Skip to main content

Hierarchical Models for Uncertainty Quantification: An Overview

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

Analyses of complex processes should account for the uncertainty in the data, the processes that generated the data, and the models that are used to represent the processes and data. Accounting for these uncertainties can be daunting in traditional statistical analyses. In recent years, hierarchical statistical models have provided a coherent probabilistic framework that can accommodate these multiple sources of quantifiable uncertainty. This overview describes a science-based hierarchical statistical modeling approach and the associated Bayesian inference. In addition, given that many complex processes involve the dynamical evolution of spatial processes, an overview of hierarchical dynamical spatio-temporal models is also presented. The hierarchical and spatio-temporal modeling frameworks are illustrated with a problem concerned with assimilating ocean vector wind observations from satellite and weather center analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agapiou, S., Stuart, A., Zhang, Y.X.: Bayesian posterior contraction rates for linear severely ill-posed inverse problems. J. Inverse Ill-Posed Probl. 22, 297–321 (2014). doi:10.1515/jip-2012-0071

    Article  MathSciNet  MATH  Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neur. Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  3. Bengio, S., Deng, L., Larochelle, H., Lee, H., Salakhutdinov, R.: Guest editors’ introduction: special section on learning deep architectures. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1795–1797 (2013). doi:10.1109/TPAMI.2013.118

    Article  Google Scholar 

  4. Berliner, L.: Hierarchical Bayesian time-series models. Fund. Theor. Phys. 79, 15–22 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Berliner, L.M., Milliff, R.F., Wikle, C.K.: Bayesian hierarchical modeling of air-sea interaction. J. Geophys. Res. Oceans (1978–2012) 108(C4), 2156–2202 (2003)

    Google Scholar 

  6. Brooks, S., Gelman, A., Jones, G., Meng, X.L.: Handbook of Markov Chain Monte Carlo. CRC Press, Boca Raton (2011)

    Book  MATH  Google Scholar 

  7. Cressie, N., Wikle, C.: Statistics for Spatio-Temporal Data, vol. 465. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  8. Cressie, N., Calder, C., Clark, J., Hoef, J., Wikle, C.: Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 19(3), 553–570 (2009)

    Article  Google Scholar 

  9. Fiechter, J., Herbei, R., Leeds, W., Brown, J., Milliff, R., Wikle, C., Moore, A., Powell, T.: A Bayesian parameter estimation method applied to a marine ecosystem model for the coastal gulf of Alaska. Ecol. Model. 258, 122–133 (2013)

    Article  Google Scholar 

  10. Gelfand, A.E., Smith, A.F.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85(410), 398–409 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gladish, D., Wikle, C.: Physically motivated scale interaction parameterization in reduced rank quadratic nonlinear dynamic spatio-temporal models. Environmetrics 25(4), 230–244 (2014)

    Article  MathSciNet  Google Scholar 

  12. Higdon, D., Gattiker, J., Williams, B., Rightley, M.: Computer model calibration using high-dimensional output. J. Am. Stat. Assoc. 103(482), 570–583 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoar, T.J., Milliff, R.F., Nychka, D., Wikle, C.K., Berliner, L.M.: Winds from a Bayesian hierarchical model: computation for atmosphere-ocean research. J. Comput. Graph. Stat. 12(4), 781–807 (2003)

    Article  MathSciNet  Google Scholar 

  14. Holton, J.: Dynamic Meteorology. Elsevier, Burlington (2004)

    Google Scholar 

  15. Hooten, M., Leeds, W., Fiechter, J., Wikle, C.: Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models. J. Agric. Biolog. Environ. Stat. 16(4), 475–494 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hooten, M.B., Wikle, C.K.: A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the eurasian collared-dove. Environ. Ecol. Stat. 15(1), 59–70 (2008)

    Article  MathSciNet  Google Scholar 

  17. Hooten, M.B., Wikle, C.K., Dorazio, R.M., Royle, J.A.: Hierarchical spatiotemporal matrix models for characterizing invasions. Biometrics 63(2), 558–567 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(3), 425–464 (2001)

    Google Scholar 

  19. Leeds, W., Wikle, C., Fiechter, J.: Emulator-assisted reduced-rank ecological data assimilation for nonlinear multivariate dynamical spatio-temporal processes. Stat. Methodol. (2013). doi:10.1016/j.stamet.2012.11.004

    Google Scholar 

  20. Leeds, W., Wikle, C., Fiechter, J., Brown, J., Milliff, R.: Modeling 3-D spatio-temporal biogeochemical processes with a forest of 1-D statistical emulators. Environmetrics 24, 1–12 (2013). doi:10.1002/env.2187

    Article  MathSciNet  Google Scholar 

  21. Marin, J.M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. van der Merwe, R., Leen, T., Lu, Z., Frolov, S., Baptista, A.: Fast neural network surrogates for very high dimensional physics-based models in computational oceanography. Neur. Netw. 20(4), 462–478 (2007)

    Article  Google Scholar 

  23. Milliff, R., Bonazzi, A., Wikle, C., Pinardi, N., Berliner, L.: Ocean ensemble forecasting. Part I: ensemble mediterranean winds from a Bayesian hierarchical model. Q. J. R. Meteorol. Soc. 137(657), 858–878 (2011)

    Google Scholar 

  24. Pinardi, N., Bonazzi, A., Dobricic, S., Milliff, R., Wikle, C., Berliner, L.: Ocean ensemble forecasting. Part II: mediterranean forecast system response. Q. J. R. Meteorol. Soc. 137(657), 879–893 (2011)

    Google Scholar 

  25. Robert, C., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer New York (2004)

    Google Scholar 

  26. Royle, J., Berliner, L., Wikle, C., Milliff, R.: A Hierarchical Spatial Model for Constructing Wind Fields from Scatterometer Data in the Labrador Sea. Lecture Notes in Statistics, pp. 367–382. Springer, New York (1999)

    Google Scholar 

  27. Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent gaussian models by using integrated nested laplace approximations. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 71(2), 319–392 (2009)

    Google Scholar 

  28. Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and its Applications: With R Examples. Springer, New York (2010)

    MATH  Google Scholar 

  30. Šmídl, V., Quinn, A.: The Variational Bayes Method in Signal Processing. Springer, Berlin/New York (2006)

    Google Scholar 

  31. Verbeke, G., Molenberghs, G.: Linear Mixed Models for Longitudinal Data. Springer, New York (2009)

    MATH  Google Scholar 

  32. Wikle, C.: Hierarchical Bayesian models for predicting the spread of ecological processes. Ecol. 84(6), 1382–1394 (2003)

    Article  Google Scholar 

  33. Wikle, C., Berliner, L.: A Bayesian tutorial for data assimilation. Phys. D: Nonlinear Phenom. 230(1), 1–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wikle, C., Holan, S.: Polynomial nonlinear spatio-temporal integro-difference equation models. J. Time Ser. Anal. 32(4), 339–350 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wikle, C., Hooten, M.: A general science-based framework for dynamical spatio-temporal models. Test 19(3), 417–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wikle, C., Milliff, R., Nychka, D., Berliner, L.: Spatiotemporal hierarchical Bayesian modeling tropical ocean surface winds. J. Am. Stat. Assoc. 96(454), 382–397 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wikle, C.K.: A kernel-based spectral model for non-gaussian spatio-temporal processes. Stat. Model. 2(4), 299–314 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wikle, C.K.: Hierarchical models in environmental science. Int. Stat. Rev. 71(2), 181–199 (2003)

    Article  MATH  Google Scholar 

  39. Wikle, C.K.: Low-Rank Representations for Spatial Processes. Handbook of Spatial Statistics, pp. 107–118. CRC, Boca Raton (2010)

    Google Scholar 

  40. Wikle, C.K.: Modern perspectives on statistics for spatio-temporal data. Wiley Interdiscip. Rev. Comput. Stat. 7(1), 86–98 (2015)

    Article  MathSciNet  Google Scholar 

  41. Wikle, C.K., Cressie, N.: A dimension-reduced approach to space-time Kalman filtering. Biometrika 86(4), 815–829 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wikle, C.K., Berliner, L.M., Milliff, R.F.: Hierarchical Bayesian approach to boundary value problems with stochastic boundary conditions. Mon. Weather Rev. 131(6), 1051–1062 (2003)

    Article  Google Scholar 

  43. Wikle, C.K., Milliff, R.F., Herbei, R., Leeds, W.B.: Modern statistical methods in oceanography: a hierarchical perspective. Stat. Sci. 28(4), 466–486 (2013). doi:10.1214/13-STS436, http://dx.doi.org/10.1214/13-STS436

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu, G., Holan, S.H., Wikle, C.K.: Hierarchical Bayesian spatio-temporal Conway–Maxwell poisson models with dynamic dispersion. Jo. Agri. Biol. Environ. Stat. 18(3), 335–356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu, K., Wikle, C.K., Fox, N.I.: A kernel-based spatio-temporal dynamical model for nowcasting weather radar reflectivities. J. Am. Stat. Assoc. 100(472), 1133–1144 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Wikle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Wikle, C.K. (2017). Hierarchical Models for Uncertainty Quantification: An Overview. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_4

Download citation

Publish with us

Policies and ethics