodríguez-García CM, Ruiz-Ruiz JC, Peraza-Echeverria L, Peraza-Sanchez SR, Torres-Tapia LW, Perez-Brito D, Tapia-Tussel R, Herreara-Chale FG, Segura-Campos MR, Quijano-Ramayo A, Ramon-Sierra J, Ortiz-Vazquez E (2019) Antioxidant, antihypertensive, anti-hyperglycemic, and antimicrobial activity of aqueous extracts from twelve native plants of the Yucatan coast. PLoS One 14:1–17

    Google Scholar 

  31. Vila-Luna SE, Moo-Puc RE, Torres-Tapia LW, Peraza-Sánchez SR (2017) New metabolites with cytotoxic and antiproliferative activities isolated from Bonellia macrocarpa. Phytochem Lett 19:121–125

    Article  CAS  Google Scholar 

  32. Dewick P (2009) Secondary metabolism: the building blocks and construction mechanisms. In: Medicinal natural products: a biosynthetic approach, 3rd edn. Wiley, New York

    Chapter  Google Scholar 

  33. Loyola-Vargas VM, Vázquez-Flota F (2005) Plant cell culture protocols. Springer, New York

    Book  Google Scholar 

  34. Pistelli L, Giovannini A, Ruffoni B, Bertoli A, Pistelli L (2010) Hairy root cultures for secondary metabolites production. Adv Exp Med Biol 698:167–184

    Article  CAS  Google Scholar 

  35. Ozyigit II, Dogan I, Artam Tarhan E (2013) Agrobacterium rhizogenes-mediated transformation and its biotechnological applications in crops. In: Crop improvement: new approaches and modern techniques. Springer, New York

    Google Scholar 

  36. Sevón N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  Google Scholar 

  37. Mishra BN, Ranjan R (2010) Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol Appl Biochem 49:1–10

    Article  Google Scholar 

  38. Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  CAS  Google Scholar 

  39. Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98

    Article  CAS  Google Scholar 

  40. Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol Plant 43:383–403

    Article  CAS  Google Scholar 

  41. Pavlova OA, Matveyeva TV, Lutova LA (2014) Rol-genes of Agrobacterium rhizogenes. Russ J Genet Appl Res 4:137

    Article  Google Scholar 

  42. Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R (2003) Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 215:726–735

    Article  Google Scholar 

  43. Cecchetti V, Pomponi M, Altamura MM, Pezzotti M, Marsilio S, DAngeli S, Tornielli GB, Constanitno P, Cardarelli M (2004) Expression of rolB in tobacco flowers affects the coordinated processes of anther dehiscence and style elongation. Plant J 38:512–525

    Article  CAS  Google Scholar 

  44. Kavitah G, Taghipour F, Huyop F (2010) Investigation of factors in optimizing Agrobacterium-mediated gene transfer in Citrullus lanatus cv. Round Dragon. J Biol Sci 110:209–216

    Google Scholar 

  45. Wang J, Gou K, Zhang Q, Lin J (2008) Highly effiecient Agrobacterium mediated transofrmation of Volvariella volvacea. Bioresour Technol 99:8524–8527

    Article  CAS  Google Scholar 

  46. Sood P, Bhattacharya A, Sood A (2011) Problems and possibilities of monocot transformation. Biol Plant 55:1–15

    Article  CAS  Google Scholar 

  47. Ziemienowicz A (2014) Agrobacterium-mediated plant transformation: factors, applications and recent advances. Biocatal Agric Biotechnol 3:95–102

    Article  Google Scholar 

  48. Guo M, Zhang YL, Meng ZJ, Jiang J (2012) Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Genet Mol Res 11:661–671

    Article  CAS  Google Scholar 

  49. Jelili TO (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1:12–20

    Google Scholar 

  50. Cardoza V, Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599–604

    CAS  PubMed  Google Scholar 

  51. Ziemienowicz A (2014) Biocatalysis and agricultural biotechnology Agrobacterium-mediated plant transformation: factors, applications and recent advances. Biocatal Agric Biotechnol 3:95–102

    Article  Google Scholar 

  52. Olhoft P, Lin K, Galbraith J, Nielsen N, Somers D (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:731–737

    Article  CAS  Google Scholar 

  53. Olhoft PM, Somers DA (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    Article  CAS  Google Scholar 

  54. Zhao ZY, GuW CT, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

  55. Enríquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsonov DL, De la Riva GA, Selman-Housein G (1998) Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27

    Article  Google Scholar 

  56. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (2016) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  Google Scholar 

  57. Boyko A, Matsuoka A, Kovalchuk I (2009) High frequency Agrobacterium tumefaciens-mediated plant transformation induced by ammonium nitrate. Plant Cell Rep 28:737–757

    Article  CAS  Google Scholar 

  58. Salas M, Park S, Srivatanakul M, Smith R (2001) Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep 20:701–705

    Article  CAS  Google Scholar 

  59. Ribas AF, Dechamp E, Champion A, Bertrand G, Combes MC, Verdeil JL, Laperyre F, Lashermes P, Etienne H (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol 11:92–107

