Skip to main content

Iron Concentration, Lunar Surface

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science
  • 157 Accesses

Synonyms

FeO abundance; Ferrous content; Iron abundance; Iron content

Definition

On the Moon, iron is an important element that occurs in a variety of minerals such as pyroxene, olivine, ilmenite, and spinel. It is also a key element for studying the theories of lunar formation (Drake 1986; Lucey et al. 1995), understanding the Moon’s bulk composition and the stratigraphy of the lunar crust (Ryder and Wood 1977), and understanding the formation, distribution, and varieties of lunar mare basalts (Hiesinger et al. 2000; Lawrence et al. 2002). In principle, different basaltic flows in mare regions can be identified from their FeO and TiO2 signatures since each basaltic flow melting history may produce a unique chemistry (Hiesinger et al. 2000). Therefore, the iron concentration estimation of the Moon’s surface provides important information to discriminate the different geologic terrains (Jolliff et al. 2000; Bhatt et al. 2015).

These terrains are inferred to be the result of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bhatt M, Mall U, Bugiolacchi R et al (2012) Lunar iron abundance determination using the 2 μm absorption band parameters. Icarus 220:51–64

    Article  ADS  Google Scholar 

  • Bhatt M, Mall U, Wöhler C et al (2015) A comparative study of iron abundance estimation methods: application to the western nearside of the moon. Icarus 248:72–88

    Article  ADS  Google Scholar 

  • Blewett DT, Lucey PG, Hawke BR et al (1997) FeO mapping of the Moon – Refinement using images of the sample-return stations. In: Lunar and Planetary Science Conference, ID.1159

    Google Scholar 

  • Chevrel S, Pinet P, Barreau G et al (1999) Integration of the UV-VIS spectral Clementine data and the gamma-ray Lunar Prospector data: preliminary results concerning FeO, TiO2, and Th abundances of the lunar surfaces at global scale. In: Workshop on the New View of the Moon II: Understanding the Moon Through the Integration of Diverse Datasets, LPI Contrib. 980, LPI Houston

    Google Scholar 

  • Chevrel SD, Pinet PC, Daydou Y et al (2002) Integration of the Clementine UV-VIS spectral reflectance data and the lunar prospector gamma-ray spectrometer data: a global-scale multielement analysis of the lunar surface using iron, titanium, and thorium abundances. J Geophys Res Planets 107(E12):5132

    Article  ADS  Google Scholar 

  • Cloutis EA, Sunshine JM, Morris RV (2004) Spectral reflectance-compositional properties of spinels and chromites: implications for planetary remote sensing and geothermometry. Meteor Planet Sci 39(4):545–565

    Article  ADS  Google Scholar 

  • Drake MJ (1986) Is lunar bulk material similar to Earth’s mantle? Origin of the Moon, Houston, TX, Lunar and Planetary Institute, 105–124

    Google Scholar 

  • Eliason E, Isbell C, Lee E et al (1999) Mission to the moon: the Clementine UV-VIS global mosaic. PDS volumes USA_NASA_PDS_CL_4001, p 4078

    Google Scholar 

  • Gillis JJ, Jolliff BL, Korotev RL (2004) Lunar surface geochemistry: global concentrations of Th, K, and FeO as derived from lunar prospector and Clementine data. Geochim Cosmochim Acta 68(18):3791–3805

    Article  ADS  Google Scholar 

  • Hiesinger H, Jaumann R, Neukum G et al (2000) Ages of mare basalts on the lunar nearside. J Geophys Res 105(1959):29239–29276

    Article  ADS  Google Scholar 

  • Jolliff BL, Gillis JJ, Haskin LA et al (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res 105(E2):4197–4216

    Article  ADS  Google Scholar 

  • Kobayashi M, Hasebe N, Hiramoto T et al (2005) Germanium detector with Stirling cryocooler for lunar gamma-ray spectroscopy. Nucl Instrum Meth Phys Res Sect A 548(3):401–410

    Article  ADS  Google Scholar 

  • Lawrence DJ, Feldman WC, Barraclough BL et al (1998) Global elemental maps of the moon: the lunar prospector gamma-ray spectrometer. Science 281(5382):1484–1489

    Article  ADS  Google Scholar 

  • Lawrence DJ, Feldman WC, Blewett DT et al (2002) Iron abundances on the lunar surface as measured by the lunar prospector gamma-ray spectrometer. J Geophys Res Planets 107(E12):5130

