Skip to main content

Large Time Behavior of the Navier–Stokes Flow

  • Living reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Abstract

Different results related to the asymptotic behavior of incompressible fluid equations are analyzed as time tends to infinity. The main focus is on the solutions to the Navier–Stokes equations, but in the final section, a brief discussion is added on solutions to magnetohydrodynamics, liquid crystals, and quasi-geostrophic and Boussinesq equations. Consideration is given to results on decay, asymptotic profiles, and stability for finite and nonfinite energy solutions.

In: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Part I. Incompressible fluids. Unsteady viscous Newtonian fluids. Yoshikazu Giga and Antonn Novotný editors. Springer L. Brandolese is supported by the ANR project DYFICOLTI N. 36338

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. H. Abidi, G. Gui, P. Zhang, On the decay and stability of global solutions to the 3D inhomogeneous Navier–Stokes equations. Commun. Pure Appl. Math. 64(6), 832–881 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Agapito, M. Schonbek, Non-uniform decay of MHD equations with and without magnetic diffusion. Commun. Partial Differ. Equ. 32(10–12), 1791–1812 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Amrouche, V. Girault, M.E. Schonbek, T.P. Schonbek, Point-wise decay of solutions and of higher derivatives to Navier–Stokes equation. SIAM J. Math. Anal. 31(4), 740–753 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Auscher, S. Dubois, P. Tchamitchian, On the stability of global solutions to Navier–Stokes equations in the space. J. Math. Pures Appl. (9) 83(6), 673–697 (2004) (English, with English and French summaries)

    Google Scholar 

  5. H.-O. Bae, L. Brandolese, On the effect of external forces on incompressible fluid motions at large distances. Ann. Univ. Ferrara Sez. VII Sci. Mat. 55(2), 225–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. H.-O. Bae, B.J. Jin, Temporal and spatial decays for the Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A 135(3), 461–477 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Ben-Artzi, Global solutions of two-dimensional Navier–Stokes and Euler equations. Arch. Ration. Mech. Anal. 128(4), 329–358 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Bjorland, L. Brandolese, D. Iftimie, M. Schonbek, L p-solutions of the steady-state Navier–Stokes equations with rough external forces. Commun. Partial Differ. Equ. 36(2), 216–246 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Bjorland, C. Niche, On the decay of infinite energy solutions to the Navier–Stokes equations in the plane. Phys. D 240(7), 670–674 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Bjorland, M. Schonbek, Existence and stability of steady-state solutions with finite energy for the Navier–Stokes equation in the whole space. Nonlinearity 22(7), 1615–1637 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Bjorland, M. Schonbek, Poincaré’s inequality and diffusive evolution equations. Adv. Differ. Equ. 14(3–4), 241–260 (2009), MR2493562 (2010a:35006)

    Google Scholar 

  12. W. Borchers, T. Miyakawa, Algebraic L 2 decay for Navier–Stokes flows in exterior domains. Acta Math. 165(3–4), 189–227 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Borchers, T. Miyakawa, Algebraic L 2 decay for Navier–Stokes flows in exterior domains. II. Hiroshima Math. J. 21(3), 621–640 (1991) MR1148998 (93g:35111)

    Google Scholar 

  14. W. Borchers, T. Miyakawa, L 2-decay for Navier–Stokes flows in unbounded domains, with application to exterior stationary flows. Arch. Ration. Mech. Anal. 118(3), 273–295 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Borchers, T. Miyakawa, On stability of exterior stationary Navier–Stokes flows. Acta Math. 174 (2), 311–382 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Brandolese, On the localization of symmetric and asymmetric solutions of the Navier–Stokes equations in \(\mathbb{R}^{n}\). C. R. Acad. Sci. Paris Sér. I Math. 332(2), 125–130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Brandolese, Space-time decay of Navier–Stokes flows invariant under rotations. Math. Ann. 329(4), 685–706 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Brandolese, Asymptotic behavior of the energy and point-wise estimates for solutions to the Navier–Stokes equations. Rev. Mat. Iberoam. 20(1), 223–256 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Brandolese, Application of the realization of homogeneous Sobolev spaces to Navier–Stokes. SIAM J. Math. Anal. 37(2), 673–683 (2005) (electronic)

    Google Scholar 

  20. L. Brandolese, Concentration-diffusion effects in viscous incompressible flows. Indiana Univ. Math. J. 58(2), 789–806 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Brandolese, Fine properties of self-similar solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 192(3), 375–401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Brandolese, Characterization of solutions to dissipative systems with sharp algebraic decay. SIAM J. Math. Anal. 48(3), 1616–1633 (2016). arXiv:1509.05928

    Google Scholar 

  23. L. Brandolese, Y. Meyer, On the instantaneous spreading for the Navier–Stokes system in the whole space. ESAIM Control Optim. Calc. Var. 8 273–285 (2002) (A tribute to J. L. Lions)

    Google Scholar 

  24. L. Brandolese, M. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq system. Trans. Am. Math. Soc. 364(10), 5057–5090 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Brandolese, F. Vigneron, New asymptotic profiles of nonstationary solutions of the Navier–Stokes system. J. Math. Pures Appl. (9) 88(1), 64–86 (2007)

    Google Scholar 

  26. L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Calderón, Existence of weak solutions for the Navier–Stokes equations with initial data in L p. Trans. Am. Math. Soc. 318 (1), 179–200 (1990)

    MathSciNet  MATH  Google Scholar 

  29. M. Cannone, Ondelettes, paraproduits et Navier–Stokes. Diderot Editeur, Paris, 1995. (With a preface by Yves Meyer)

    MATH  Google Scholar 

  30. M. Cannone, Harmonic analysis tools for solving the incompressible Navier–Stokes equations. Handbook of mathematical fluid dynamics, vol. III. Edited by S.J. Friedlander and D. Serre, Elsevier (2004), 161–244

    Google Scholar 

  31. M. Cannone, C. He, G. Karch, Slowly Decaying Solutions to Incompressible Navier–Stokes System. Gakuto International Series. Mathematical Sciences and Applications, vol. 35 (2011). ISBN:978-0-444-51556-8

    Google Scholar 

  32. M. Cannone, Y. Meyer, F. Planchon, Solutions auto-similaires des équations de Navier–Stokes. Séminaire sur les Équ. aux Dérivées Partielles, 1993–1994, École Polytech., Palaiseau, 1994, pp. Exp. No. VIII, 12

    Google Scholar 

  33. M. Cannone, F. Planchon, Self-similar solutions for Navier–Stokes equations in R 3. Commun. Partial Differ. Equ. 21(1–2), 179–193 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Carpio, Comportement asymptotique dans les équations de Navier–Stokes. C. R. Acad. Sci. Paris Sér. I Math. 319(3), 223–228 (1994) (French, with English and French summaries). MR1288407 (95h:35174)

    Google Scholar 

  35. A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three. Commun. Partial Differ. Equ. 19(5–6), 827–872 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Carpio, Large-time behavior in incompressible Navier–Stokes equations. SIAM J. Math. Anal. 27(2), 449–475 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Carrillo, L. Ferreira, The asymptotic behaviour of subcritical dissipative quasi-geostrophic equations. Nonlinearity 21(5), 1001–1018 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Carrillo, L. Ferreira, Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh. Math. 151(2), 111–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Carrillo, L. Ferreira, Convergence towards self-similar asymptotic behavior for the dissipative quasi-geostrophic equations. Self-similar solutions of nonlinear PDE, Banach Center Publications, vol. 74, Polish Academy. Science. Institute. Mathematical., Warsaw, 2006, pp. 95–115

    Google Scholar 

  40. Th. Cazenave, F. Dickstein, F.B. Weissler, Chaotic behavior of solutions of the Navier–Stokes system in \(\mathbb{R}^{N}\). Adv. Differ. Equ. 10(4), 361–398 (2005)

    MathSciNet  Google Scholar 

  41. J. Chemin, P. Zhang, Inhomogeneous incompressible Navier–Stokes flows with slowly varying initial data. arXiv (2015)

    Google Scholar 

  42. D. Chae, M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255(11), 3971–3982 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Chemin, I. Gallagher, Wellposedness and stability results for the Navier–Stokes equations in R 3. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(2), 599–624 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Choe, B. Jin, Weighted estimate of the asymptotic profiles of the Navier–Stokes flow in \(\mathbb{R}^{n}\). J. Math. Anal. Appl. 344(1), 353–366 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Constantin, A. Majda, E. Tabak, Singular front formation in a model for quasigeostrophic flow. Phys. Fluids 6(1), 9–11 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. P. Constantin, J. Wu, Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30(5), 937–948 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Córdoba, D. Córdoba, A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Dai, E. Feireisl, E. Rocca, G. Shimperna, M. Schonbek, On asymptotic isotropy for a hydro-dynamic model of liquid crystals. arXiv:1409.7499 (2014)

    Google Scholar 

  49. M. Dai, J. Qing, M. Schonbek, Regularity of solutions to the liquid crystals systems in \(\mathbb{R}^{2}\) and \(\mathbb{R}^{3}\). Nonlinearity. 25(2), 513–532 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Dai, M. Schonbek, Asymptotic behavior of solutions to the liquid crystal system in H m(R 3). SIAM J. Math. Anal. 46(5), 3131–3150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. R. Danchin, M. Paicu, Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux. Bull. Soc. Math. France 136(2), 261–309 (2008) (French, with English and French summaries)

    Google Scholar 

  52.  C. Doering, J.D. Gibbon, Applied Analysis of the Navier–Stokes Equations. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  53. S. Dubois, What is a solution to the Navier–Stokes equations. C. R. Math. Acad. Sci. Paris 335(1), 27–32 (2002). (English, with English and French summaries)

    Google Scholar 

  54. J.L. Ericksen, Continuum theory of nematic liquid crystals. Res. Mechanica 21, 381–392 (1987)

    Google Scholar 

  55. J.L. Ericksen, Conservation laws for liquid crystals. Trans. Soc. Rheology 5, 23–34 (1961) MR0158610 (28 #1833)

    Google Scholar 

  56. R. Farwig, H. Kozono, H. Sohr, An L q-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. E. Feireisl, M. Schonbek, On the Oberbeck-Boussinesq approximation on unbounded domains. in Nonlinear Partial Differential Equations. Abel Symposia, vol 7 (Springer, Berlin, 2013), pp. 131–168

    Google Scholar 

  58. R. Finn, On the exterior stationary problem for the Navier–Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965). MR0182816 (32 #298)

    Google Scholar 

  59. R. Finn, On the steady-state solutions of the Navier–Stokes equations. III. Acta Math. 105, 197–244 (1961). MR0166498 (29 #3773)

    Google Scholar 

  60. R. Finn, On steady-state solutions of the Navier–Stokes partial differential equations. Arch. Ration. Mech. Anal. 3, 381–396 (1959). MR0107442 (21 #6167)

    Google Scholar 

  61. C. Foias, J.-C. Saut, Asymptotic behavior, as t → +, of solutions of Navier–Stokes equations and nonlinear spectral manifolds. Indiana Univ. Math. J. 33(3), 459–477 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  62. Y. Fujigaki, T. Miyakawa, Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in \(\mathbb{R}^{n}\) and \(\mathbb{R}^{n}\). Sūrikaisekikenkyūsho Kōkyūroku 1225, 14–33 (2001); Mathematical Analysis in Fluid and Gas Dynamics (Japanese) (Kyoto, 2000)

    Google Scholar 

  63. Y. Fujigaki, T. Miyakawa, Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in the whole space. SIAM J. Math. Anal. 333, 523–544 (2001)

    Google Scholar 

  64. Y. Fujigaki, T. Miyakawa, Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in the half-space. Methods Appl. Anal. 8(1), 121–157 (2001)

    MathSciNet  MATH  Google Scholar 

  65. H. Fujita, T. Kato, On the Navier–Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  66. G. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer Tracts in Natural Philosophy, vol. 38 (Springer, New York, 1994). Linearized steady problems

    Google Scholar 

  67. G. Galdi, P. Maremonti, Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier–Stokes equations in exterior domains. Arch. Ration. Mech. Anal. 94(3), 253–266 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  68. I. Gallagher, D. Iftimie, F. Planchon, Asymptotics and stability for global solutions to the Navier–Stokes equations. Ann. Inst. Fourier (Grenoble) 53(5), 1387–1424 (2003)

    Google Scholar 

  69. T. Gallay, Infinite energy solutions of the two-dimensional Navier–Stokes equations (2014). arxiv:1411.5156

    Google Scholar 

  70. T. Gallay, L. Rodrigues, Sur le temps de vie de la turbulence bidimensionnelle. Ann. Fac. Sci. Toulouse Math. (6) 17(4), 719–733 (2008) (French, with English and French summaries)

    Google Scholar 

  71. Th. Gallay, C.E. Wayne, Long-time asymptotics of the Navier–Stokes and vorticity equations on \(\mathbb{R}^{3}\). R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360 (1799), 2155–2188 (2002); Recent Developments in the Mathematical Theory of Water Waves (Oberwolfach, 2001)

    Google Scholar 

  72. Th. Gallay, Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on \(\mathbb{R}^{2}\). Arch. Ration. Mech. Anal. 163(3), 209–258 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  73. Th. Gallay, Global stability of vortex solutions of the two-dimensional Navier–Stokes equation. Commun. Math. Phys. 255(1), 97–129 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  74. J. Gao, Q. Tao, Z. Yao, Dynamics of nematic liquid crystal flows: the quasilinear approach. arXiv:1412.0498v2 (2015)

    Google Scholar 

  75. P. Germain, Multipliers, para-multipliers, and weak-strong uniqueness for the Navier–Stokes equations. J. Differ. Equ. 226(2), 373–428 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  76. P. Germain, N. Pavlović, G. Staffilani, Regularity of solutions to the Navier–Stokes equations evolving from small data in BMO−1. Int. Math. Res. Not. IMRN 21, Art. ID rnm087, 35 (2007)

    Google Scholar 

  77. M-H. Giga, Y. Giga, J. Saal, Nonlinear Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol. 79 (Birkh ̈auser, Boston, 2010). Asymptotic behavior of solutions and self-similar solutions

    Google Scholar 

  78. Y. Giga, T. Kambe, Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation. Commun. Math. Phys. 117(4), 549–568 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  79. Y. Giga, S. Matsui, O. Sawada, Global existence of two-dimensional Navier–Stokes flow with nondecaying initial velocity. J. Math. Fluid Mech. 3(3), 302–315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  80. Y. Giga, T. Miyakawa, Navier–Stokes flow in \(\mathbb{R}^{3}\) with measures as initial vorticity and Morrey spaces. Commun. Partial Differ. Equ. 14 (5), 577–618 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  81. Y. Giga, T. Miyakawa, H. Osada, Two-dimensional Navier–Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104(3), 223–250 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  82. P. Han, Algebraic L 2decay for weak solutions of a viscous Boussinesq system in exterior domains. J. Differ. Equ. 252(12), 6306–6323 (2012)

    Article  MATH  Google Scholar 

  83. P. Han, M. Schonbek, Large time decay properties of solutions to a viscous Boussinesq system in a half space. Adv. Differ. Equ. 19(1–2), 87–132 (2014). MR3161657

    Google Scholar 

  84. P. Han, Decay results of higher-order norms for the Navier–Stokes flows in 3D exterior domains. Commun. Math. Phys. 334(1), 397–432 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  85. C. He, T. Miyakawa, Non-stationary Navier–Stokes flows in a two-dimensional exterior domain with rotational symmetries. Indiana Univ. Math. J. 55(5), 1483–1555 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  86. C. He, T. Miyakawa, On weighted-norm estimates for non-stationary incompressible Navier–Stokes flows in a 3D exterior domain. J. Differ. Equ. 246(6), 2355–2386 (2009)

    Article  MATH  Google Scholar 

  87. C. He, Z. Xin, On the decay properties of solutions to the non-stationary Navier–Stokes equations in \(\mathbb{R}^{3}\). Proc. Roy Soc. Edinb. Sect. A 131(3), 597–619 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  88. J. Heywood, The Navier–Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29(5), 639–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  89. J. Heywood, The exterior nonstationary problem for the Navier–Stokes equations. Acta Math. 129(1–2), 11–34 (1972). MR0609550 (58 #29432)

    Google Scholar 

  90. J. Heywood, On stationary solutions of the Navier–Stokes equations as limits of nonstationary solutions. Arch. Ration. Mech. Anal. 37, 48–60 (1970). MR0412639 (54 #761)

    Google Scholar 

  91. M. Hieber, M. Nesensohn, J. Prüss, K. Schade, Dynamics of nematic liquid crystal flows: the quasilinear approach. arXiv:1302.4596v1 (2013)

    Google Scholar 

  92. M. Hieber, J. Prüss, Thermodynamical consistent modeling and analysis of nematic liquid crystal flows. arXiv:1504.1237vi (2015)

    Google Scholar 

  93. T. Hishida, Lack of uniformity of L 2 decay for viscous incompressible flows in exterior domains. Adv. Math. Sci. Appl. 2(2), 345–367 (1993) MR1239264 (94j:35144)

    Google Scholar 

  94. J. Huang, M. Paicu, Decay estimates of global solution to 2D incompressible Navier–Stokes equations with variable viscosity. Discrete Contin. Dyn. Syst. 34(11), 4647–4669 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  95. N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255(1), 161–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  96. R. Kajikiya, T. Miyakawa, On L 2decay of weak solutions of the Navier–Stokes equations in R n. Math. Z. 192(1), 135–148 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  97. G. Karch, D. Pilarczyk, Asymptotic stability of Landau solutions to Navier–Stokes system. Arch. Ration. Mech. Anal. 202(1), 115–131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  98. G. Karch, D. Pilarczyk, M. Schonbek, AL 2-asymptotic stability of singular solutions to the Navier–Stokes system of equations in \(\mathbb{R}^{3}\). arXiv:1308.6667

    Google Scholar 

  99. T. Kato, Strong L p-solutions of the Navier–Stokes equation in R m with applications to weak solutions. Math. Z. 187 (4), 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  100. G. Knightly, On a class of global solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 21,211–245 (1966). MR0191213 (32 #8621)

    Google Scholar 

  101. G. Knightly, A Cauchy problem for the Navier–Stokes equations in R n. SIAM J. Math. Anal. 3, 506–511 (1972) MR0312093 (47 #655)

    Google Scholar 

  102. G. Knightly, Some decay properties of solutions of the Navier–Stokes equations, in Approximation Methods for Navier–Stokes Problems (Proceedings of the Symposium held by the International Union of Theoretical and Applied Mechanics (IUTAM), University of Paderborn, Paderborn, 1979). Lecture Notes in Mathematics, vol. 771 (Springer, Berlin, 1980), pp. 287–298. MR566003 (81c:35104)

    Google Scholar 

  103. H. Koch, D. Tataru, Well-posedness for the Navier–Stokes equations. Adv. Math. 1571, 22–35 (2001)

    Google Scholar 

  104. L. Kosloff, T. Schonbek, On the Laplacian and fractional Laplacian in an exterior domain. Adv. Differ. Equ. 17(1–2), 173–200 (2012) MR2906733

    Google Scholar 

  105. L. Kosloff, T. Schonbek, Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discret. Contin. Dyn. Syst. Ser. S 7(5), 1025–1043 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  106. H. Kozono, T. Ogawa, Two-dimensional Navier–Stokes flow in unbounded domains. Math. Ann. 297(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  107. H. Kozono, T. Ogawa, Decay properties of strong solutions for the Navier–Stokes equations in two-dimensional unbounded domains. Arch. Ration. Mech. Anal. 122(1), 1–17 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  108. H. Kozono, T. Ogawa, On stability of Navier–Stokes flows in exterior domains. Arch. Ration. Mech. Anal. 128(1), 1–31 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  109. H. Kozono, M. Yamazaki, On a larger class of stable solutions to the Navier–Stokes equations in exterior domains. Math. Z. 228(4), 751–785 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  110. I. Kukavica, Space-time decay for solutions of the Navier–Stokes equations. Indiana Univ. Math. J. 50 (Special Issue), 205–222 (2001) Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000)

    Google Scholar 

  111. I. Kukavica, On the weighted decay for solutions of the Navier–Stokes system. Nonlinear Anal. 70(6), 2466–2470 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  112. I. Kukavica, E. Reis, Asymptotic expansion for solutions of the Navier–Stokes equations with potential forces. J. Differ. Equ. 250(1), 607–622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  113. I. Kukavica, J.J. Torres, Weighted L p decay for solutions of the Navier–Stokes equations. Commun. Partial Differ. Equ. 32(4–6), 819–831 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  114. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow. Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and Its Applications, vol. 2 (Gordon and Breach, Science Publishers, New York/London/Paris, 1969). MR0254401 (40 #7610)

    Google Scholar 

  115. L. Landau, A new exact solution of Navier–Stokes equations. C. R. (Dokl.) Acad. Sci. URSS (N.S.) 43, 286–288 (1944) MR0011205 (6,135d)

    Google Scholar 

  116. P. Lemarié-Rieusset, Recent Developments in the Navier–Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431 (Chapman & Hall/CRC, Boca Raton, 2002)

    Google Scholar 

  117. J. Leray, Étude de diverses équations integrales non lineaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pure Appl. 9, 1–82 (1933)

    MATH  Google Scholar 

  118. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  119. F. Leslie, Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28(4), 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  120. F. Leslie, Theory of Flow Phenomena in Liquid Crystals, vol. 4 G, Brown edn. (Academic Press,New York, 1979)

    Google Scholar 

  121. F. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48(5), 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  122. P. Lions, Mathematical Topics in Fluid Mechanics, vol. 1. Oxford Lecture Series in Mathematics and its Applications, vol. 3 (The Clarendon Press/Oxford University Press, New York, 1996). Incompressible models; Oxford Science Publications

    Google Scholar 

  123. S. Liu, X. Xu, Global existence and temporal decay for the nematic liquid crystal flows. J. Math. Anal. Appl. 426 (1), 228–246 (2015). doi:10.1016/j.jmaa.201501.001. MR3306371

    Article  MathSciNet  MATH  Google Scholar 

  124. Y. Maekawa, On asymptotic stability of global solutions in the weak L 2 space for the two-dimensional Navier–Stokes equations. Anal. (Berlin) 35(4), 245–257 (2015). doi:10.1515/anly-2014-1302

    Google Scholar 

  125. P. Maremonti, Stabilita asintotica in media per moti fluidi viscosi in domini esterni. Anna. Mat. Pura Appl. 4(142), 57–75 (1986)

    MathSciNet  Google Scholar 

  126. P. Maremonti, On the asymptotic behaviour of the L 2-norm of suitable weak solutions to the Navier–Stokes equations in three-dimensional exterior domains. Commun. Math. Phys. 118(3), 385–400 (1988). MR958803 (89k:35185)

    Google Scholar 

  127. K.T. Masuda, On the stability of incompressible viscous fluid motions past objects. J. Math. Soc. Jpn. 27,294–327 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  128. K. Masuda, Weak solutions of Navier–Stokes equations Tohoku Math. J. (2) 36(4), 623–646 (1984)

    Google Scholar 

  129. Y. Meyer, Wavelets, paraproducts, and Navier–Stokes equations, in Current Developments in Mathematics (International Press, Cambridge, MA, 1996; Boston, 1997), pp. 105–212

    Google Scholar 

  130. T. Miyakawa, Application of Hardy space techniques to the time-decay problem for incompressible Navier–Stokes flows in R n. Funkcial. Ekvac. 41(3), 383–434 (1998)

    MathSciNet  MATH  Google Scholar 

  131. T. Miyakawa, On space-time decay properties of nonstationary incompressible Navier–Stokes flows in R n. Funkcial. Ekvac. 43(3), 541–557 (2000)

    MathSciNet  MATH  Google Scholar 

  132. T. Miyakawa, On upper and lower bounds of rates of decay for nonstationary Navier–Stokes flows in the whole space. Hiroshima Math. J. 32(3), 431–462 (2002)

    MathSciNet  MATH  Google Scholar 

  133. T. Miyakawa, M.E. Schonbek, On optimal decay rates for weak solutions to the Navier–Stokes equations in \(\mathbb{R}^{n}\), in Proceedings of Partial Differential Equations and Applications (Olomouc, 1999), 2001, pp. 443–455

    Google Scholar 

  134. Š. Nečasová, P. Rabier, On the time decay of the solutions of the Navier–Stokes system. J. Math. Fluid Mech. 9(4), 517–532 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  135. C. Niche, María E. Schonbek, Decay of weak solutions to the 2D dissipative quasi-geostrophic equation. Comm. Math. Phys. 276(1), 93–115 (2007)

    Google Scholar 

  136. C. Niche, M.E. Schonbek, Decay characterization of solutions to dissipative equations. J. Lond. Math. Soc. 9(2), 573–595 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  137. C. Niche, M.E. Schonbek, Comparison of decay of solutions to two compressible approximations to Navier–Stokes equations. 9 arXiv:1501 (2015)

    Google Scholar 

  138. T. Ogawa, S. Rajopadhye, M. Schonbek, Energy decay for a weak solution of the Navier–Stokes equation with slowly varying external forces. J. Funct. Anal. 144(2), 325–358 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  139. M. Oliver, E. Titi, Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in R n. J. Funct. Anal. 172(1), 1–18 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  140. T. Phan, N. Phuc, Stationary Navier–Stokes equations with critically singular external forces: existence and stability results. Adv. Math. 241,137–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  141. J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  142. F. Planchon, Asymptotic behavior of global solutions to the Navier–Stokes equations in \(\mathbb{R}^{3}\). Rev. Mat. Iberoam. 14 1, 71–93 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  143. A. Ramm, Scattering by Obstacles. Mathematics and Its Applications, vol. 21 (D. Reidel Publishing Co., Dordrecht, 1986)

    Google Scholar 

  144. O. Sawada, Y. Taniuchi, A remark on L solutions to the 2-D Navier–Stokes equations. J. Math. Fluid Mech. 9(4), 533–542 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  145. M. Schonbek, Decay of solutions to parabolic conservation laws. Commun. Partial Differ. Equ. 5(5), 449–473 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  146. M. Schonbek, L 2 decay for weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88(3), 209–222 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  147. M. Schonbek, Large time behaviour of solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 11(7), 733–763 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  148. M. Schonbek, Lower bounds of rates of decay for solutions to the Navier–Stokes equations. J. Am. Math. Soc. 4(3), 423–449 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  149. M. Schonbek, The Fourier splitting method, in Advances in Geometric Analysis and Continuum Mechanics (Proceedings of a conference held at Stanford University, Stanford, 1993) (International Press, Cambridge, MA, 1995), pp. 269–274

    Google Scholar 

  150. M. Schonbek, Large time behaviour of solutions to the Navier–Stokes equations in H m spaces. Commun. Partial Differ. Equ. 20(1–2), 103–117 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  151. M. Schonbek, Tomas P. Schonbek, On the boundedness and decay of moments of solutions to the Navier–Stokes equations. Adv. Differ. Equ. 5(7–9), 861–898 (2000)

    Google Scholar 

  152. M. Schonbek, T. Schonbek, E. Süli, Large-time behaviour of solutions to the magnetohydrody-namics equations. Math. Ann. 304 (4), 717–756 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  153. M. Schonbek, T. Schonbek, Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discret. Contin. Dyn. Syst. 13(5), 1277–1304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  154. M. Schonbek, T. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows. SIAM J. Math. Anal. 35(2), 357–375 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  155. M. Schonbek, M. Wiegner, On the decay of higher-order norms of the solutions of Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A 126(3), 677–685 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  156. L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. of Math. (2) 118(3), 525–571 (1983)

    Google Scholar 

  157. Z. Skalák, The large-time energy concentration in solutions to the Navier–Stokes equations in the frequency space. J. Math. Anal. Appl. 400(2), 689–709 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  158. Z. Skalák, A note on lower bounds of decay rates for solutions to the Navier–Stokes equations in the norms of Besov spaces. Nonlinear Anal. 97, 228–233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  159. Z. Skalák, On the characterization of the Navier–Stokes flows with the power-like energy decay. J. Math. Fluid Mech. 16(3), 431–446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  160. H. Sohr, The Navier–Stokes Equations. Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks] (Birkhäuser Verlag, Basel, 2001). An elementary functional analytic approach

    Google Scholar 

  161. P. Stinga, J. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35(11), 2092–2122 (2010). doi:10.1080/03605301003735680. MR2754080 (2012c:35456)

    Google Scholar 

  162. S. Takahashi, A weighted equation approach to decay rate estimates for the Navier–Stokes equations. Nonlinear Anal. Ser. A: Theory Methods 37(6), 751–789 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  163. F. Vigneron, Spatial decay of the velocity field of an incompressible viscous fluid in \(\mathbb{R}^{d}\). Nonlinear Anal. 63 4, 525–549 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  164. C. Wang, Exact solutions of the Navier–Stokes equations—the generalized Beltrami flows, review and extension. Acta Mech. 81, 69–74 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  165. S. Weng, Remarks on asymptotic behaviors of strong solutions to a viscous Boussinesq system. arXiv:1412.8267 (2014)

    Google Scholar 

  166. S. Weng, Space-time decay estimates for the incompressible viscous resistive Hall-MHD equations. arXiv:1412.8267 (2014)

    Google Scholar 

  167. M. Wiegner, Decay results for weak solutions of the Navier–Stokes equations on R n. J. Lond. Math. Soc. (2) 35(2), 303–313 (1987)

    Google Scholar 

  168. H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 26(1), 379–396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  169. M. Yamazaki, The Navier–Stokes equations in the weak-L n space with time-dependent external force. Math. Ann. 317(4), 635–675 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  170. S. Zelik, Infinite energy solutions for damped Navier–Stokes equations in \(\mathbb{R}^{2}\). J. Math. Fluid Mech. 15(4), 717–745 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  171. L. Zhang, Sharp rate of decay of solutions to 2-dimensional Navier–Stokes equations. Commun. Partial Differ. Equ. 20(1–2), 119–127 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for some very helpful suggestions and corrections which served to improve the presentation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Brandolese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Brandolese, L., Schonbek, M. (2016). Large Time Behavior of the Navier–Stokes Flow. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics