Skip to main content

Storage Ring Design for Synchrotron Radiation Sources

  • Reference work entry
Synchrotron Light Sources and Free-Electron Lasers
  • 4367 Accesses

Abstract

Modern storage ring light sources have been very successful in providing high-flux, high-brightness, highly stable photon beams for many scientific applications. Their success is underpinned by sophisticated lattice designs that allow small emittance electron beams to be reached with a large complement of straight sections for insertion devices. The design of such lattices is in continuous evolution, with the most modern trends aiming at diffraction-limited storage rings. In this chapter we review the users’ requirements and their implications on the storage ring design strategies. The rationale of the design based on double-bend achromats (DBA) and triple-bend achromats (TBA) is presented along with the most recent solutions based on multi-bend achromats (MBA) and damping wigglers. The strategies for the optimization of the linear and nonlinear optics are discussed. We conclude with a review of the injection schemes, including nonlinear pulsed kicker injection and the implications of top-up operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978)

    Book  MATH  Google Scholar 

  • A. Andersson et al., Determination of a small vertical electron beam profile and emittance at the Swiss light source. Nucl. Instrum. Methods A591, 437 (2008)

    Article  ADS  Google Scholar 

  • A. Aitkinson et al., Development of a nonlinear kicker system to facilitate a new injection scheme for the BESSY II storage ring, in Proceedings of the IPAC11, San Sebastian, 2011, p. 3394

    Google Scholar 

  • J. Bengtsson, The sextupole scheme for the Swiss Light Source (SLS): an analytical approach. SLS Note 9/97 (1997)

    Google Scholar 

  • K. Bane, A simplified model of intrabeam scattering, in Proceedings of the EPAC02, Paris, 2002, p. 1443

    Google Scholar 

  • K. Balweski et al., PETRA III upgrade, in Proceedings of the IPAC11, San Sebastian, 2011, p. 2948

    Google Scholar 

  • R. Bartolini, The commissioning of the diamond storage ring, in Proceedings of the PAC07, Albuquerque, 2007, p. 1109

    Google Scholar 

  • R. Bartolini et al., Correction of multiple nonlinear resonances in storage rings. PRSTAB 11, 104002 (2008)

    Google Scholar 

  • R. Bartolini et al., Calibration of the nonlinear ring model at the diamond light source. PRSTAB 14, 054003 (2011)

    Google Scholar 

  • M. Borland, Elegant: a flexible SDDS-compliant code for accelerator simulations. APS, LS-287, 2000

    Google Scholar 

  • M. Borland, Exploration of a Tevatron-sized ultimate storage ring, in Proceedings of the IPAC12, New Orleans, 2012, p. 1683

    Google Scholar 

  • M. Borland et al., Hybrid seven bend achromat lattice for the advanced photon source upgrade, in Proceedings of the IPAC’15, Richmond, 2015, to appear

    Google Scholar 

  • H. Bruck, Accelerateurs Circulaires de Particules (Presses Universitaires de France, 1966), Paris

    Google Scholar 

  • J. Byrd, M. Georgsson, Lifetime increase using passive harmonic cavities in synchrotron light sources. PRSTAB 4, 030701 (2001)

    Google Scholar 

  • Y. Cai et al., Ultimate storage ring based on fourth order geometric achromats. PRSTAB 15, 054002 (2012)

    Google Scholar 

  • R. Chasman, G.K. Green, Preliminary design of a dedicated synchrotron radiation facility. IEEE Trans. Nucl. Sci. NS22, 1765 (1975)

    Google Scholar 

  • J. Chavanne, G. Le Bec, Prospects for the use of permanent magnets in future accelerator facilities, in Proceedings of the IPAC14, Dresden, 2014, p. 968

    Google Scholar 

  • R. Dowd et al., Vertical emittance at the quantum limit, in Proceedings of the IPAC14, Dresden, 2014, p. 1096

    Google Scholar 

  • P. Elleaume, in Undulators, Wigglers and their Applications, ed. by H. Onuki, P. Elleaume (Taylor and Francis, London/New York, 2003), p. 79

    Google Scholar 

  • D. Einfeld, Synchrotron light sources, status and new projects, in Brilliant Light in Material Science, ed. by V. Tsakanov, H. Wiedeman (Springer, Dordrecht/London, 2007)

    Google Scholar 

  • D. Einfeld et al., Design of a diffraction limited light source, in Proceedings of the PAC95, Dallas, 1995, p. 177

    Google Scholar 

  • M. Eriksson et al., MAX IV design: pushing the envelope, in Proceedings of the PAC07, Albuquerque, 2007, p. 74

    Google Scholar 

  • ESRF upgrade programme Phase II design (2015–2022) (Orange Book), http://www.esrf.eu/Apache_files/Upgrade/ESRF-orange-book.pdf. ESRF Dec 2014

  • A. Fanouria, Y. Papaphilippou, Lattice desing for intrabeam dominated low emittance rings presented at the 1st, in Low Emittance Ring Lattice workshop, Barcelona, April 2015. http://indico.cern.ch/event/370770/session/4/contribution/26/attachments/737616/1011999/IBS-Barcelona2015.pdf

  • A. Franchi et al., Vertical emittance reduction and preservation in electron storage rings via resonance driving terms correction. PRSTAB 14, 034002 (2011)

    Google Scholar 

  • G. Geloni et al., Transverse coherence properties of X-ray beams in third generation synchrotron radiation sources. Nucl. Instrum. Methods A588, 463 (2008)

    Article  ADS  Google Scholar 

  • M. Giovannozzi et al., Prediction of long term stability in large hadron colliders. Part. Acc. 56, 195 (1997)

    Google Scholar 

  • S. Guiducci, Damping rings towards ultra low emittances, in Proceedings of the EPAC06, Edinburgh, 2006, p. 1857

    Google Scholar 

  • W. Guo, Emittance reduction approaches for the NSLS-II, in Proceedings of the IPAC12, New Orleans, 2012, p. 2363

    Google Scholar 

  • J. Guo, T. Raubenheimer, Low emittance e+e storage rings using bending magnets with longitudinal gradient, in EPAC02, Berkeley, 2002, p. 1136

    Google Scholar 

  • K. Harada et al., New injection scheme using a pulsed quadrupole magnet in electron storage rings. PRSTAB 10, 123501 (2007)

    Google Scholar 

  • R. Hettel et al., Lattice design for the Pep-X ultimate storage ring light source, in Proceedings of the IPAC11, San Sebastian, 2011, p. 3068

    Google Scholar 

  • X. Huang et al., Study of lower emittance lattices for SPEAR3, in Proceedings of the IPAC11, San Sebastian, 2011, p. 3062

    Google Scholar 

  • S. Khan, Simulation of the Touschek effect for Bessy-II. A Montecarlo approach, in Proceedings of the EPAC04, Lucerne, 1994, p. 1192

    Google Scholar 

  • K.J. Kim, Characteristics of synchrotron radiation, in AIP Conference Proceedings, N. 184 (AIP, New York, 1989), p. 565

    Chapter  Google Scholar 

  • J. Laskar et al., The measure of chaos by the numerical analysis of fundamental frequencies. Phys. D 67, 253 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • S.Y. Lee, Emittance optimisation in three and multiple bend achromats. Phys. Rev. E 54, 1940 (1996)

    Google Scholar 

  • S.Y. Lee, Accelerator Physics, 2nd edn. (World Scientific, Singapore, 2004)

    Book  Google Scholar 

  • S. Leemann, Beam dynamics and expected performance of Sweden’s new storage ring light source: MAX IV. Phys. Rev. STAB 12, 120701 (2009)

    ADS  Google Scholar 

  • S. Leemann, Pulsed sextupole injection for Sweden’s new light source MAX IV. Phys. Rev. STAB 15, 050705 (2012)

    ADS  Google Scholar 

  • S. Leemann, A. Streun, Perspectives for future light sources lattices incorporating yet uncommon magnets. Phys. Rev. STAB 14, 030701 (2011)

    ADS  Google Scholar 

  • Max IV Conceptual Design Report, 2010, https://www.maxlab.lu.se/sites/default/files/MAX-IV-CDR_0.pdf

  • MAD – Methodical Accelerator Design, 2015 http://madx.web.cern.ch/madx/

  • A. Nadji et al., Commissioning of the SOLEIL synchrotron radiation source, in Proceedings of the PAC07, Albuquerque, 2007, p. 932

    Google Scholar 

  • L. Nadolski et al., SOLEIL emittance reduction using a Robinson wiggler, in Proceedings of the IPAC12, New Orleans, 2012, p. 702

    Google Scholar 

  • R. Nagaoka, A. Wrulich, Emittance minimisaiton with longitudinal dipole field variation. NIM A575, 292 (2007)

    Article  ADS  Google Scholar 

  • K. Oide, H. Koiso, Dynamic aperture of electron storage rings with non-interleaved sextupoles. Phys. Rev. E 47, 2010 (1993)

    Google Scholar 

  • J. Revol et al., ESRF upgrade phase II status, in Proceedings of the IPAC14, Dresden, 2014, p. 209

    Google Scholar 

  • D.S. Robin et al., Exploring the limits of the ALS triple bend lattice, in Proceedings of the PAC07, Albuquerque, 2007, p. 1188

    Google Scholar 

  • K.W. Robinson, Radiation effects in circular accelerator. Phys. Rev. 111, 373 (1958)

    Article  ADS  MATH  Google Scholar 

  • M. Sands, The Physics of Electron Storage Rings: An Introduction, vol. R-121 (SLAC, Stanford, 1970)

    Book  Google Scholar 

  • A. Schoch, Theory of linear and nonlinear perturbations of betatron oscillations in alternating gradient synchrotrons. CERN 57-21, 1957

    Google Scholar 

  • C. Steier, Lattice and emittance optimisation for the ALS lattice upgrade. NIM A649, 25 (2011)

    Article  ADS  Google Scholar 

  • C. Steier, in Progress with the R&D towards a diffraction-limited upgrade of the ALS, in Proceedings of the IPAC15, Richmond, 2015, to appear

    Google Scholar 

  • Y. Shimosaki et al., Lattice design for a very low emittance lattice for SPring8 II, in Proceedings of the IPAC11, San Sebastian, 2012, p. 942

    Google Scholar 

  • A. Streun, Lattices for light sources CERN CAS 2006-02, 2006, p. 217

    Google Scholar 

  • A. Streun et al., Commissioning of the Swiss light source, in Proceedings of the PAC01, Chicago, 2001, p. 224

    Google Scholar 

  • C. Sun et al., Small emittance and low beta lattice optimisation. PRSTAB 15, 054002 (2012)

    Google Scholar 

  • C. Thomas et al., X-ray pinhole camera resolution and emittance measurements. PRSTAB 14, 022805 (2010)

    Google Scholar 

  • E. Todesco, W. Scandale, Numerical methods to estimate the dynamic aperture. Part. Acc. 54, 203 (1996)

    Google Scholar 

  • R. Walker, Quanutm excitation and equilibrium beam properties. CERN CAS 94-01, 1995, 481

    Google Scholar 

  • C.X. Wang, Explicit formulae for second order driving terms due to sextupoles and chromatic effects due to quadrupoles. Technical Report LS-330, ANL/APS, 2012

    Google Scholar 

  • F. Willeke, Commissioning of the NSLS-II, in Proceedings of the IPAC15, Richmond, 2015, to appear

    Google Scholar 

  • A. Xiao et al., On-axis injection schemes for ultra low emittance light sources, in Proceedings of the IPAC13, Shanghai, 2013, p. 1076

    Google Scholar 

  • W. Yoho et al., MBA lattice proposal for the SLS, in Proceedings of the EPAC94, London, 1994, p. 627

    Google Scholar 

  • M. Zisman et al., ZAP’s User Manual, LBL 21270, 1986

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Bartolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Bartolini, R. (2016). Storage Ring Design for Synchrotron Radiation Sources. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-14394-1_7

Download citation

Publish with us

Policies and ethics