    Article  CAS  Google Scholar 

  60. Su G, Park S, Lee S, Murai N (2012) Low co-cultivation temperature at 20 °C resulted in the reproducible maximum increase in both the fresh weight yield and stable expression of GUS activity after Agrobacterium tumefaciens-mediated transformation of tobacco leaf disks. Am J Plant Sci 3:537–545

    Article  CAS  Google Scholar 

  61. Hashizume F, Tsuchiya T, Ugaki M, Niwa Y, Tachibana N, Kowyama Y (1999) Efficient Agrobacterium-mediated transformation and the usefulness of a synthetic GFP reporter gene in leading varieties of Japonica rice. Plant Biotechnol 16:397

    Article  CAS  Google Scholar 

  62. Bechtold N, Jaudeau B, Jovilet S, Maba B, Vezon D, Voisin R, Pelletier G (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155:1875–1887

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Desfeux C, Clough SJ, Bent AF (2002) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123(3):895

    Article  Google Scholar 

  64. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  Google Scholar 

  65. Zhang P, Jaynes JM, Potrykus I, Gruissem W, Puonti-Kaerlas J (2003) Transfer and expression of an artificial storage protein (ASP1) gene in cassava (Manihot esculenta Crantz). Transgenic Res 12:243–250

    Article  CAS  Google Scholar 

  66. Thu TT, Xuan-Mai TT, Dewaele E (2003) In vitro regeneration and transformation of pigeonpea [Cajanus cajan (L.) Millsp]. Mol Breed 11:159–168

    Article  CAS  Google Scholar 

  67. Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Article  CAS  Google Scholar 

  68. Jung K, Fujii Y, Yoshizaki S, Kobori H (2010) Evaluation of total allelopathic activity of heartseed walnut (Juglans ailanthifolia Carr.) and its potential to control black locust(Robinia pseudo-acacia L.). Allelopath J 26:243–254

    Google Scholar 

  69. Zhang JH, Mao ZQ, Wang LQ, Shu HR (2007) Bioassay and identification of root exudates of three fruit tree species. J Integr Plant Biol 49:257–261

    Article  CAS  Google Scholar 

  70. Hofmann A, Wittenmayer L, Arnold G, Schieber A, Merbach W (2009) Root exudation of phloridzin by apple seedlings (Malus X domestica Borkh.) with symptoms of apple replant disease. J Appl Bot Food Qual 82:193–198

    CAS  Google Scholar 

  71. Triplett BA, Moss SJ, Bland JM, Dowd MK (2008) Induction of hairy root cultures from Gossypium hirsutum and Gossypium barbadense to produce gossypol and related compounds. In Vitro Cell Dev Biol Plant 44:508–517

    Article  CAS  Google Scholar 

  72. Kim YK, Li X, Xu H, Park N, Uddin MR, Pyon JY, Park SU (2009) Production of phenolic compounds in hairy root culture of tartary buckwheat (Fagopyrum tataricum Gaertn). J Crop Sci Biotechnol 12:53–58

    Article  Google Scholar 

  73. Mitić N, Dmitrovic S, Djordjevic M, Zdravovic-Korac S, Nikolic R, Raspor M, Djordjevic T, Maksimovicc V, Zivkovic S, Krstic-Milosevicc D, Stanisic M, Ninkovic S (2012) Use of Chenopodium murale L. transgenic hairy root in vitro culture system as a new tool for allelopathic assays. J Plant Physiol 169:1203–1211

    Article  Google Scholar 

  74. Stanišić M, Cosic T, Savic J, Krstic-Milosevic D, Misic D, Smigocki A, Ninkovic S, Banjac N (2019) Hairy root culture as a valuable tool for allelopathic studies in apple. Tree Physiol 39:888

    Article  Google Scholar 

  75. Dada KD, Tripathi L (2005) Agrobacterium-induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer. Afr J Biotechnol 4:752–757

    Google Scholar 

  76. Ruiz-Ramírez LA, Godoy-Hernandez GC, Alvarez-Gutierrez PE, Ruiz-Valdiviezo VM, Lujan-Hidalgo MC, Avilés-Berzunza E, Gutierrez-Miceli FA (2018) Protocol for bonediol production in Bonellia macrocarpa hairy root culture. Plant Cell Tissue Organ Cult 134:177–181

    Article  Google Scholar 

  77. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  78. Nilson O, Olson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots Physill Plant 100:463–473

    Google Scholar 

  79. Rosas Burgos E (2013) Actividad Antifùngica de la planta Baccharis glutinosa: su efecto en hongos micotoxigénicos y fitopatógneos del maíz. Reviews. Madrid

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregorio del Carmen Godoy-Hernández or Federico Antonio Gutiérrez-Miceli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alvarez-Gutiérrez, P.E., Ruiz-Ramirez, L.A., Godoy-Hernández, G.d.C., Gutiérrez-Miceli, F.A. (2019). Bonediol Production in Bonellia macrocarpa Hairy Root Culture. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics