Skip to main content

Leray’s Problem on Existence of Steady State Solutions for the Navier-Stokes Flow

  • Living reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Abstract

This is a survey of results on the Leray problem (1933) for the nonhomogeneous boundary value problem for the steady Navier–Stokes equations in a bounded domain with multiple boundary components. The boundary conditions are assumed only to satisfy the necessary requirement of zero total flux. The authors have proved that the problem is solvable in arbitrary bounded planar or three-dimensional axially symmetric domains. The proof uses Bernoulli’s law for weak solutions of the Euler equations and a generalization of the Morse–Sard theorem for functions in Sobolev spaces. Similar existence results (without any restrictions on fluxes) are proved for steady Navier–Stokes system in two- and three-dimensional exterior domains with multiply connected boundary under assumptions of axial symmetry. In particular, it was shown that in domains with two axes of symmetry and for symmetric boundary datum, the two-dimensional exterior problem has a symmetric solution vanishing at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ch.J. Amick, Existence of solutions to the nonhomogeneous steady Navier–Stokes equations. Indiana Univ. Math. J. 33, 817–830 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. C.J. Amick, On Leray’s problem of steady Navier–Stokes flow past a body in the plane. Acta Math. 161, 71–130 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. K.I. Babenko, On stationary solutions of the problem of flow past a body. Mat. Sb. 91, 3–27 (1973). English translation: math. SSSR Sbornik. 20, 1–25 (1973)

    Google Scholar 

  5. W. Borchers, K. Pileckas, Note on the flux problem for stationary Navier–Stokes equations in domains with multiply connected boundary. Acta Appl. Math. 37, 21–30 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bourgain, M.V. Korobkov, J. Kristensen, On the Morse–Sard property and level sets of Sobolev and BV functions. Rev. Mat. Iberoam. 29(1), 1–23 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain, M.V. Korobkov, J. Kristensen, On the Morse–Sard property and level sets of W n, 1 Sobolev functions on \(\mathbb{R}^{n}\). Journal fur die reine und angewandte Mathematik (Crelles Journal) 2015(700), 93–112 (2015). http://dx.doi.org/10.1515/crelle-2013-0002

  8. I.-D. Chang, R. Finn, On the solutions of a class of equations occurring in continuum mechanics with applications to the Stokes paradox. Arch. Ration. Mech. Anal. 7, 388–401 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Chipot, K. Kaukalytė, K. Pileckas, W. Xue, On nonhomogeneous boundary value problems for the stationary Navier–Stokes equations in 2D symmetric semi-infinite outlets. Anal. Appl. (2015, to appear). doi:10.1142/S0219530515500268

    Google Scholar 

  10. R.R. Coifman, J.L. Lions, Y. Meier, S. Semmes, Compensated compactness and Hardy spaces. J. Math. Pures App. IX Sér. 72, 247–286 (1993)

    MathSciNet  MATH  Google Scholar 

  11. D.C. Clark, The vorticity at infinity for solutions of the stationary Navier–Stokes equations in exterior domains. Indiana Univ. Math. J. 20, 633–654 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  12. J.R. Dorronsoro, Differentiability properties of functions with bounded variation. Indiana U. Math. J. 38(4), 1027–1045 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. L.C. Evans, R.F. Gariepy, in Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics (CRC Press, Boca Raton, 1992)

    Google Scholar 

  14. R. Farwig, H. Morimoto, Leray’s inequality for fluid flow in symmetric multi-connected two-dimensional domains. Tokyo J. Math. 35, 63–70 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Farwig, H. Kozono, T. Yanagisawa, Leray’s inequality in general multi-connected domains in \(\mathbb{R}^{n}\). Math. Ann. 354, 137–145 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Finn, On the steady-state solutions of the Navier–Stokes equations. III. Acta Math. 105, 197–244 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Finn, D.R. Smith, On the stationary solution of the Navier–Stokes equations in two dimensions. Arch. Ration. Mech. Anal. 25, 26–39 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Fujita, On the existence and regularity of the steady-state solutions of the Navier-Stokes theorem. J. Fac. Sci. Univ. Tokyo Sect. I. 9, 59–102 (1961)

    MathSciNet  MATH  Google Scholar 

  19. H. Fujita, On stationary solutions to Navier–Stokes equation in symmetric plane domain under general outflow condition. Pitman research notes in mathematics, in Proceedings of International Conference on Navier–Stokes Equations, Varenna. Theory and Numerical Methods, vol. 388 (1997), pp. 16–30

    Google Scholar 

  20. G.P. Galdi, On the existence of steady motions of a viscous flow with non–homogeneous conditions. Le Matematiche 66, 503–524 (1991)

    MathSciNet  MATH  Google Scholar 

  21. G.P. Galdi, in An Introduction to the Mathematical Theory of the Navier–Stokes Equations, ed. by C. Truesdell, vol I, II revised edition. Springer Tracts in Natural Philosophy, vol. 38, 39 (Springer, New York, 1998)

    Google Scholar 

  22. G.P. Galdi, Stationary Navier–Stokes problem in a two-dimensional exterior domain, in Handbook of Differential Equations, Stationary Partial Differential Equations, ed. by M. Chipot, P. Quittner, vol. 1 (Elsevier, 2003)

    Google Scholar 

  23. G.P. Galdi, C.G. Simader, Existence, uniqueness and L q estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal. 112, 291–318 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. G.P. Galdi, H. Sohr, On the asymptotic structure of plane steady flow of a viscous fluid in exterior domains. Arch. Ration. Mach. Anal. 131, 101–119 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Gilbarg, H.F. Weinberger, Asymptotic properties of Leray’s solution of the stationary two-dimensional Navier–Stokes equations. Russ. Math. Surv. 29, 109–123 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Gilbarg, H.F. Weinberger, Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Pisa (4) 5, 381–404 (1978)

    Google Scholar 

  27. J.G. Heywood, On the impossibility, in some cases, of the Leray-Hopf condition for energy estimates. J. Math. Fluid. Mech. 13, 449–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Hillairet, P. Wittawer, On the existence of solutions to the planar Navier–Stokes system. J. Differ. Equ 255(10), 2996–3019 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Hopf, Ein allgemeiner Endlichkeitssatz der Hydrodynamik. Math. Ann. 117, 764–775 (1941)

    MathSciNet  MATH  Google Scholar 

  30. L.V. Kapitanskii, K. Pileckas, On spaces of solenoidal vector fields and boundary value problems for the Navier–Stokes equations in domains with noncompact boundaries. Trudy Mat. Inst. Steklov. 159, 5–36 (1983). English Transl.: Proc. Math. Inst. Steklov. 159, 3–34 (1984)

    Google Scholar 

  31. K. Kaulakytė, On nonhomogeneous boundary value problem for the steady Navier–Stokes system in domain with paraboloidal and layer type outlets to infinity. Topol. Methods Nonlinear Anal. 46(2), 835–865 (2015)

    MathSciNet  Google Scholar 

  32. K. Kaulakytė, K. Pileckas, On the nonhomogeneous boundary value problem for the Navier–Stokes system in a class of unbounded domains. J. Math. Fluid Mech. 14(4), 693–716 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Koch, N. Nadirashvili, G. Seregin, V. Sverak, Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203(1), 83–105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. M.V. Korobkov, Bernoulli law under minimal smoothness assumptions. Dokl. Math. 83, 107–110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. M.V. Korobkov, J. Kristensen, On the Morse-Sard theorem for the sharp case of Sobolev mappings. Indiana Univ. Math. J. 63(6), 1703–1724 (2014). http://dx.doi.org/10.1512/iumj.2014.63.5431

    Article  MathSciNet  MATH  Google Scholar 

  36. M.V. Korobkov, K. Pileckas, R. Russo, On the flux problem in the theory of steady Navier–Stokes equations with nonhomogeneous boundary conditions. Arch. Ration. Mech. Anal. 207(1), 185–213 (2013). doi:http://dx.doi.org/10.1007/s00205-012-0563-y

    Google Scholar 

  37. M.V. Korobkov, K. Pileckas, R. Russo, Steady Navier–Stokes system with nonhomogeneous boundary conditions in the axially symmetric case. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 14(1), 233–262 (2015). doi:http://dx.doi.org/10.2422/2036-2145.201204_003

  38. M.V. Korobkov, K. Pileckas, R. Russo, Steady Navier–Stokes system with nonhomogeneous boundary conditions in the axially symmetric case. Comptes rendus – Mécanique 340, 115–119 (2012)

    Article  Google Scholar 

  39. M.V. Korobkov, K. Pileckas, R. Russo, The existence theorem for the steady Navier–Stokes problem in exterior axially symmetric 3D domains (2014). arXiv: 1403.6921, http://arxiv.org/abs/1403.6921

  40. M.V. Korobkov, K. Pileckas, R. Russo, The existence of a solution with finite Dirichlet integral for the steady Navier–Stokes equations in a plane exterior symmetric domain. J. Math. Pures Appl. 101(3), 257–274 (2014). http://dx.doi.org/10.1016/j.matpur.2013.06.002

    Article  MathSciNet  MATH  Google Scholar 

  41. M.V. Korobkov, K. Pileckas, R. Russo, Solution of Leray’s problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains. Ann. Math. 181(2), 769–807 (2015). http://dx.doi.org/10.4007/annals.2015.181.2.7

    Article  MathSciNet  MATH  Google Scholar 

  42. M.V. Korobkov, K. Pileckas, R. Russo, The Loiuville theorem for the steady-state Navier–Stokes problem for axially symmetric 3D solutions in absence os swirl. J. Math. Fluid Mech. 17(2), 287–293 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. M.V. Korobkov, K. Pileckas, V.V. Pukhnachev, R. Russo, The flux problem for the Navier–Stokes equations. Russ. Math. Surv. 69(6), 1065–1122 (2014). http://dx.doi.org/10.1070/RM2014v069n06ABEH004928

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Kozono, T. Janagisawa, Leray’s problem on the Navier–Stokes equations with nonhomogeneous boundary data. Math. Zeitschrift. 262, 27–39 (2009)

    Article  Google Scholar 

  45. A.S. Kronrod, On functions of two variables. Uspechi Matem. Nauk (N.S.) 5, 24–134 (1950, in Russian)

    Google Scholar 

  46. O.A. Ladyzhenskaya, Investigation of the Navier–Stokes equations in the case of stationary motion of an incompressible fluid. Uspekhi Mat. Nauk. 3, 75–97 (1959, in Russian)

    Google Scholar 

  47. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible flow (Gordon and Breach, New York, 1969)

    MATH  Google Scholar 

  48. E.M. Landis, Second Order Equations of Elliptic and Parabolic Type (Nauka, Moscow, 1971, in Russian)

    Google Scholar 

  49. J. Leray, Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MathSciNet  MATH  Google Scholar 

  50. J. Malý, D. Swanson, W.P. Ziemer, The Coarea formula for Sobolev mappings. Trans. AMS 355(2), 477–492 (2002)

    Article  MATH  Google Scholar 

  51. R.L. Moore, Concerning triods in the plane and the junction points of plane continua. Proc. Nat. Acad. Sci. U.S.A. 14(1), 85–88 (1928)

    Article  MATH  Google Scholar 

  52. H. Morimoto, A remark on the existence of 2D steady Navier–Stokes flow in bounded symmetric domain under general outflow condition. J. Math. Fluid Mech. 9(3), 411–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. H. Morimoto, H. Fujita, A remark on the existence of steady Navier–Stokes flows in 2D semi-infinite channel involving the general outflow condition. Mathematica Bohemica 126(2), 457–468 (2001)

    MathSciNet  MATH  Google Scholar 

  54. H. Morimoto, H. Fujita, A remark on the existence of steady Navier–Stokes flows in a certain two-dimensional infinite channel. Tokyo J. Math. 25(2), 307–321 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. H. Morimoto, H. Fujita, Stationary Navier–Stokes flow in 2-dimensional Y-shape channel under general outflow condition, in The Navier–Stokes Equations: Theory and Numerical Methods. Lecture Note in Pure and Applied Mathematics (Morimoto Hiroko, Other), vol. 223 (Marcel Decker, New York, 2002), pp. 65–72

    Google Scholar 

  56. H. Morimoto, Stationary Navier–Stokes flow in 2-D channels involving the general outflow condition, in Handbook of Differential Equations: Stationary Partial Differential Equations, ed. by M. Chipot, vol. 4, Ch. 5 (Elsevier, Amsterdam/London, 2007), pp. 299–353

    Google Scholar 

  57. S.A. Nazarov, K. Pileckas, On the solvability of the Stokes and Navier–Stokes problems in domains that are layer-like at infinity. J. Math. Fluid Mech. 1(1), 78–116 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. S.A. Nazarov, K. Pileckas, On steady Stokes and Navier–Stokes problems with zero velocity at infinity in a three-dimensional exterior domains. J. Math. Kyoto Univ. 40, 475–492 (2000)

    MathSciNet  MATH  Google Scholar 

  59. J. Neustupa, On the steady Navier–Stokes boundary value problem in an unbounded 2D domain with arbitrary fluxes through the components of the boundary. Ann. Univ. Ferrara. 55(2), 353–365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Neustupa, A new approach to the existence of weak solutions of the steady Navier-Stokes system with inhomoheneous boundary data in domains with noncompact boundaries. Arch. Ration. Mech. Anal. 198(1), 331–348 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. K. Pileckas, R. Russo, On the existence of vanishing at infinity symmetric solutions to the plane stationary exterior Navier–Stokes problem. Math. Ann. 343, 643–658 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. C.R. Pittman, An elementary proof of the triod theorem. Proc. Am. Math. Soc. 25(4), 919 (1970)

    Google Scholar 

  63. V.V. Pukhnachev, Viscous flows in domains with a multiply connected boundary, in New Directions in Mathematical Fluid Mechanics. The Alexander V. Kazhikhov Memorial Volume, ed. by A.V. Fursikov, G.P. Galdi, V.V. Pukhnachev (Birkhauser, Basel/Boston/Berlin, 2009), pp. 333–348

    Google Scholar 

  64. V.V. Pukhnachev, The Leray problem and the Yudovich hypothesis. Izv. vuzov. Sev.-Kavk. region. Natural Sciences. The Special Issue “Actual Problems of Mathematical Hydrodynamics” (2009, in Russian), pp. 185–194

    Google Scholar 

  65. R. Russo, On the existence of solutions to the stationary Navier–Stokes equations. Ricerche Mat. 52, 285–348 (2003)

    MathSciNet  MATH  Google Scholar 

  66. A. Russo, A note on the two-dimensional steady-state Navier–Stokes problem. J. Math. Fluid Mech. 52, 407–414 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. R. Russo, On Stokes’ problem, in Advances in Mathematica Fluid Mechanics, ed. by R. Rannacher, A. Sequeira (Springer, Berlin/Heidelberg, 2010), pp. 473–511

    Chapter  Google Scholar 

  68. A. Russo, On symmetric Leray solutions to the stationary Navier–Stokes equations. Ricerche Mat. 60, 151–176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. A. Russo, G. Starita, On the existence of solutions to the stationary Navier–Stokes equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7, 171–180 (2008)

    MathSciNet  MATH  Google Scholar 

  70. L.I. Sazonov, On the existence of a stationary symmetric solution of the two-dimensional fluid flow problem. Mat. Zametki. 54(6), 138–141 (1993, in Russian). English Transl.: Math. Notes. 54(6), 1280–1283 (1993)

    Google Scholar 

  71. V.I. Sazonov, Asymptotic behavior of the solution to the two-dimensional stationary problem of a flow past a body far from it. Math. Zametki. 65, 202–253 (1999, in Russian). English transl.: Math. Notes. 65, 202–207 (1999)

    Google Scholar 

  72. D.R. Smith, Estimates at infinity for stationary solutions of the Navier–Stokes equations in two dimensions. Arch. Ration. Mech. Anal. 20, 341–372 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  73. V.A. Solonnikov, General boundary value problems for Douglis-Nirenberg elliptic systems, I. Izv. Akad. Nauk SSSR, Ser. Mat. 28, 665–706 (1964); II, Trudy Mat. Inst. Steklov. 92, 233–297 (1966). English Transl.: I, Amer. Math. Soc. Transl. 56(2), 192–232 (1966); II, Proc. Steklov Inst. Math. 92, 269–333 (1966)

    Google Scholar 

  74. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  75. V. Šverák, T-P. Tsai, On the spatial decay of 3-D steady-state Navier–Stokes flows. Commun. Partial Differ. Equ. 25, 2107–2117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  76. A. Takeshita, A remark on Leray’s inequality. Pac. J. Math. 157, 151–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  77. I.I. Vorovich, V.I. Yudovich, Stationary flows of a viscous incompres-sible fluid. Mat. Sbornik. 53, 393–428 (1961, in Russian)

    Google Scholar 

Download references

Acknowledgements

The research of K. Pileckas leading to these results has received funding from the Lithuanian-Swiss Cooperation Programme to reduce economic and social disparities within the enlarged European Union under project agreement No. CH-3-SMM-01/01.

The research of M. V. Korobkov was partially supported by the Russian Foundation for Basic Research (Grant No. 14-01-00768-a), by the Grant of the Russian Federation for the State Support of Researches (Agreement No. 14.B25.31.0029), and by the Dynasty Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Korobkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Korobkov, M.V., Pileckas, K., Russo, R. (2016). Leray’s Problem on Existence of Steady State Solutions for the Navier-Stokes Flow. In: Giga, Y., Novotny, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-10151-4_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10151-4_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-10151-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics