Skip to main content

Crystal Defects

Semiconductor Physics

Abstract

Semiconducting properties of most interest are predominantly caused by crystal defects. They are classified into point, line, and planar defects. Some defects are beneficial, such as donors, acceptors, or luminescence centers. These defects determine the desired electronic and optical properties of the semiconductor. Other defects promote nonradiative carrier recombination, carrier trapping, or excessive carrier scattering and are detrimental to device performance.

Native point defects and associates of these defects are formed at elevated temperature and may be frozen-in with decreasing temperature. Their creation is interrelated – among each other and also to the presence of extrinsic (impurity) defects – and governed by the conservation of particles and quasi-neutrality. The mobility of defects is provided by various diffusion mechanisms and affected by their charge. Line defects involve rows of atoms. Most important are edge and screw dislocations, which affect crystal growth and accommodate strain in semiconductors. Dislocations are characterized by their Burgers vector and its angle to the dislocation line, and their mobility is provided by glide and climb processes. Planar defects comprise stacking faults, grain and twin boundaries, inversion-domain boundaries, and interfaces between different semiconductors or between a semiconductor and a metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    These comprise divacancies, an impurity associated with an intrinsic defect, and two impurities associated with each other.

  2. 2.

    An isocoric P in a Si lattice can be thought of as “created” by adding to a lattice atom a proton, i.e., a point charge, and an extra electron (the donor electron), thereby creating the most ideal hydrogen-like defect. Any other hydrogen-like donor, e.g., As or Sb in Si, is of different size, causing more lattice deformation and a substantially different core potential (see Sect. 1 of chapter “Shallow-Level Centers”).

  3. 3.

    That is, a defect that can act as a donor or acceptor depending on the chemical potential of the lattice (influenced, e.g., by optical excitation or other doping).

  4. 4.

    The notation of charges with respect to the neutral lattice was introduced by Kröger, Vink, and Schottky (see Schottky and Stockmann 1954). This notation allows to distinguish from the charge identification used in an ionic lattice, e.g., Na+Cl. Inclusion of a Cd++ instead of a Na+ ion makes the cadmium ion singly positively charged with respect to the neutral lattice.

  5. 5.

    In contrast, purification can be accomplished by diffusion of impurities into a sink. With the solubility of impurities being a function of the temperature, a temperature gradient can be used as a driving force for purification. A more effective means is the use of the boundary between the liquid and solid phase, using the fact that the solubilities in these two phases are substantially different (a measure of which is the segregation coefficient). Zone refining is a well-established technique to achieve such purification (see de Kock 1980).

  6. 6.

    For simplicity, we have neglected here the vibrational part of the entropy (S = S config + S vib). These contributions are considered later in this section. The vibrational part results in an increase of the intrinsic defect density.

  7. 7.

    This simple model of a pair-wise defect formation maintaining stoichiometry will be modified later (Sect. 2.5) to permit slight changes in the stoichiometry, thereby making the crystal n- or p-type. Inversely, the creation of such intrinsic defects can be enhanced or suppressed depending on the position of the Fermi level, i.e., depending on doping.

  8. 8.

    In materials in which two types of defects need to be considered, two different freezing-in temperatures appear, and, because of conservation and neutrality considerations, a more complex behavior is expected (Hagemark 1976).

  9. 9.

    Often, the enthalpy H Schottky is cited rather than the energy; however, with \( \Delta {H}_{\mathrm{Schottky}}=\Delta {E}_{\mathrm{Schottky}}+P\Delta V \) and negligible volume changes in the solid, both are almost identical at room temperature. Near the melting point, a \( \Delta V/V\cong \left(1/3\right)\left(\Delta l/l\right)\cong 2\kern0.5em \% \) change in volume (Eq. 17 of chapter Phonon-Induced Thermal Properties) may be considered.

  10. 10.

    In Sect. 2.1, the Helmholtz free energy F was used, which is related to the Gibbs free energy G by G = F+PV. Since some of the reactions involve an interaction with a gas atmosphere, the more general notation is used here.

  11. 11.

    Or, for an A n B m compound, we have \( 0\overleftarrow{\to}n{\mathrm{V}}_A^0+m{\mathrm{V}}_B^0 \) with \( {\left[{\mathrm{V}}_A^0\right]}^n{\left[{\mathrm{V}}_B^0\right]}^m={K}_{\mathrm{Schottky}} \).

  12. 12.

    With proper charging, these dimers could be regarded as equivalent to a nonmetal molecule B 2 sitting on a lattice site of a cluster of four vacancies. Such molecules are often covalently bound and therefore have a substantial binding energy; hence, they have a high probability of occurring.

  13. 13.

    In order to avoid exact compensation, we must also consider some extrinsic donors to make the donors predominant (see Sect. 2 of chapter “Equilibrium Statistics of Carriers”).

  14. 14.

    When a mirror-symmetry plane exists normal to the dislocation line, an arbitrariness in the sense of this line cannot be avoided. There are hence different conventions to define the sign of the dislocation line and the Burgers circuit (clockwise or reverse), yielding different signs for the Burgers vector (see Hirth and Lothe 1982). For a finish-start/left-hand (FS/LH) convention with a counterclockwise circuit, l pointing from surface to bulk and b drawn from the finish to the start point to close the circuit, the screw dislocation in Fig. 13b is defined left-handed.

  15. 15.

    Electron beam-induced conductivity is used in a scanning electron microscope (Heydenreich et al. 1981).

  16. 16.

    The 60° dislocation in Fig. 19a is drawn for zincblende structure; to obtain this defect for the diamond structure of silicon, consider all atoms to be identical.

  17. 17.

    The terms glide and slip are generally used to describe, respectively, the motion of a single dislocation and many dislocations.

  18. 18.

    Along [0001] in the hexagonal wurtzite lattice, corresponding to the [111] direction of the cubic zincblende lattice

  19. 19.

    An example is the well-lattice-matched InP/Si(001), a prominent material for integrating optoelectronics of InP-based devices with the established Si electronics.

  20. 20.

    On Si(001) substrates, such double steps can be achieved applying ~6° offcut orientation to create single-step terraces and a thermal treatment for double-step formation.

References

  • Akasaka T, Yamamoto H (2014) Nucleus and spiral growth mechanisms of nitride semiconductors in metalorganic vapor phase epitaxy. Jpn J Appl Phys 53:100201

    Article  ADS  Google Scholar 

  • Ammerlaan CAJ, Watkins GD (1972) Electron-paramagnetic-resonance detection of optically induced divacancy alignment in silicon. Phys Rev B5:3988

    Article  ADS  Google Scholar 

  • Ayers JE (2007) Heteroepitaxy of semiconductors. CRC Press Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • Bauer S, Rosenauer A, Link P, Kuhn W, Zweck J, Gebhardt W (1993) Misfit dislocations in epitaxial ZnTe/GaAs (001) studied by HRTEM. Ultramicroscopy 51:221

    Article  Google Scholar 

  • Berg A, Brough I, Evans JH, Lorimer G, Peaker AR (1992) Recombination-generation behaviour of decorated defects in silicon. Semicond Sci Technol 7:A263

    Article  ADS  Google Scholar 

  • Bourgoin J, Corbett JW (1972) A new mechanism for interstitial migration. Phys Lett A 38:135

    Article  ADS  Google Scholar 

  • Bourgoin J, Lannoo M (1983) Point defects in semiconductors II: experimental aspects. Springer, Berlin

    Book  Google Scholar 

  • Bragg WL, Burgers WG (1940) Slip in single crystals: discussion. Proc Phys Soc London 52:54

    Article  Google Scholar 

  • Branchu S, Pailloux F, Garem H, Rabier J, Demenet JL (1999) Partial dislocation source in InSb: a new mechanism. Phys Stat Sol A 171:59

    Article  ADS  Google Scholar 

  • Brochard S, Rabier J, Grilhé J (1998) Nucleation of partial dislocations from a surface-step in semiconductors: a first approach of the mobility effect. Eur Phys J Appl Phys 2:99

    Article  ADS  Google Scholar 

  • Brooks H (1963) Binding in metals. Trans Metall Soc AIME 227:546

    Google Scholar 

  • Brouwer G (1954) A general asymmetric solution of reaction equations common in solid state chemistry. Philips Res Rep 9:366

    Google Scholar 

  • Burgers JM (1939) Betrachtungen über die auf Grund von Verlagerungen im regulären Krystallgitter auftretenden Spannungsfelder. I. Untersuchung der geometrischen Beziehungen bei den Verschiebungen in einfachen Krystallen unter dem Einfluss von Spannungen. Proc Kon Ned Acad Wetenschap. 42:293; II. Lösungen der Elastizitätsgleichungen für anisotrope Substanzen mit regulärer Symmetrie. ibid 42:378 (Consideration of stress fields due to shifts in a regular crystal lattice; I Investigation on the geometric relation of displacements in simple crystals under the influence of stress; II Solutions of elasticity equations for anisotropic matter with regular symmetry; in German)

    Google Scholar 

  • Car R, Kelly PJ, Oshiyama A, Pantelides ST (1984) Microscopic theory of atomic diffusion mechanisms in silicon. Phys Rev Lett 52:1814

    Article  ADS  Google Scholar 

  • Car R, Kelly PJ, Oshiyama A, Pantelides ST (1985) Microscopic theory of impurity-defect reactions and impurity diffusion in silicon. Phys Rev Lett 54:360

    Article  ADS  Google Scholar 

  • Chen TP, Chen LJ, Huang TS, Guo YD (1992) Transmission electron microscope investigation of dislocation loops in Si-doped GaAs crystals. Semicond Sci Technol 7:A300

    Article  ADS  Google Scholar 

  • Cottrell AH (1958) Dislocations and plastic flow in crystals. Oxford University Press, London

    MATH  Google Scholar 

  • Cottrell AH (1964) Theory of crystal dislocations. Gordon & Breach, New York

    MATH  Google Scholar 

  • de Kock AJR (1980) Crystal growth of bulk crystals: purification, doping and defects. In: Moss TS, Keller SP (eds) Handbook of semiconductors, vol 3. North-Holland, Amsterdam, p 247

    Google Scholar 

  • Flynn CP (1972) Point defects and diffusion. Claredon Press, Oxford

    Google Scholar 

  • Frank FC (1949a) The influence of dislocations on crystal growth. Discuss Faraday Soc 5:48

    Article  Google Scholar 

  • Frank FC (1949b) Sessile dislocations. Proc Phys Soc A 62:202

    Article  ADS  Google Scholar 

  • Frank FC, Read WT Jr (1950) Multiplication processes for slow moving dislocations. Phys Rev 79:722

    Article  ADS  Google Scholar 

  • Frank W (1981) Self-interstitials and vacancies in elemental semiconductors between absolute zero and the temperature of melting. In Treusch J (ed), Festkörperprobleme/Advances in Solid State Physics, vol 26. Vieweg, Braunschweig pp 221–242

    Google Scholar 

  • Frenkel JI (1926) Über die Wärmebewegung in festen und flüssigen Körpern. Z Phys 35:652 (On the thermal motion in solids and liquids, in German)

    Article  ADS  MATH  Google Scholar 

  • Friedel J (1964) Dislocations. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Friedel J (1966) Theory of crystal defects. In: Gruber B (ed) Proc summer school Hrazany, Czechoslovakia. Academic Press, New York, p 415

    Google Scholar 

  • Gösele UM (1986) Point defects and diffusion mechanisms in crystalline semiconductors, vol 26, Festkörperprobleme/Advances in Solid State Physics. Vieweg, Braunschweig, p 89

    Google Scholar 

  • Gutakovskii AK, Fedina LI, Aseev AL (1995) High resolution electron microscopy of semiconductor interfaces. Phys Stat Sol A 150:127

    Article  ADS  Google Scholar 

  • Hagemark KI (1976) Frozen-in native defects in semiconductor compounds. J Chem Phys Sol 37:461

    Article  ADS  Google Scholar 

  • Hao M, Sugahara T, Sato H, Morishima Y, Naoi Y, Romano LT, Sakai S (1998) Study of threading dislocations in wurtzite GaN films grown on sapphire by metalorganic chemical vapor deposition. Jpn J Appl Phys 37:L291

    Article  ADS  Google Scholar 

  • Hayes W, Stoneham AM (1985) Defects and defect processes in nonmetallic solids. Wiley, New York

    Google Scholar 

  • Heggie M, Jones R (1983) Microscopy of semiconducting materials. Inst Phys Conf Ser 67:45

    Google Scholar 

  • Heydenreich J, Blumtritt H, Gleichmann R, Johansen H (1981) Combined application of SEM(EBIC) and TEM for the investigation of the electrical activity of crystal defects in silicon. In: Becker P, Johari O (eds) Scanning electron microscopy I. SEM Inc AMF O’Hare, Chicago, p 351

    Google Scholar 

  • Hirsch PB (1985) Dislocations in semiconductors. In: Loretto MH (ed) Dislocations and properties of real materials. Institute of Metals, London, p 333

    Google Scholar 

  • Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, New York

    Google Scholar 

  • Hull D (1975) Introduction to dislocations. Pergamon Press, Oxford

    Google Scholar 

  • Inoue M, Suzuki K, Amasuga H, Nakamura M, Mera Y, Takeuchi S, Maeda K (1998) Reliable image processing that can extract an atomically-resolved line shape of partial dislocations in semiconductors from plan-view high-resolution electron microscopic images. Ultramicroscopy 75:5

    Article  Google Scholar 

  • Jansen RW, Sankey OF (1989) Theory of relative native- and impurity-defect abundances in compound semiconductors and the factors that influence them. Phys Rev B 39:3192

    Article  ADS  Google Scholar 

  • Jones R (1981) Reconstructed dislocations in covalently bonded semiconductors. In: Cullis AG, Joy DC (eds) Microscopy of semiconducting materials, vol 60:45, Inst Phys Conf Ser. IOP Publishing, Bristol

    Google Scholar 

  • Justo JF, Bulatov VV, Yip S (1997) Core effects in dislocation intersection. Scr Mater 36:707

    Article  Google Scholar 

  • Kimerling LC, Patel JR (1979) Defect states associated with dislocations in silicon. Appl Phys Lett 34:73

    Article  ADS  Google Scholar 

  • Kléman M (1985) Disclinations. In: Loretto MH (ed) Dislocations and properties of real materials. Institute of Metals, London, pp 51–66

    Google Scholar 

  • Kröger FA (1964) The chemistry of imperfect crystals. North Holland Publ, Amsterdam

    Google Scholar 

  • Kveder VV, Osipyan YA, Schröter W, Zoth G (1982) On the energy spectrum of dislocations in silicon. Phys Stat Sol A 72:701

    Article  ADS  Google Scholar 

  • Labusch R, Schröter W (1980) Electrical properties of dislocations in semiconductors. In: Nabarro FRN (ed) Dislocations in solids, vol 5. North Holland Publ, Amsterdam, pp 127–191

    Google Scholar 

  • Landsberg PT, Canagaratna SG (1984) The grand partition function in defect statistics. Phys Stat Sol B 126:141

    Article  ADS  Google Scholar 

  • Lang DV, Grimmeiss HG, Meijer E, Jaros M (1980) Complex nature of gold-related deep levels in silicon. Phys Rev B 22:3917

    Article  ADS  Google Scholar 

  • Lannoo M, Bourgoin J (1981) Point defects in semiconductors. Springer, Berlin

    Google Scholar 

  • Li SS (2007) Semiconductor physical electronics, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Lorenz MR (1967) Thermodynamics, materials preparation and crystal growth. In: Aven M, Prener JS (eds) Physics and chemistry of II–VI compounds. North Holland Publishing, Amsterdam, p 75

    Google Scholar 

  • Mergel D, Labusch R (1982) Optical excitations of dislocation states in silicon. Phys Stat Sol A 69:151

    Article  ADS  Google Scholar 

  • Nabarro FRN (1967) Theory of crystal dislocations. Claredon Press, Oxford

    Google Scholar 

  • Nichols CS, Van de Walle CG, Pantelides ST (1989) Mechanisms of equilibrium and nonequilibrium diffusion of dopants in silicon. Phys Rev Lett 62:1049

    Article  ADS  Google Scholar 

  • Ning XJ, Huvey N (1996) Observation of twins formed by gliding of successive surface-nucleated partial dislocations in silicon. Philos Mag Lett 74:241

    Article  ADS  Google Scholar 

  • Orowan E (1934) Zur Kristallplastizität III, Über den Mechanismus des Gleitvorganges. Z Phys 89:634 (On the plasticity of crystals III, On the mechanism of gliding, in German)

    Article  ADS  Google Scholar 

  • Osip’yan YA (1983) Electrical properties of dislocations in plastically deformed float zone silicon. J Phys Colloq (Orsay Fr) 44(C4, Suppl 9):103

    Google Scholar 

  • Osipiyan YA, Smirnova IS (1968) Perfect dislocations in the wurtzite lattice. Phys Stat Sol 30:19

    Article  ADS  Google Scholar 

  • Pandey K (1986) Diffusion without vacancies or interstitials: a new concerted exchange mechanism. In: von Baredeleben HJ (ed) Defects in semiconductors, vol 10–12, Mater Sci Forum. Trans Tech Publishing, Aedermannsdorf, p 121

    Google Scholar 

  • Pantelides ST (1987) The effect of hydrogen on shallow dopants in crystalline silicon. In: Engström O (ed) Proceedings 18th international conference on physics of semiconductors. World Scientific Publishing, Singapore, p 987

    Google Scholar 

  • Patel JR, Chaudhuri AR (1966) Charged impurity effects on the deformation of dislocation-free germanium. Phys Rev 143:601

    Article  ADS  Google Scholar 

  • Petrenko VF, Whitworth RW (1980) Charged dislocations and the plastic deformation of II–VI compounds. Philos Mag A 41:681

    Article  ADS  Google Scholar 

  • Pirouz P (1989) On twinning and polymorphic transformations in compound semiconductors. Scr Metall 23:401

    Article  Google Scholar 

  • Pohl UW (2013) Epitaxy of semiconductors. Springer, Berlin

    Book  Google Scholar 

  • Read WT Jr (1953) Dislocations in crystals. McGraw-Hill, New York

    MATH  Google Scholar 

  • Rösner H, Kübel C, Ivanisenko Y, Kurmanaeva L, Divinski SV, Peterlechner M, Wilde G (2011) Strain mapping of a triple junction in nanocrystalline Pd. Acta Mater 59:7380

    Article  Google Scholar 

  • Schottky W (1935) Über den Mechanismus der Ionenbewegung in festen Elektrolyten. Z Phys Chem B 29:335 (On the mechanism of ion motion in solid electrolytes, in German)

    Google Scholar 

  • Schottky W, Stöckmann F (1954) Vergleichende Betrachtungen über die Natur der Störstellen in Halbleitern und Phosphoren. Halbleiterprobleme 1:80 (Comparative considerations on the nature of impurities in semiconductors and phosphors, in German)

    Article  ADS  Google Scholar 

  • Seeger K (1997) Semiconductor physics: an introduction, 6th edn. Springer, New York

    Book  MATH  Google Scholar 

  • Stolwijk NA, Schuster B, Hölzl J, Mehrer H, Frank W (1983) Diffusion and solubility of gold in silicon. Physica B+C 116:335

    Article  ADS  Google Scholar 

  • Suezawa M, Sumino K (1983) J Phys Colloq (Orsay Fr) 44(C4, Suppl 9):133

    Google Scholar 

  • Talwar DN, Vandevyver M, Zigone M (1980) Impurity induced Raman scattering spectra in zincblende-type crystals: application to mixed indium pnictides. J Phys C 13:3775

    Article  ADS  Google Scholar 

  • Tan TY, Gösele U, Morehead FF (1983) On the nature of point defects and the effect of oxidation on substitutional dopant diffusion in silicon. Appl Phys A 31:97

    Article  ADS  Google Scholar 

  • Taylor GI (1934) The mechanism of plastic deformation of crystals, part I, theoretical. Proc R Soc London A 145:362

    Article  ADS  MATH  Google Scholar 

  • Troxell JR, Watkins GD (1980) Interstitial boron in silicon: a negative-U system. Phys Rev B 22:921

    Article  ADS  Google Scholar 

  • Troxell JR, Chatterjee AP, Watkins GD, Kimerling LC (1979) Recombination-enhanced migration of interstitial aluminum in silicon. Phys Rev B 19:5336

    Article  ADS  Google Scholar 

  • Van de Walle CG, Denteneer PJH, Bar-Yam Y, Pantelides ST (1989) Theory of hydrogen diffusion and reactions in crystalline silicon. Phys Rev B 39:10791

    Article  Google Scholar 

  • van Vechten JA (1980) A simple man’s view of the thermochemistry of semiconductors. In: Moss TS, Keller SP (eds) Handbook of semiconductors, vol 3. North Holland Publishing, Amsterdam, p 1

    Google Scholar 

  • Watkins GD (1974) Lattice defects in semiconductors. Inst Phys Conf Ser 23:1

    Google Scholar 

  • Watkins GD (1986) The lattice vacancy in silicon. In: Pantelides ST (ed) Deep centers in semiconductors. Gordon and Breach, New York, p 147

    Google Scholar 

  • Weber ER (1983) Transition metals in silicon. Appl Phys A 30:1

    Article  ADS  Google Scholar 

  • Weber ER, Alexander H (1983) Deep level defects in plastically deformed silicon. J Phys Colloq (Orsay Fr) 44(C4):C4-319–C4-328

    Google Scholar 

  • Weertman J, Weertman JR (1960) Elementary dislocation theory. Macmillan, New York

    MATH  Google Scholar 

  • Wessel K, Alexander H (1977) On the mobility of partial dislocations in silicon. Philos Mag 35:1523

    Article  ADS  Google Scholar 

  • Yeh C-Y, Lu ZW, Zunger A (1992) Zinc-blende – wurtzite polytypism in semiconductors. Phys Rev B 46:10086

    Article  ADS  Google Scholar 

  • You JH, Johnson HT (2009) Effect of dislocations on the electrical and optical properties of GaAs and GaN. In: Ehrenreich H, Spaepen F (eds) Solid state physics, vol 61. Academic Press, New York, pp 143–261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Böer, K.W., Pohl, U.W. (2015). Crystal Defects. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06540-3_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06540-3_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-06540-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Crystal Defects
    Published:
    17 June 2022

    DOI: https://doi.org/10.1007/978-3-319-06540-3_15-4

  2. Crystal Defects
    Published:
    26 March 2020

    DOI: https://doi.org/10.1007/978-3-319-06540-3_15-3

  3. Crystal Defects
    Published:
    03 October 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_15-2

  4. Original

    Crystal Defects
    Published:
    18 January 2016

    DOI: https://doi.org/10.1007/978-3-319-06540-3_15-1