Skip to main content

Anodically Grown TiO2 Nanotube Membranes: Synthesis, Characterization, and Application in Dye-Sensitized Solar Cells

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry
  • 4519 Accesses

Abstract

First proposed more than 20 years ago, dye-sensitized solar cells represent one of the most interesting non-silicon solar harvesters, with outstanding potential as low-cost devices with easy fabrication process. Their standard architecture is constituted by a dye-sensitized TiO2 nanoparticle-based photoanode, a hole-conducting liquid electrolyte and a platinized counter electrode. Even if nanoparticles offer a high number of sites for dye molecule chemisorption, they exhibit limited transport and recombination properties with respect to 1D nanostructures such as nanowires or nanotubes. In view of increasing the dye-sensitized solar cell conversion efficiency, new one-dimensional metal–oxide nanostructures are suggested to be employed as photoanodes.

In this chapter the fabrication and characterization of free-standing TiO2 nanotube membranes and their integration in front-side illuminated dye-sensitized solar cells are reported. Vertically oriented TiO2 nanotube arrays are fabricated by anodic oxidation, a simple electrochemical technique. The charge transport and recombination mechanisms in the oxide nanostructures are studied by electrochemical impedance spectroscopy.

The first part of the chapter is devoted to describe the dye-sensitized solar cell working principles, the anodic oxidation process, and the electrochemical impedance spectroscopy measurements. In the second part the TiO2 nanotube membrane fabrication and the results obtained on dye-sensitized solar cells are presented, showing the effectiveness of the use of 1D nanostructures as photoanode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EPIA Global Market Outlook 2013–2017 (2013) http://www.epia.org/fileadmin/user_upload/Publications/GMO_2013_-_Final_PDF.pdf. Accessed 2 June 2013

  2. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519

    Article  CAS  Google Scholar 

  3. Green M (2003) Third generation photovoltaics. Springer, Berlin

    Google Scholar 

  4. Green MA, Emery K, Hishikawa Y et al (2013) Solar cell efficiency tables (version 42). Prog Photovolt Res Appl 21:827–837

    Article  Google Scholar 

  5. O’Regan BC, Durrant JR (2009) Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc Chem Res 42:1799–1808

    Article  Google Scholar 

  6. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  7. Zhang Q, Cao G (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6:91–109

    Article  CAS  Google Scholar 

  8. Gonzalez-Valls I, Lira-Cantu M (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2:19–34

    Article  CAS  Google Scholar 

  9. Anta JA, Guillén E, Tena-Zaera R (2012) ZnO-based dye-sensitized solar cells. J Phys Chem C 116:11413–11425

    Article  CAS  Google Scholar 

  10. Law M, Greene LE, Johnson JC et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459

    Article  CAS  Google Scholar 

  11. Baxter JB, Aydil ES (2006) Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol Energy Mater Sol Cells 90:607–622

    Article  CAS  Google Scholar 

  12. Yoshida T, Iwaya M, Ando H et al (2004) Improved photoelectrochemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption. Chem Commun 4:400–401

    Article  Google Scholar 

  13. Lamberti A, Gazia R, Sacco A et al (2014) Coral-shaped ZnO nanostructures for dye-sensitized solar cell photoanodes. Prog Photovolt Res Appl 22:189–197

    Article  CAS  Google Scholar 

  14. Sacco A, Lamberti A, Gazia R et al (2012) High efficiency dye-sensitized solar cells exploiting sponge-like ZnO nanostructures. Phys Chem Chem Phys 14:16203–16208

    Article  CAS  Google Scholar 

  15. Zukalová M, Zukal A, Kavan L et al (2005) Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett 5:1789–1792

    Article  Google Scholar 

  16. Bwana N (2008) Effects of the morphology of the electrode nanostructures on the performance of dye-sensitized solar cells. Nano Res 1:483–489

    Article  CAS  Google Scholar 

  17. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

    Article  CAS  Google Scholar 

  18. Lamberti A, Sacco A, Bianco S et al (2013) Charge transport improvement employing TiO2 nanotube arrays as front-side illuminated dye-sensitized solar cell photoanodes. Phys Chem Chem Phys 15:2596–2602

    Article  CAS  Google Scholar 

  19. Thompson GE, Xu Y, Skeldon P et al (1987) Anodic oxidation of aluminium. Philos Mag B 55:651–667

    Article  CAS  Google Scholar 

  20. Young L (1961) Anodic oxide films. Plenum, New York

    Google Scholar 

  21. Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100:411–419

    Article  CAS  Google Scholar 

  22. Vanhumbeeck JF, Proost J (2008) On the contribution of electrostriction to charge-induced stresses in anodic oxide films. Electrochim Acta 53:6165–6172

    Article  CAS  Google Scholar 

  23. Jessensky O, Muller F, Gosele U (1998) Self-organized formation of hexagonal pore arrays in anodic alumina. Appl Phys Lett 72:1173–1175

    Article  CAS  Google Scholar 

  24. Ono S, Saito M, Ishiguro M et al (2004) Controlling factor of self-ordering of anodic porous alumina. J Electrochem Soc 151:B473–B478

    Article  CAS  Google Scholar 

  25. Macak JM, Tsuchiya H, Ghicov A et al (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3–18

    Article  CAS  Google Scholar 

  26. Zwilling V, Darque-Ceretti E, Boutry-Forveille A et al (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637

    Article  CAS  Google Scholar 

  27. Macák JM, Tsuchiya H, Schmuki P (2005) High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed 44:2100–2102

    Article  Google Scholar 

  28. Macak JM, Tsuchiya H, Taveira L et al (2005) Smooth anodic TiO2 nanotubes. Angew Chem Int Ed 44:7463–7465

    Article  CAS  Google Scholar 

  29. Paulose M, Prakasam HE, Varghese OK et al (2007) TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111:14992–14997

    Article  CAS  Google Scholar 

  30. Paulose M, Shankar K, Varghese OK et al (2006) Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J Phys D Appl Phys 39:2498

    Article  CAS  Google Scholar 

  31. Hwang HY, Prabu AA, Kim DY et al (2011) Influence of the organic electrolyte and anodization conditions on the preparation of well-aligned TiO2 nanotube arrays in dye-sensitized solar cells. Sol Energy 85:1551–1559

    Article  CAS  Google Scholar 

  32. Mor GK, Shankar K, Paulose M et al (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  33. Fabregat-Santiago F, Bisquert J, Palomares E et al (2007) Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J Phys Chem C 111:6550–6560

    Article  CAS  Google Scholar 

  34. Macdonald JR (1992) Impedance spectroscopy. Ann Biomed Eng 20:289–305

    Article  CAS  Google Scholar 

  35. Macdonald JR (1974) Binary electrolyte small-signal frequency response. J Electroanal Chem 53:1–55

    Article  CAS  Google Scholar 

  36. Pan S, Rothberg L (2005) Chemical control of electrode functionalization for detection of DNA hybridization by electrochemical impedance spectroscopy. Langmuir 21:1022–1027

    Article  CAS  Google Scholar 

  37. Loyola BR, La Saponara V, Loh KJ (2010) In situ strain monitoring of fiber-reinforced polymers using embedded piezoresistive nanocomposites. J Mater Sci 45:6786–6798

    Article  CAS  Google Scholar 

  38. Lamberti A, Garino N, Sacco A et al (2013) Vertically aligned TiO2 nanotube array for high rate Li-based micro-battery anodes with improved durability. Electrochim Acta 102:233–239

    Article  CAS  Google Scholar 

  39. Sacco A, Lamberti A, Quaglio M et al (2012) Electric characterization and modeling of microfluidic-based dye sensitized solar cell. Int J Photoenergy 2012:Article ID 216780

    Google Scholar 

  40. Borole AP, Aaron D, Hamilton CY et al (2010) Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy. Environ Sci Technol 44:2740–2745

    Article  CAS  Google Scholar 

  41. Wang Q, Moser J-E, Grätzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953

    Article  CAS  Google Scholar 

  42. Halme J, Vahermaa P, Miettunen K et al (2010) Device physics of dye solar cells. Adv Mater 22:E210–E234

    Article  CAS  Google Scholar 

  43. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G et al (2005) Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol Energy Mater Sol Cells 87:117–131

    Article  CAS  Google Scholar 

  44. Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F et al (2000) Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution. J Phys Chem B 104:2287–2298

    Article  CAS  Google Scholar 

  45. Hauch A, Georg A (2001) Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim Acta 46:3457–3466

    Article  CAS  Google Scholar 

  46. Shin Y, Lee S (2008) Self-organized regular arrays of anodic TiO2 nanotubes. Nano Lett 8:3171–3173

    Article  CAS  Google Scholar 

  47. Lamberti A, Sacco A, Bianco S et al (2013) An easy approach for the fabrication of TiO2 nanotubes-based transparent photoanodes for dye-sensitized solar cells. Sol Energy 95:90–98

    Article  CAS  Google Scholar 

  48. Albu SP, Ghicov A, Aldabergenova S et al (2008) Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater 20:4135–4139

    CAS  Google Scholar 

  49. Dubey M, Shrestha M, Zhong Y et al (2011) TiO2 nanotube membranes on transparent conducting glass for high efficiency dye-sensitized solar cells. Nanotechnology 22:285201

    Article  Google Scholar 

  50. Chen Q, Xu D (2009) Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 113:6310–6314

    Article  CAS  Google Scholar 

  51. Lamberti A, Sacco A, Bianco S et al (2011) Microfluidic sealing and housing system for innovative dye-sensitized solar cell architecture. Microelectron Eng 88:2308–2310

    Article  CAS  Google Scholar 

  52. Sommeling PM, O’Regan BC, Haswell RR et al (2006) Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J Phys Chem B 110:19191–19197

    Article  CAS  Google Scholar 

  53. Yan J, Zhou F (2011) TiO2 nanotubes: structure optimization for solar cells. J Mater Chem 21:9406–9418

    Article  CAS  Google Scholar 

  54. Barnes PRF, Anderson AY, Koops SE et al (2008) Electron injection efficiency and diffusion length in dye-sensitized solar cells derived from incident photon conversion efficiency measurements. J Phys Chem C 113:1126–1136

    Article  Google Scholar 

  55. Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4:859–864

    Article  CAS  Google Scholar 

  56. O’Regan BC, Durrant JR, Sommeling PM et al (2007) Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit. J Phys Chem C 111:14001–14010

    Article  Google Scholar 

  57. Wang H, Liu M, Zhang M et al (2011) Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes. Phys Chem Chem Phys 13:17359–17366

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Sacco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Sacco, A., Lamberti, A., Bianco, S., Tresso, E. (2016). Anodically Grown TiO2 Nanotube Membranes: Synthesis, Characterization, and Application in Dye-Sensitized Solar Cells. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_9

Download citation

Publish with us

Policies and ethics