    Article  ADS  Google Scholar 

  • Le Mouélic S, Langevin Y, Erard S et al (2000) Discrimination between maturity and composition of lunar soils from integrated Clementine UV-visible/near-infrared data: application to the Aristarchus plateau. J Geophys Res 105(E4):9445–9456

    Article  ADS  Google Scholar 

  • Lucey PG (2006) Radiative transfer modeling of the effect of mineralogy on some empirical methods for estimating iron concentration from multispectral imaging of the moon. J Geophys Res Planets 111(E8):8003

    Article  ADS  Google Scholar 

  • Lucey PG, Taylor GJ, Malaret E (1995) Abundance and distribution of iron on the moon. Science 268(5214):1150–1153

    Article  ADS  Google Scholar 

  • Lucey PG, Taylor GJ, Hawke BR et al (1998) FeO and TiO2 concentrations in the south pole-Aitken basin: implications for mantle composition and basin formation. J Geophys Res 103(E2):3701–3708

    Article  ADS  Google Scholar 

  • Lucey PG, Blewett DT, Jolliff BL (2000) Lunar iron and titanium abundance algorithms based on final processing of clementine ultraviolet-visible images. J Geophys Res 105(E8):20297–20305

    Article  ADS  Google Scholar 

  • Meng ZG, Yang GD, Ping JS et al (2016) Influence of (FeO+TiO2) abundance on the microwave thermal emissions of lunar regolith. Science China Earth Sciences 59:1498–1507

    Article  Google Scholar 

  • Meng ZG, Hu S, Wang TX et al (2018) Passive microwave probing Mare basalts in Mare Imbrium using CE-2 CELMS data. IEEE J Sel Topics Appl Earth Obs Remote Sens 11(9):3097–3104

    Article  ADS  Google Scholar 

  • Metzger AE (1993) Composition of the moon as determined from orbit by gamma-ray spectroscopy. In: Remote geochemical analysis: elemental and mineralogical composition. Cambridge University Press, New York

    Google Scholar 

  • Morgan GA, Campbell BA, Campbell DB et al (2016) Investigating the stratigraphy of Mare Imbrium flow emplacement with earth-based radar. J Geophys Res Planets 121:1498–1513

    Article  ADS  Google Scholar 

  • Otake H, Ohtake M, Hirata N (2012) Lunar iron and titanium abundance algorithms based on SELENE (Kaguya) multiband imager data. Lun Planet Inst Sci Conf Abst, no 1659, id 1905

    Google Scholar 

  • Prettyman TH, Hagerty JJ, Elphic RC et al (2006) Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from lunar prospector. J Geophys Res Planets 111(E12):41–51

    Article  Google Scholar 

  • Ryder G, Wood JA (1977) Serenitatis and imbrium impact melts: implications for large-scale layering in the lunar crust. Proceedings of 8th Lunar Science Conference, 655

    Google Scholar 

  • Shkuratov YG, Kaydsh VG, Stankevich DG et al (2005) Derivation of elemental abundance maps at intermediate resolution from optical interpolation of lunar prospector gamma-ray spectrometer data. Planet Space Sci 53(12):1287–1301

    Article  ADS  Google Scholar 

  • Smrekar S, Pieters CM (1985) Near-infrared spectroscopy of probable impact melt from three large lunar highland craters. Icarus 63:442–452

    Article  ADS  Google Scholar 

  • Taylor LA, Pieters CM, Morris RV et al (2001) Lunar mare soils: space weathering and the major effects of surface-correlated nanophase Fe. J Geophys Res Planets 106(E11):27985–28000

    Article  Google Scholar 

  • Wu YZ, Xue B, Zhao BC et al (2012) Global estimates of lunar iron and titanium contents from the Chang’ E-1 IIM data. J Geophys Res Planets 117:E02001

    ADS  Google Scholar 

  • Wöhler C, Berezhnoy A, Evans R (2011) Estimation of elemental abundances of the lunar regolith using Clementine UVVIS + NIR data. Planet Space Sci 59(1):92–110

    Article  ADS  Google Scholar 

  • Wöhler C, Grumpe A, Berezhnoy A et al (2014) Integrated topographic, photometric and spectral analysis of the lunar surface: Application to impact melt flows and ponds. Icarus 235:86–122

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Meng .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Meng, Z. (2019). Iron Concentration, Lunar Surface. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_206-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_206-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics