Skip to main content

Mantle Convection

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science
  • 175 Accesses

Introduction

Although the Moon is much smaller than the Earth, dynamic processes took place in its interior and helped shape its surface. It is suggested that compositionally driven convection was dominant in the early evolution after the solidification of the lunar magma ocean – often also termed as mantle overturn – and that thermally driven convection was mainly active after this overturn phase. Details of these processes are however controversially discussed, but during the last years, improvements in the numerical models and new rheological experiments have led to a better understanding and changed the view about the interior dynamics of the Moon. In this chapter, we will discuss various scenarios that have been suggested in the literature, point out their problems, and introduce the most likely scenario.

General Concept of Mantle Convection

Mantle convection in a planetary interior like in the lunar mantle describes large scale movement of solid mantle material. It is the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Borg LE, Gaffney AM, Shearer CK (2015) A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit Planet Sci 50(4):715–732

    Article  ADS  Google Scholar 

  • Boukare CE, Parmentier EM, Parman SW (2018) Timing of mantle overturn during magma ocean solidification. Earth Planet Sci Lett 491:216–225

    Article  ADS  Google Scholar 

  • Byrne CJ (2007) A large basin on the near side of the Moon. Earth Moon Planet 101(3–4):153–188

    Article  ADS  Google Scholar 

  • de Vries J, van den Berg A, van Westrenen W (2010) Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates. Earth Planet Sci Lett 292(1–2):139–147

    Article  ADS  Google Scholar 

  • Dygert N, Hirth G, Liang Y (2016) A flow law for ilmenite in dislocation creep: implications for lunar cumulate mantle overturn. Geophys Res Lett 43(2):532–540

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT, Burgess S, Yin QZ (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci Lett 304(3–4):326–336

    Article  ADS  Google Scholar 

  • Hess PC, Parmentier EM (1995) A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet Sci Lett 134(3–4):501–514

    Article  ADS  Google Scholar 

  • Laneuville M, Wieczorek MA, Breuer D, Tosi N (2013) Asymmetric thermal evolution of the Moon. J Geophys Res Planets 118(7):1435–1452

    Article  ADS  Google Scholar 

  • Loper DE, Werner CL (2002) On lunar asymmetries 1. Tilted convection and crustal asymmetry. J Geophys Res Planets 107(E6):5046

    Article  ADS  Google Scholar 

  • Maurice M, Tosi N, Schwinger S, Breuer D (2018) Prolonged lunar magma ocean by heat- piping from cumulate overturn. In: 6th European lunar symposium, Toulouse, 14–16 May

    Google Scholar 

  • McCubbin FM, Jolliff BL, Nekvasil H et al (2011) Fluorine and chlorine abundances in lunar apatite: implications for heterogeneous distributions of magmatic volatiles in the lunar interior. Geochim Cosmochim Acta 75(17):5073–5093

    Article  ADS  Google Scholar 

  • Meyer J, Elkins-Tanton LT, Wisdom J (2010) Coupled thermal–orbital evolution of the early Moon. Icarus 208(1):1–10

    Article  ADS  Google Scholar 

  • Nemchin A, Timms N, Pidgeon R et al (2009) Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat Geosci 2(2):133

    Article  ADS  Google Scholar 

  • Neumann GA, Zuber MT, Smith DE et al (1996) The lunar crust: global structure and signature of major basins. J Geophys Res Planets 101(E7):16841–16863

    Article  Google Scholar 

  • Ohtake M, Takeda H, Matsunaga T et al (2012) Asymmetric crustal growth on the Moon indicated by primitive farside highland materials. Nat Geosci 5(6):384

    Article  ADS  Google Scholar 

  • Parmentier EM, Zhong S, Zuber MT (2002) Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP? Earth Planet Sci Lett 201:473–480

    Article  ADS  Google Scholar 

  • Rolf R, Zhu M, Wünnemann K, Werner SC (2017) The role of impact bombardement history in lunar evolution. Icarus 286:138–152

    Article  ADS  Google Scholar 

  • Solomon SC, Longhi J (1977, March) Magma oceanography: 1. Thermal evolution. Paper presented in lunar and planetary science conference, vol 8, Houston

    Google Scholar 

  • Spohn T, Konrad W, Breuer D, Ziethe R (2001) The longevity of lunar volcanism: implications of thermal evolution calculations with 2D and 3D mantle convection models. Icarus 149:54–65

    Article  ADS  Google Scholar 

  • Stegman DR, Jellinek AM, Zatman SA et al (2003) An early lunar core dynamo driven by thermochemical mantle convection. Nature 421:143–146

    Article  ADS  Google Scholar 

  • Tanton LT, Van Orman JA, Hager BH, Grove TL (2002) Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required. Earth Planet Sci Lett 196(3–4):239–249

    Article  ADS  Google Scholar 

  • Wagner TP, Grove TL (1997) Experimental constraints on the origin of lunar high-Ti ultramafic glasses. Geochim Cosmochim Acta 61(6):1315–1327

    Article  ADS  Google Scholar 

  • Warren PH, Wasson JT (1979) The origin of KREEP. Rev Geophys 17(1):73–88

    Article  ADS  Google Scholar 

  • Wasson JT, Warren PH (1980) Contribution of the mantle to the lunar asymmetry. Icarus 44(3):752–771

    Article  ADS  Google Scholar 

  • Weber RC, Lin PY, Garnero EJ, Williams Q, Lognonne P (2011) Seismic detection of the lunar core. Science 331(6015):309–312

    Article  ADS  Google Scholar 

  • Wieczorek MA, Phillips RJ (2000) The “Procellarum KREEP Terrane”: implications for mare volcanism and lunar evolution. J Geophys Res Planets 105(E8): 20417–20430

    Article  Google Scholar 

  • Yu S, Tosi N, Schwinger S et al (2018) Overturn of ilmenite-bearing cumulates in a rheologically-weak lunar interior. J Geophys Res Planets (under review)

    Google Scholar 

  • Zhang N, Parmentier EM, Liang Y (2013a) A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: the importance of rheology and core solidification. J Geophys Res Planets 118(9):1789–1804

    Article  ADS  Google Scholar 

  • Zhang N, Parmentier EM, Liang Y (2013b) Effects of lunar cumulate mantle overturn and megaregolith on the expansion and contraction history of the Moon. Geophys Res Lett 40(19):5019–5023

    Article  ADS  Google Scholar 

  • Zhang N, Dygert N, Liang Y, Parmentier EM (2017) The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle. Geophys Res Lett 44(13):6543–6552

    Article  ADS  Google Scholar 

  • Zhao Y, de Vries J, van den Berg A P, Westrenen W (2018) The participation of imlenite- bearing cumulates in lunar mantle overturn. Earth Planet Sci Lett (under review)

    Google Scholar 

  • Zhong S, Parmentier EM, Zuber MT (2000) A dynamic origin for the global asymmetry of lunar mare basalts. Earth Planet Sci Lett 177(3–4):131–140

    Article  ADS  Google Scholar 

  • Ziethe R, Seiferlin K, Hiesinger H (2009) Duration and extent of lunar volcanism: comparison of 3D convection models to mare basalt ages. Planet Space Sci 57:784–796

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Breuer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Breuer, D. (2019). Mantle Convection. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_214-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_214-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics