Skip to main content

Abstract

With the dramatic increase in x-ray source brilliance and associated coherent photon flux, holography with x-rays has become feasible and is increasingly used for real-space investigations of static and dynamic properties of nanoscale systems. We describe the basic principles and capabilities of the method and present the current state of the art. A particular emphasis is put on the investigation of magnetic nanostructures, where x-ray holography has been applied at synchrotron radiation sources and free-electron x-ray lasers to investigate dynamic effects on time scales down to the femtosecond regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge-coupled device

EUV:

Extreme ultraviolet

FEL:

Free-electron laser

FIB:

Focused ion beam

FTH:

Fourier-transform holography

FOV:

Field of view

FZP:

Fresnel zone plate

HERALDO:

Holography with extended reference by autocorrelation linear differential operation

HHG:

High-harmonic generation

SNR:

Signal-to-noise ratio

TIE:

Transport of intensity equations

URA:

Uniformly redundant array

XMCD:

X-ray magnetic circular dichroism

References

  • S. Aoki, S. Kikuta, X-ray holographic microscopy. Jpn. J. Appl. Phys. 13, 1385–1392 (1974)

    Article  ADS  Google Scholar 

  • D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge University Press, Cambridge/New York, 2007)

    Google Scholar 

  • R. Barth, F. Staier, T. Simpson et al., Soft X-ray holographic microscopy of chromosomes with high aspect ratio pinholes. J. Biotechnol. 149, 238–242 (2010)

    Article  Google Scholar 

  • A. Barty, S. Boutet, M.J. Bogan et al., Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat. Photon. 2, 415–419 (2008)

    Article  Google Scholar 

  • A.V. Baez, A study in diffraction microscopy with special reference to x-rays. J. Opt. Soc. Am. 42, 756–762 (1952)

    Article  ADS  Google Scholar 

  • F. Büttner, M. Schneider, C.M. Günther et al., Automatable sample fabrication process for pump-probe X-ray holographic imaging. Opt. Express 21, 30563 (2013)

    Article  Google Scholar 

  • F. Büttner, C. Moutafis, M. Schneider et al., Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015)

    Article  Google Scholar 

  • J. Camarero, E. Jiménez, J. Vogel et al., Exploring the limits of soft x-ray magnetic holography: Imaging magnetization reversal of buried interfaces (invited). J. Appl. Phys. 109, 07D357 (2011)

    Google Scholar 

  • H.N. Chapman, S.P. Hau-Riege, M.J. Bogan et al., Femtosecond time-delay X-ray holography. Nature 448, 676–679 (2007)

    Article  ADS  Google Scholar 

  • L. Denis, C. Fournier, T. Fournel, C. Ducottet, Numerical suppression of the twin image in in-line holography of a volume of micro-objects. Meas. Sci. Technol. 19, 074004 (2008)

    Article  ADS  Google Scholar 

  • T.A. Duckworth, F.Y. Ogrin, G. Beutier et al., Holographic imaging of interlayer coupling in Co/Pt/NiFe. New J. Phys. 15, 023045 (2013)

    Article  ADS  Google Scholar 

  • S. Eisebitt, M. Lörgen, W. Eberhardt et al., Polarization effects in coherent scattering from magnetic specimen: Implications for x-ray holography, lensless imaging, and correlation spectroscopy. Phys. Rev. B 68, 104419 (2003)

    Article  ADS  Google Scholar 

  • S. Eisebitt, J. Lüning, W.F. Schlotter et al., Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004)

    Article  ADS  Google Scholar 

  • E.E. Fenimore, T.M. Cannon, Coded aperture imaging: predicted performance of uniformly redundant arrays. Appl. Opt. 17, 337–347 (1978)

    Article  ADS  Google Scholar 

  • C. Fuhse, C. Ollinger, T. Salditt, Waveguide-based off-axis holography with hard X rays. Phys. Rev. Lett. 97, 254801 (2006)

    Article  ADS  Google Scholar 

  • D. Gabor, A new microscopic principle. Nature 161, 777–778 (1948)

    Article  ADS  Google Scholar 

  • J. Garcia-Sucerquia, W. Xu, S.K. Jericho et al., Digital in-line holographic microscopy. Appl. Opt. 45, 836–850 (2006)

    Article  ADS  Google Scholar 

  • J. Geilhufe, B. Pfau, M. Schneider et al., Monolithic focused reference beam X-ray holography. Nat. Commun. 5, 3008 (2014a)

    Google Scholar 

  • J. Geilhufe, C. Tieg, B. Pfau et al., Extracting depth information of 3-dimensional structures from a single-view X-ray Fourier-transform hologram. Opt Express 22, 24959–24969 (2014b)

    Google Scholar 

  • K. Giewekemeyer, H. Neubauer, S. Kalbfleisch et al., Holographic and diffractive x-ray imaging using waveguides as quasi-point sources. New J. Phys. 12, 035008 (2010)

    Article  ADS  Google Scholar 

  • K. Giewekemeyer, A study on new approaches in coherent x-ray microscopy of biological specimens. PhD thesis. Göttingen Series in X-ray Physics, vol 5. Universitätsverlag Göttingen (2011)

    Google Scholar 

  • E. Guehrs, C.M. Günther, R. Könnecke et al., Holographic soft X-ray omni-microscopy of biological specimens. Opt. Express 17, 6710–6720 (2009)

    Article  ADS  Google Scholar 

  • E. Guehrs, C.M. Günther, B. Pfau et al., Wavefield back-propagation in high-resolution X-ray holography with a movable field of view. Opt. Express 18, 18922–18931 (2010)

    Article  ADS  Google Scholar 

  • E. Guehrs, A.M. Stadler, S. Flewett et al., Soft x-ray tomoholography. New J. Phys. 14, 013022 (2012)

    Article  ADS  Google Scholar 

  • M. Guizar-Sicairos, J.R. Fienup, Holography with extended reference by autocorrelation linear differential operation. Opt. Express 15, 17592–17612 (2007)

    Article  ADS  Google Scholar 

  • C.M. Günther, O. Hellwig, A. Menzel et al., Microscopic reversal behavior of magnetically capped nanospheres. Phys. Rev. B 81, 064411 (2010)

    Article  ADS  Google Scholar 

  • C.M. Günther, B. Pfau, R. Mitzner et al., Sequential femtosecond X-ray imaging. Nat. Photon. 5, 99–102 (2011)

    Article  ADS  Google Scholar 

  • T. Hauet, C.M. Günther, B. Pfau et al., Direct observation of field and temperature induced domain replication in dipolar coupled perpendicular anisotropy films. Phys. Rev. B 77, 184421 (2008)

    Article  ADS  Google Scholar 

  • H. He, U. Weierstall, J.C.H. Spence et al., Use of extended and prepared reference objects in experimental Fourier transform x-ray holography. Appl. Phys. Lett. 85, 2454–2456 (2004)

    Article  ADS  Google Scholar 

  • R. Heine, T. Gorniak, T. Nisius et al., Digital in-line X-ray holography with zone plates. Ultramicroscopy 111, 1131–1136 (2011)

    Article  Google Scholar 

  • O. Hellwig, S. Eisebitt, W. Eberhardt et al., Magnetic imaging with soft x-ray spectroholography. J. Appl. Phys. 99, 08H307 (2006)

    Google Scholar 

  • M. Heydt, A. Rosenhahn, M. Grunze et al., Digital in-line holography as a three-dimensional tool to study Motile Marine organisms during their exploration of surfaces. J. Adhes 83, 417–430 (2007)

    Article  Google Scholar 

  • Y. Kohmura, T. Sakurai, T. Ishikawa, Y. Suzuki, Phase retrieval with two-beam off-axis x-ray holography. J. Appl. Phys. 96, 1781–1784 (2004)

    Article  ADS  Google Scholar 

  • M. Krenkel, M. Bartels, T. Salditt, Transport of intensity phase reconstruction to solve the twin image problem in holographic x-ray imaging. Opt. Express 21, 2220–2235 (2013)

    Article  ADS  Google Scholar 

  • T. Latychevskaia, H.W. Fink, Solution to the twin image problem in holography. Phys. Rev. Lett. 98, 233901 (2007)

