Skip to main content

Perfect Crystal Optics

  • Living reference work entry
  • First Online:
Synchrotron Light Sources and Free-Electron Lasers

Basic concepts of perfect crystal X-ray optics are given for the readers working on designing synchrotron radiation X-ray optics. Starting from a brief introduction of dynamical theory of X-ray diffraction, multiple-crystal methods are illustrated. Applications for X-ray monochromators, collimators, and interferometers are presented. X-ray optics composed of perfect crystal devices and their applications are also discussed.

Introduction

Perfect crystal optics have been utilized in all synchrotron radiation facilities, as well as free-electron laser facilities operating in the X-ray region. From the early days of synchrotron radiation facilities when the most radiation was extracted from bending magnets of circular accelerators or storage rings, perfect crystals have been used for monochromatization of white X-rays emitted from the bending magnets. The huge thermal load on the first crystal restricted the usable crystals to silicon or diamond single crystals which are enough perfect....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • J. Aman, W. Berg, V. Blank et al., Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photon. 6, 693–698 (2012)

    Article  ADS  Google Scholar 

  • A.Q.R. Baron, Y. Tanaka, S. Goto et al., An X-ray scattering beamline for studying dynamics. J. Phys. Chem. Solids 61, 461–465 (2000)

    Article  ADS  Google Scholar 

  • P. Becker, U. Bonse, The skew-symmetric two-crystal X-ray interferometer. J. Appl. Cryst. 7, 593 (1974)

    Article  Google Scholar 

  • P. Becker et al., Absolute measurement of the (220) lattice plane spacing in a silicon crystal. Phys. Rev. Lett. 46, 1540 (1981)

    Article  ADS  Google Scholar 

  • D.H. Bilderback, The potential of cryogenic silicon and germanium X-ray monochromators for use with large synchrotron heat loads. Nucl. Instrum. Methods Phys. Res. A 246, 434–436 (1986)

    Article  ADS  Google Scholar 

  • D.H. Bilderback, A.K. Freund, G. Knapp, D.M. Mills, The historical development of cryogenically cooled monochromators for third-generation synchrotron radiation sources. J. Synchrotron Radiat. 7, 53–60 (2000)

    Article  Google Scholar 

  • U. Bonse, M. Hart, An X-ray interferometer. Appl. Phys. Lett. 6, 155 (1965a)

    Article  ADS  Google Scholar 

  • U. Bonse, M. Hart, Principles and design of Laue-case X-ray interferometers. Z. Phys. 188, 154 (1965b)

    Article  ADS  Google Scholar 

  • U. Bonse, M. Hart, An X-ray interferometer with Bragg case beam splitting and beam recombination. Z. Phys. 194, 1 (1966)

    Article  ADS  Google Scholar 

  • O. Brümmer, H.R. Höche, J. Nieber, X-ray diffraction in the Bragg case at Bragg angles of about π/2. Phys. Stat. Sol. (A) 53, 565–570 (1979)

    Article  ADS  Google Scholar 

  • E. Burkel, Phonon spectroscopy by inelastic X-ray scattering. Rep. Prog. Phys. 63, 171–232 (2000)

    Article  ADS  Google Scholar 

  • A.I. Chumakov, J. Metge, A.Q.R. Baron et al., An X-ray monochromator with 1.65 meV energy resolution. Nucl. Instrum. Methods Phys. Res. A 383, 642–644 (1996)

    Google Scholar 

  • R.D. Deslattes, A. Henins, X-ray to visible wavelength ratios. Phys. Rev. Lett. 31, 972 (1973)

    Article  ADS  Google Scholar 

  • B. Dorner, E. Burkel, J. Peisl, An X-ray backscattering instrument with very high energy resolution. Nucl. Instrum. Methods Phys. Res. A 246, 450–451 (1986)

    Article  ADS  Google Scholar 

  • G. Faigel, D.P. Siddons, J.B. Hastings et al., New approach to the study of nuclear Bragg scattering of synchrotron radiation. Phys. Rev. Lett. 58, 2699–2701 (1987)

    Article  ADS  Google Scholar 

  • Y. Feng, R. Alonso-Mori, T.R.M. Barends et al., Demonstration of simultaneous experiments using thin crystal multiplexing at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 626–633 (2015)

    Article  Google Scholar 

  • A.K. Freund, Diamond single crystals: the ultimate monochromator material for high-power X-ray beams. Opt. Eng. 34, 432–440 (1995)

    Article  ADS  Google Scholar 

  • W. Graeff, U. Bonse, A three-beam case X-ray interferometer. Z. Physik B 27, 19 (1977)

    Article  ADS  Google Scholar 

  • W. Graeff, G. Materlik, Millielectron volt energy resolution in Bragg backscattering. Nucl. Instrum. Methods 195, 97–103 (1982)

    Article  ADS  Google Scholar 

  • M. Hart, Bragg reflection X-ray optics. Rep. Prog. Phys. 34, 435–490 (1971)

    Article  ADS  Google Scholar 

  • J.B. Hastings, B.M. Kincaid, P. Eisenberger, A separated function focusing monochromator system for synchrotron radiation. Nucl. Instrum. Methods 152, 167–171 (1978)

    Article  ADS  Google Scholar 

  • K. Hirano, A. Momose, Investigation of the phase shift in X-ray forward diffraction using an X-ray interferometer. Phys. Rev. Lett. 76, 3735 (1996)

    Article  ADS  Google Scholar 

  • T. Ishikawa, Measurement of the coherence length of highly collimated X-rays from the visibility of equal-thickness fringes. Acta Crystallogr. A44, 496–499 (1988)

    Article  Google Scholar 

  • T. Ishikawa, Y. Yoda, K. Izumi et al., Construction of a precision diffractometer for nuclear Bragg scattering at the Photon Factory. Rev. Sci. Instrum. 63, 1015–1018 (1992)

    Article  ADS  Google Scholar 

  • T. Ishikawa, K. Tamasaku, M. Yabashi, High-resolution X-ray monochromators. Nucl. Instrum. Methods Phys. Res. A 547, 42–49 (2005)

    Article  ADS  Google Scholar 

  • S. Kikuta, K. Kohra, X-ray crystal collimators using successive asymmetric diffractions and their applications to measurements of diffraction curves. I. General consideration on collimators. J. Phys. Soc. Jpn. 29, 1322–1328 (1970)

    Google Scholar 

  • S. Kimura, J. Harada, T. Ishikawa, Comparison between experimental and theoretical rocking curves in extremely asymmetric Bragg cases of X-ray diffraction. Acta Crystallogr. A 50, 337–342 (1994)

    Article  Google Scholar 

  • K. Kohra, An application of asymmetric reflection for obtaining X-ray beams of extremely narrow angular spread. J. Phys. Soc. Jpn. 17, 589–590 (1962)

    Article  ADS  Google Scholar 

  • K. Kohra, T. Matsushita, Some characteristics of dynamical diffraction at a Bragg angle of about π/2. Z. Naturf. 27a, 484–487 (1972)

    Google Scholar 

  • I. Koyama, H. Yoshikawa, A. Momose, Phase-contrast X-ray imaging with a triple-Bragg-case interferometer. Jpn. J. Appl. Phys. 42, L80 (2003)

    Article  ADS  Google Scholar 

  • M. Kuriyama, On the principle of X-ray interferometry. Acta Cryst. A 27, 273 (1971)

    Article  Google Scholar 

  • A.R. Lang, A.P.W. Makepeace, Production of synchrotron X-ray biprism interference patterns with control of fringe spacing. J. Synchrotron Radiat. 6, 59 (1999)

    Article  Google Scholar 

  • A.T. Macrander, W.K. Lee, R.K. Smither et al., High heat load performance of an inclined-crystal monochromator with liquid gallium cooling on the CHESS-ANL undulator. Nucl. Instrum. Methods Phys. Res. A 319, 188–196 (1992)

    Article  ADS  Google Scholar 

  • G. Mana, G. Zosi, The Avogadro constant. Riv. Nuovo Cimento 18(3), 1 (1995)

    Google Scholar 

  • T. Matsushita, H. Hashizume, X-ray monochromators, in Handbook of Synchrotron Radiation, ed. by E.E. Koch, vol. 1 (North-Holland, Amsterdam, 1983), pp. 261–341

    Google Scholar 

  • T. Matsushita, S. Kikuta, K. Kohra, X-ray crystal collimators using successive asymmetric diffractions and their applications to measurements of diffraction curves. III. Type II collimators. J. Phys. Soc. Jpn. 30, 1136–1144 (1971)

    ADS  Google Scholar 

  • T. Matsushita, T. Ishikawa, H. Oyanagi, Sagittally focusing double-crystal monochromator with constant exit beam height at the Photon Factory. Nucl. Instrum. Methods Phys. Res. A 246, 377–379 (1986)

    Article  ADS  Google Scholar 

  • D.M. Mills, M.T. King, A separated crystal, fixed-exit monochromator for X-ray synchrotron radiation. Nucl. Instrum. Methods 208, 341–347 (1983)

    Article  Google Scholar 

  • T. Mochizuki, Y. Kohmura, A. Awaji et al., Nucl. Instrum. Methods Phys. Res. A 467–468, 647–649 (2001)

    Article  Google Scholar 

  • A. Momose et al., Demonstration of X-ray talbot interferometry. Jpn. J. Appl. Phys. 42, L866 (2003)

    Article  ADS  Google Scholar 

  • K. Nakayama, H. Hashizume, A. Miyoshi et al., Use of asymmetric dynamical diffraction of X-rays for multiple-crystal arrangements of the (n1, +n2) setting. Z. Naturf. 28a, 632–638 (1973)

    Google Scholar 

  • M. Nusshardt, U. Bonse, A Michelson interferometer for X-rays capable of high-order measurement. J. Appl. Cryst. 36, 269 (2003)

    Article  Google Scholar 

  • H. Ohashi, M. Yabashi, K. Tono et al., Beamline mirrors and monochromator for X-ray free electron laser of SACLA. Nucl. Instrum. Methods Phys. Res. A 719, 139–142 (2013)

    Article  ADS  Google Scholar 

  • T. Osaka, M. Yabashi, Y. Sano et al., A Bragg beam splitter for hard X-ray free-electron lasers. Opt. Exp. 21, 2823–2831 (2013)

    Article  ADS  Google Scholar 

  • V.M. Renninger, Asymmetrische Bragg-reflexion am idealkristall zur erhoehung des doppelspektrometer-aufloesungsvermoegens. Z. Naturf. 16a, 1110–1111 (1961)

    Google Scholar 

  • W. Roseker, H. Franz, H. Schulte-Schrepping et al., Performance of a picosecond X-ray delay line unit at 8.39 keV. Opt. Lett. 34, 1768–1770 (2009)

    Google Scholar 

  • F. Sette, G. Ruocco, U. Bergmann et al., Collective dynamics in water by high energy resolution inelastic X-ray scattering. Phys. Rev. Lett. 75, 850–853 (1995)

    Article  ADS  Google Scholar 

  • Y.V. Shvyd’ko et al., X-ray interferometry with microelectronvolt resolution. Phys. Rev. Lett. 90, 013904 (2003)

    Article  ADS  Google Scholar 

  • J.P. Sutter et al., An X-ray BBB Michelson interferometer. J. Synchrotron Radiat. 11, 378 (2004)

    Article  Google Scholar 

  • Y. Suzuki, Two-beam X-ray interferometer using prism optics Jpn. J. Appl. Phys. 41, L1019 (2002)

    Article  ADS  Google Scholar 

  • Y. Takata, K. Tamasaku, D. Tokushima et al., A probe of intrinsic valence band electronic structure: hard X-ray photoemission. Appl. Phys. Lett. 84, 4310–4312 (2004)

    Article  ADS  Google Scholar 

  • K. Tamasaku, T. Ishikawa, High-resolution Fourier transform X-ray spectroscopy. Appl. Phys. Lett. 83, 2994 (2003)

    Article  ADS  Google Scholar 

  • T.S. Toellner, M.Y. Hu, W. Sturhahn et al., Inelastic nuclear resonant scattering with sub-meV energy resolution. Appl. Phys. Lett. 71, 2112–2114 (1997)

    Article  ADS  Google Scholar 

  • T.S. Toellner, M.Y. Hu, W. Sturhahn et al., Crystal monochromator with a resolution beyond 108. J. Synchrotron Radiat. 8, 1082–1086 (2001)

    Article  Google Scholar 

  • T.S. Toellner, M.Y. Hu, G. Bortel et al., Four-reflection “nested” meV-monochromators for 20–30 keV synchrotron radiation. Nucl. Instrum. Methods Phys. Res. A 557, 670–675 (2006)

    Article  ADS  Google Scholar 

  • R. Verbeni, F. Sette, M.H. Krisch et al., X-ray monochromator with 2 × 10−8 energy resolution. J. Synchrotron Radiat. 3, 62–64 (1996)

    Article  Google Scholar 

  • T. Weitkamp et al., X-ray wavefront analysis and optics characterization with a grating interferometer. Appl. Phys. Lett. 86, 054101 (2005)

    Article  ADS  Google Scholar 

  • M. Yabashi, Yamazaki, H, K. Tamasaku et al., SPring-8 standard X-ray monochromators. Proc. SPIE 3773, 2–13 (1999)

    Google Scholar 

  • M. Yabashi, K. Tamasaku, S. Kikuta, T. Ishikawa, X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV. Rev. Sci. Instrum. 72, 4080–4083 (2001a)

    Google Scholar 

  • M. Yabashi, K. Tamasaku, T. Ishikawa, Characterization of the Transverse Coherence of Hard Synchrotron Radiation by Intensity Interferometry. Phys. Rev. Lett. 87, 140801 (2001b)

    Article  ADS  Google Scholar 

  • M. Yabashi, K. Tamasaku, T. Ishikawa, Visibility measurement with an X-ray interferometer using a coincidence technique. Jpn. J. Appl. Phys. 40, L646 (2001c)

    Article  ADS  Google Scholar 

  • M. Yabashi, S. Goto, K. Shimuzu et al., Diamond Double-Crystal Monochromator for SPring-8 Undulator Beamlines. AIP Conf. Proc. CP879, 922–925 (2007)

    Google Scholar 

  • A. Yoneyama et al., Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer. J. Synchrotron Radiat. 9, 277 (2002)

    Article  Google Scholar 

  • D. Zhu, M. Cammarata, J.M. Feldkamp et al., A single-shot transmissive spectrometer for hard X-ray free electron lasers. Appl. Phys. Lett. 101, 034103 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makina Yabashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Yabashi, M., Tamasaku, K., Sawada, K., Goto, S., Ishikawa, T. (2015). Perfect Crystal Optics. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics