Skip to main content

Model Order Reduction Methods in Computational Uncertainty Quantification

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

This work surveys formulation and algorithms for model order reduction (MOR for short) techniques in accelerating computational forward and inverse UQ. Operator equations (comprising elliptic and parabolic partial differential equations (PDEs for short) and boundary integral equations (BIEs for short)) with distributed uncertain input, being an element of an infinite-dimensional, separable Banach space X, are admitted. Using an unconditional basis of X, computational UQ for these equations is reduced to numerical solution of countably parametric operator equations with smooth parameter dependence.

In computational forward UQ, efficiency of MOR is based on recent sparsity results for countably parametric solutions which imply upper bounds on Kolmogorov N-widths of the manifold of (countably) parametric solutions and quantities of interest (QoI for short) with dimension-independent convergence rates. Subspace sequences which realize the N-width convergence rates are obtained by greedy search algorithms in the solution manifold. Heuristic search strategies in parameter space based on finite searches over anisotropic sparse grids render greedy searches in reduced basis construction feasible. Instances of the parametric forward problems which arise in the greedy searches are assumed to be discretized by abstract classes of Petrov–Galerkin (PG for short) discretizations of the parametric operator equation, covering most conforming primal, dual, and mixed finite element methods (FEMs), as well as certain space-time Galerkin schemes for the application problem of interest. Based on the PG discretization, MOR for both linear and nonlinear and affine and nonaffine parametric problems are presented.

Computational inverse UQ for the mentioned operator equations is considered in the Bayesian setting of [M. Dashti and A.M. Stuart: Inverse problems a Bayesian perspective, arXiv:1302.6989v3, this Handbook]. The (countably) parametric Bayesian posterior density inherits, in the absence of concentration effects for small observation noise covariance, the sparsity and N-width bounds of the (countably) parametric manifolds of solution and QoI. This allows, in turn, for the deployment of MOR techniques for the parsimonious approximation of the parametric Bayesian posterior density, with convergence rates which are only limited by the sparsity of the uncertain inputs in the forward model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abgrall, R., Amsallem, D.: Robust model reduction by l-norm minimization and approximation via dictionaries: application to linear and nonlinear hyperbolic problems. Technical report (2015)

    Google Scholar 

  2. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, Analyse Numérique 339(9), 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beirão da Veiga, L., Buffa, A., Sangalli, G., Vázquez, R.: Mathematical analysis of variational isogeometric methods. Acta Numer. 23, 157–287 (2014)

    Google Scholar 

  4. Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi, F., Rappaz, J., Raviart, P.-A.: Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math. 36(1), 1–25 (1980/1981)

    MATH  Google Scholar 

  6. Buffa, A., Maday, Y., Patera, A.T., Prudhomme, C., and Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: Math. Modell. Numer. Anal. 46(03), 595–603 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bui-Thanh, T., Damodaran, M., Willcox, K.E.: Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J. 42(8), 1505–1516 (2004)

    Article  Google Scholar 

  8. Bui-Thanh, T., Ghattas, O., Martin, J., Stadler, G.: A computational framework for infinite-dimensional Bayesian inverse problems Part I: the linearized case, with application to global seismic inversion. SIAM J. Sci. Comput. 35(6), A2494–A2523 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations. Int. J. Numer. Methods Eng. 86(2), 155–181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)

    Google Scholar 

  12. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, P., Quarteroni, A.: Accurate and efficient evaluation of failure probability for partial differential equations with random input data. Comput. Methods Appl. Mech. Eng. 267(0), 233–260 (2013)

    Article  MATH  Google Scholar 

  14. Chen, P., Quarteroni, A.: Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraints. SIAM/ASA J. Uncertain. Quantif. 2(1), 364–396 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, P., Quarteroni, A.: A new algorithm for high-dimensional uncertainty quantification based on dimension-adaptive sparse grid approximation and reduced basis methods. J. Comput. Phys. 298, 176–193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, P., Quarteroni, A., Rozza, G.: A weighted reduced basis method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 51(6), 3163–3185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, P., Quarteroni, A., Rozza, G.: Comparison of reduced basis and stochastic collocation methods for elliptic problems. J. Sci. Comput. 59, 187–216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, P., Quarteroni, A., Rozza, G.: A weighted empirical interpolation method: a priori convergence analysis and applications. ESAIM: Math. Modell. Numer. Anal. 48, 943–953, 7 (2014)

    Google Scholar 

  19. Chen, P., Quarteroni, A., Rozza, G.: Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations. Numerische Mathematik 133(1), 67–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, P., Quarteroni, A., Rozza, G.: Reduced order methods for uncertainty quantification problems. Report 2015-03, Seminar for Applied Mathematics, ETH Zürich (2015, Submitted)

    Google Scholar 

  21. Chen, P., Schwab, Ch.: Sparse-grid, reduced-basis Bayesian inversion. Comput. Methods Appl. Mech. Eng. 297, 84–115 (2015)

    Article  MathSciNet  Google Scholar 

  22. Chen, P., Schwab, Ch.: Adaptive sparse grid model order reduction for fast Bayesian estimation and inversion. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications – Stuttgart 2014, pp. 1–27. Springer, Cham (2016)

    Google Scholar 

  23. Chen, P., Schwab, Ch.: Sparse-grid, reduced-basis Bayesian inversion: nonaffine-parametric nonlinear equations. J. Comput. Phys. 316, 470–503 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cheng, M., Hou, T.Y., Zhang, Z.: A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations i: derivation and algorithms. J. Comput. Phys. 242, 843–868 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chkifa, A., Cohen, A., DeVore, R., Schwab, Ch.: Adaptive algorithms for sparse polynomial approximation of parametric and stochastic elliptic pdes. M2AN Math. Mod. Num. Anal. 47(1), 253–280 (2013)

    Google Scholar 

  26. Chkifa, A., Cohen, A., Schwab, Ch.: High-dimensional adaptive sparse polynomial interpolation and applications to parametric pdes. J. Found. Comput. Math. 14(4), 601–633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ciesielski, Z., Domsta, J.: Construction of an orthonormal basis in C m(I d) and W p m(I d). Studia Math. 41, 211–224 (1972)

    MathSciNet  MATH  Google Scholar 

  28. Cohen, A., Chkifa, A., Schwab, Ch.: Breaking the curse of dimensionality in sparse polynomial approximation of parametric pdes. J. Math. Pures et Appliquees 103(2), 400–428 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cohen, A., DeVore, R.: Kolmogorov widths under holomorphic mappings. IMA J. Numer. Anal. (2015). doi:dru066v1-dru066

    Google Scholar 

  30. Cui, T., Marzouk, Y.M., Willcox, K.E.: Data-driven model reduction for the Bayesian solution of inverse problems (2014). arXiv preprint arXiv:1403.4290

    Google Scholar 

  31. Dahmen, W., Plesken, C., Welper, G.: Double greedy algorithms: reduced basis methods for transport dominated problems. ESAIM: Math. Modell. Numer. Anal. 48(03), 623–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dashti, M., Stuart, A.M.: The Bayesian approach to inverse problems. In: Ghanem, R., etal. (eds.) Handbook of UQ (2016). http://www.springer.com/us/book/9783319123844

  33. Deuflhard, P.: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, vol. 35. Springer, Berlin/New York (2011)

    MATH  Google Scholar 

  34. DeVore, R., Petrova, G., Wojtaszczyk, P.: Greedy algorithms for reduced bases in banach spaces. Constr. Approx. 37(3), 455–466 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dick, J., Gantner, R., LeGia, Q.T., Schwab, Ch.: Higher order Quasi Monte Carlo integration for Bayesian inversion of holomorphic, parametric operator equations. Technical report, Seminar for Applied Mathematics, ETH Zürich (2015)

    Google Scholar 

  36. Dick, J., Kuo, F.Y., Le Gia, Q.T., Nuyens, D., Schwab, Ch.: Higher order QMC Petrov-Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal. 52(6), 2676–2702 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dick, J., Kuo, F.Y., LeGia, Q.T., Schwab, C.: Multi-level higher order QMC Galerkin discretization for affine parametric operator equations. SIAM J. Numer. Anal. (2016, to appear)

    Google Scholar 

  38. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the Quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dick, J., LeGia, Q.T., Schwab, Ch.: Higher order Quasi Monte Carlo integration for holomorphic, parametric operator equations. SIAM/ASA J. Uncertain. Quantif. 4(1), 48–79 (2016)

    Article  MathSciNet  Google Scholar 

  40. Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gantner, R.N., Schwab, Ch.: Computational higher order quasi-monte carlo integration. Technical report 2014-25, Seminar for Applied Mathematics, ETH Zürich (2014)

    Google Scholar 

  42. Gerstner, T., Griebel, M.: Dimension–adaptive tensor–product quadrature. Computing 71(1), 65–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hesthaven, J., Stamm, B., Zhang, S.: Efficient Greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods. ESAIM: Math. Modell. Numer. Anal. 48(1), 259–283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  45. Hesthaven, J.S., Stamm, B., Zhang, S.: Certified reduced basis method for the electric field integral equation. SIAM J. Sci. Comput. 34(3), A1777–A1799 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hoang, V.H., Schwab, Ch.: n-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs. Math. Mod. Methods Appl. Sci. 24(4), 797–826 (2014)

    Google Scholar 

  47. Hoang, V.H., Schwab, Ch., Stuart, A.: Complexity analysis of accelerated MCMC methods for Bayesian inversion. Inverse Probl. 29(8), 085010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Huynh, D.B.P., Knezevic, D.J., Chen, Y., Hesthaven, J.S., Patera, A.T.: A natural-norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Eng. 199(29), 1963–1975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. Comptes Rendus Mathematique, Analyse Numérique 345(8), 473–478 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Generalized reduced basis methods and n-width estimates for the approximation of the solution manifold of parametric PDEs. In: Brezzi, F., Colli Franzone, P., Gianazza, U., Gilardi, G. (eds.) Analysis and Numerics of Partial Differential Equations. Springer INdAM Series, vol. 4, pp. 307–329. Springer, Milan (2013)

    Chapter  Google Scholar 

  51. Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: A reduced computational and geometrical framework for inverse problems in hemodynamics. Int. J. Numer. Methods Biomed. Eng. 29(7), 741–776 (2013)

    Article  MathSciNet  Google Scholar 

  52. Lassila, T., Rozza, G.: Parametric free-form shape design with PDE models and reduced basis method. Comput. Methods Appl. Mech. Eng. 199(23), 1583–1592 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Logg, A., Mardal, K.A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, vol. 84. Springer, Berlin/New York (2012)

    MATH  Google Scholar 

  54. Ma, X., Zabaras, N.: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Maday, Y., Mula, O., Patera, A.T., Yano, M.: The generalized empirical interpolation method: stability theory on Hilbert spaces with an application to the Stokes equation. Comput. Methods Appl. Mech. Eng. 287, 310–334 (2015)

    Article  MathSciNet  Google Scholar 

  56. Maday, Y., Mula, O., Turinici, G.: A priori convergence of the generalized empirical interpolation method. In: 10th International Conference on Sampling Theory and Applications (SampTA 2013), Bremen, pp. 168–171 (2013)

    Google Scholar 

  57. Maday, Y., Nguyen, N.C., Patera, A.T., Pau, G.S.H.: A general, multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8(1), 383–404 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Maday, Y., Patera, A.T., Turinici, G.: A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. 17(1), 437–446 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Patera, A.T., Rozza, G.: Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations. Copyright MIT, http://augustine.mit.edu (2007)

  60. Pousin, J., Rappaz, J.: Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numerische Mathematik 69(2), 213–231 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  61. Prudhomme, C., Maday, Y., Patera, A.T., Turinici, G., Rovas, D.V., Veroy, K., Machiels, L.: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng. 124(1), 70–80 (2002)

    Article  Google Scholar 

  62. Quarteroni, A.: Numerical Models for Differential Problems, 2nd edn. Springer, Milano (2013)

    Google Scholar 

  63. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Rozza, G., Veroy, K.: On the stability of the reduced basis method for stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196(7), 1244–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Sapsis, T.P., Lermusiaux, P.F.J.: Dynamically orthogonal field equations for continuous stochastic dynamical systems. Phys. D: Nonlinear Phenom. 238(23), 2347–2360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  66. Schillings, C., Schwab, Ch.: Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Probl. 29(6), 065011 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  67. Schillings, C., Schwab, Ch.: Scaling limits in computational Bayesian inversion. In: ESAIM: M2AN (2014, to appear). http://dx.doi.org/10.1051/m2an/2016005

  68. Schillings, C., Schwab, Ch.: Sparsity in Bayesian inversion of parametric operator equations. Inverse Probl. 30(6), 065007, 30 (2014)

    Google Scholar 

  69. Schwab, Ch., Gittelson, C.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numerica 20, 291–467 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  70. Schwab, Ch., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. Schwab, Ch., Stuart, A.M.: Sparse deterministic approximation of Bayesian inverse problems. Inverse Probl. 28(4), 045003, 32 (2012)

    Google Scholar 

  72. Schwab, Ch., Todor, R.A.: Karhunen–Loève approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217(1), 100–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  73. Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numerica 19(1), 451–559 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  74. Taddei, T., Perotto, S., Quarteroni, A.: Reduced basis techniques for nonlinear conservation laws. ESAIM: Math. Modell. Numer. Anal. 49(3), 787–814 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  75. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Chen, P., Schwab, C. (2017). Model Order Reduction Methods in Computational Uncertainty Quantification. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_70

Download citation

Publish with us

Policies and ethics