    Article  ADS  Google Scholar 

  • E.N. Leith, J. Upatnieks, Wavefront reconstruction with continuous-tone objects. J. Opt. Soc. Am. 53, 1377–1381 (1963)

    Article  ADS  Google Scholar 

  • B. Lengeler, Coherence in X-ray physics. Naturwissenschaften 88, 249–260 (2001)

    Article  ADS  Google Scholar 

  • E.B. Malm, N.C. Monserud, C.G. Brown et al., Tabletop single-shot extreme ultraviolet Fourier transform holography of an extended object. Opt. Express 21, 9959–9966 (2013)

    Article  ADS  Google Scholar 

  • A.P. Mancuso, T. Gorniak, F. Staier et al., Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH. New J. Phys. 12, 035003 (2010)

    Article  ADS  Google Scholar 

  • S. Marchesini, S. Boutet, A.E. Sakdinawat et al., Ultrafast, ultrabright, X-ray holography using a uniformly-redundant array. Nat Photonics 2, 560–563 (2008)

    Article  Google Scholar 

  • I. McNulty, J. Kirz, C. Jacobsen et al., High-resolution imaging by Fourier transform x-ray holography. Science 256, 1009–1012 (1992)

    Article  ADS  Google Scholar 

  • H.-C. Mertins, S. Valencia, D. Abramsohn et al., X-ray Kerr rotation and ellipticity spectra at the 2p edges of Fe, Co, and Ni. Phys. Rev. B 69, 064407 (2004)

    Article  ADS  Google Scholar 

  • N.C. Monserud, E.B. Malm, P.W. Wachulak et al., Recording oscillations of sub-micron size cantilevers by extreme ultraviolet Fourier transform holography. Opt. Express 22, 4161–4167 (2014)

    Article  ADS  Google Scholar 

  • K.A. Nugent, Coherent methods in the X-ray sciences. Adv. Phys. 59, 1–99 (2010)

    Article  ADS  Google Scholar 

  • D.M. Paganin, Coherent X-Ray Optics (Oxford University Press, Oxford/New York, 2006)

    Book  MATH  Google Scholar 

  • B. Pfau, C.M. Günther, S. Schaffert et al., Femtosecond pulse x-ray imaging with a large field of view. New J. Phys. 12, 095006 (2010)

    Article  ADS  Google Scholar 

  • B. Pfau, C.M. Günther, E. Guehrs et al., Origin of magnetic switching field distribution in bit patterned media based on pre-patterned substrates. Appl. Phys. Lett. 99, 062502 (2011)

    Article  ADS  Google Scholar 

  • B. Pfau, C.M. Günther, E. Guehrs et al., Influence of stray fields on the switching-field distribution for bit-patterned media based on pre-patterned substrates. Appl. Phys. Lett. 105, 132407 (2014)

    Article  ADS  Google Scholar 

  • S.G. Podorov, K.M. Pavlov, D.M. Paganin, A non-iterative reconstruction method for direct and unambiguous coherent diffractive imaging. Opt. Express 15, 9954–9962 (2007)

    Article  ADS  Google Scholar 

  • A. Rosenhahn, R. Barth, X. Cao et al., Vacuum-ultraviolet Gabor holography with synchrotron radiation. Ultramicroscopy 107, 1171–1177 (2007)

    Article  Google Scholar 

  • A. Rosenhahn, R. Barth, F. Staier et al., Digital in-line soft x-ray holography with element contrast. J. Opt. Soc. Am. A 25, 416–422 (2008)

    Article  ADS  Google Scholar 

  • A. Rosenhahn, F. Staier, T. Nisius et al., Digital in-line holography with femtosecond VUV radiation provided by the free-electron laser FLASH. Opt. Express 17, 8220–8228 (2009)

    Article  ADS  Google Scholar 

  • S. Roy, D. Parks, K.A. Seu et al., Lensless X-ray imaging in reflection geometry. Nat. Photon. 5, 243–245 (2011)

    Article  ADS  Google Scholar 

  • M. Sacchi, H. Popescu, N. Jaouen et al., Magnetic imaging by Fourier transform holography using linearly polarized x-rays. Opt. Express 20, 9769–9776 (2012)

    Article  ADS  Google Scholar 

  • R.L. Sandberg, D.A. Raymondson, C. La-O-Vorakiat et al., Tabletop soft-x-ray Fourier transform holography with 50 nm resolution. Opt. Lett. 34, 1618–1620 (2009)

    Article  ADS  Google Scholar 

  • S. Schaffert, B. Pfau, J. Geilhufe et al., High-resolution magnetic-domain imaging by Fourier transform holography at 21 nm wavelength. New J. Phys. 15, 093042 (2013)

    Article  ADS  Google Scholar 

  • A. Scherz, W. Schlotter, K. Chen et al., Phase imaging of magnetic nanostructures using resonant soft x-ray holography. Phys. Rev. B 76, 214410 (2007)

    Article  ADS  Google Scholar 

  • W.F. Schlotter, R. Rick, K. Chen et al., Multiple reference Fourier transform holography with soft x rays. Appl. Phys. Lett. 89, 163112 (2006)

    Article  ADS  Google Scholar 

  • W.F. Schlotter, J. Lüning, R. Rick et al., Extended field of view soft x-ray Fourier transform holography: toward imaging ultrafast evolution in a single shot. Opt. Lett. 32, 3110–3112 (2007a)

    Google Scholar 

  • W.F. Schlotter, Lensless Fourier transform holography with soft X-rays. PhD thesis, Stanford University (2007b)

    Google Scholar 

  • A. Singer, I.A. Vartaniants, To be published in the Springer References on SR and FELs, 2015

    Google Scholar 

  • L.-M. Stadler, C. Gutt, T. Autenrieth et al., Hard X-ray holographic diffraction imaging. Phys. Rev. Lett. 100, 245503 (2008)

    Article  ADS  Google Scholar 

  • D. Stickler, R. Frömter, H. Stillrich et al., Soft x-ray holographic microscopy. Appl. Phys. Lett. 96, 042501 (2010)

    Article  ADS  Google Scholar 

  • J. Stöhr, H.C. Siegmann, Magnetism. From Fundamentals to Nanoscale Dynamics (Springer, Berlin/Heidelberg 2006)

    Google Scholar 

  • S. Streit-Nierobisch, D. Stickler, C. Gutt et al., Magnetic soft x-ray holography study of focused ion beam-patterned Co/Pt multilayers. J. Appl. Phys. 106, 083909 (2009)

    Article  ADS  Google Scholar 

  • G. Stroke, Lensless Fourier-transform method for optical holography. Appl. Phys. Lett. 6, 201–203 (1965)

    Article  ADS  Google Scholar 

  • C. Tieg, R. Frömter, D. Stickler et al., Imaging the in-plane magnetization in a Co microstructure by Fourier transform holography. Opt. Express 18, 27251–27256 (2010)

    Article  ADS  Google Scholar 

  • C.Q. Tran, G.J. Williams, A. Roberts et al., Experimental measurement of the four-dimensional coherence function for an undulator X-ray source. Phys. Rev. Lett. 98, 224801 (2007)

    Article  ADS  Google Scholar 

  • C. von Korff Schmising, B. Pfau, M. Schneider et al., Imaging ultrafast demagnetization dynamics after a spatially localized optical excitation. Phys. Rev. Lett. 112, 217203 (2014)

    Article  ADS  Google Scholar 

  • T. Wang, D. Zhu, B. Wu et al., Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers Using Resonant X-Ray Holography. Phys. Rev. Lett. 108, 267403 (2012)

    Article  ADS  Google Scholar 

  • J. Winthrop, C. Worthington, X-ray microscopy by successive Fourier transformation. Phys. Lett. 15, 124–126 (1965)

    Article  ADS  Google Scholar 

  • D. Zhu, M. Guizar-Sicairos, B. Wu et al., High-resolution X-ray lensless imaging by differential holographic encoding. Phys. Rev. Lett. 105, 043901 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Pfau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Pfau, B., Eisebitt, S. (2016). X-Ray Holography. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-14394-1_28

Download citation

Publish with us

Policies and ethics