Skip to main content

Physical Properties of Inulin and Technological Applications

  • Reference work entry
  • First Online:
Polysaccharides

Abstract

This chapter deals about a carbohydrate polymer highly used as an ingredient in food products and commonly consumed by humans, but very often unnoticed: inulin. The chapter provides an overall view about the inulin, its benefits in human’s health, introducing the physical properties, providing a deeper understanding about the relation between its structure and properties, and discussing some technological applications. The chapter is divided into three parts. Section 1 provides an overall view about the inulin and its benefits in human’s health and overview some applications. Section 2 introduces the physical properties of inulin, providing a deeper understanding about the relation between its structure and properties. The importance of the amorphous state in inulin is explained, some undesired characteristics presented during the processing of inulin are revealed, state diagrams are introduced, including a complex state diagram for inulin, and the effect of the polymerization degree on the properties is disused as well. Section 3 presents the technological application of inulin, that is, the performance of inulin in food products; a complex state diagram is presented and discussed for the system inulin-orange juice. In general, the chapter is based on the reviewed literature, which is a very recent research topic, and the presentation of some new experimental results. The aim of the work is to present the inulin in such a way that the reader interested in this topic may recognize this material as a very important ingredient in the formulation of food products. Likewise, the reader who is beginning to learn about this material may realize about the importance of the structure of inulin on the final properties of the food product. Ultimately, the expectation of the authors is that the reader after finishing the chapter be motivated to take a food product from his/her refrigerator and look for the presence of inulin in the nutritional information of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aw :

Water activity

Da:

Dalton

DP:

Degree of polymerization

DSC:

Differential scanning calorimetry

FOS:

Fructooligosaccharides

LCI:

Long chain inulin

MDSC:

Modulated differential scanning calorimetry

Mn :

Number average molar mass

Mw :

Mass average molar mass

MWD:

Molecular weight distribution

NI:

Native inulin

OM:

Optical microscopy

SEM:

Scanning electron microscopy

Tg:

Glass transition temperature

XRD:

X-ray diffraction

References

  • Andhikari B, Howes T, Lecomte D, Bhandari BR (2001) A glass transition temperature approach for the prediction of the surface stickiness of a drying droplet during spray drying. Powder Technol 149:168–179

    Article  Google Scholar 

  • Andhikari B, Howes T, Lecomte D, Bhandari BR (2003) A glass transition temperature approach for the prediction of the surface stickiness of a drying droplet during spray drying. Powder Technol 149:168–179

    Article  Google Scholar 

  • André I, Mazeau K, Tvaroska I, Putaux JL, Winter WT, Taravel FR et al (1996) Molecular and crystal structures of inulin from electron diffraction data. Macromolecules 29:4626–4635

    Article  Google Scholar 

  • Badrinarayanan P, Zheng W, Li Q, Simon SL (2007) The glass transition temperature versus the fictive temperature. J Non-Cryst Solids 353:2603–2612

    Article  CAS  Google Scholar 

  • Bai Y, Rahman MS, Perera CO, Smith B, Melton LD (2001) State diagram of apple slices: glass transition and freezing curves. Food Res Int 34:89–95

    Article  Google Scholar 

  • Barclay T, Ginic MM, Cooper P, Petrovsky N (2010) Inulin – a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J Excip Food Chem 1:27–50

    CAS  Google Scholar 

  • Bell LN, Hageman MJ (1996) Glass transition explanation for the effect of polyhydroxy compounds on protein denaturation in dehydrated solid. J Food Sci 61(2):372–378

    Article  CAS  Google Scholar 

  • Bhandari BR, Hartel RW (2005) Phase transitions during food powder production and powder stability. In: Onwulata C (ed) Encapsulated and powdered foods. Taylor & Francis, Boca Raton, pp 261–292

    Chapter  Google Scholar 

  • Blecker C, Chevalier JP, Fougnies C, Van Herck JC, Deroanne C, Paquot M (2003) Characterisation of different inulin samples by DSC: influence of polymerisation degree on melting temperature. J Ther Anal Calorim 71(1):215–224

    Article  CAS  Google Scholar 

  • Carvalho MAM, Figueredo RCL (2001) Frutanos: Ocorrência, estrutura e utilização, com ênfase em plantas do cerrado brasileiro. In: Lajolo FM, Saura-Calixto F, Wittig de Penna E, Menezes EW (eds) Fibra dietética en Iberoamerica: Tecnologia y Salud. Obtención, caracterización, efecto fisiológico y aplicación en alimentos. Projeto CYTED XI. 6. Obtención y caracterización de fibra dietética para su aplicación en regímenes especiales. Varela, São Paulo, pp 77–89

    Google Scholar 

  • Castellanos PN, Rodríguez MM, López AP, López ML, Gutiérrez MF, Castro AC (2012) Optimization of process form extraction and fractionation by degree of polymerization of fructans, obtained from Agave tequilana Weber var. azul, for obtain prebiotics. Gayana Bot 69:31–39

    Google Scholar 

  • Chiavaro E, Vittadini E, Corradini C (2007) Physicochemical characterization and stability of inulin gels. Eur Food Res Technol 225:85–94

    Article  CAS  Google Scholar 

  • Conceiḉão AP, Goulart LDBP, Macêdo BNE, Pessoa A, Converti A, Da Silva JA (2014) Inulin type fructans: a review on different aspects of biochemical and pharmaceutical technology. Carbohydr Polym 101:368–378

    Article  Google Scholar 

  • Dan A, Ghosh S, Moulik SP (2009) Physicochemical studies on the biopolymer inulin: a critical evaluation of its self-aggregation, aggregate-morphology, interaction with water. Biopolymers 91(9):687–699

    Article  CAS  Google Scholar 

  • Derycke DG, Vandamme EJ (1984) Production and properties of Aspergillus niger inulinase. J Chem Biotechnol 35:45–51

    Google Scholar 

  • Fabra MJ, Talens P, Moraga G, Martínez NN (2009) Sorption isotherm and state diagram of grapefruit as a tool to improve product processing and stability. J Food Eng 93:52–58

    Article  CAS  Google Scholar 

  • Foster KD, Bronlund JE, Paterson AHJ (2006) Glass transition related cohesion of amorphous sugars powders. J Food Eng 77:997–1006

    Article  CAS  Google Scholar 

  • Franck A, De Leenheer L (2002) Inulin. In: Vandamme EJ, De Baets S, Steinbüchel A (eds) Biopolymers. Polysaccharides II: polysaccharides from eukaryotes, vol 6. Wiley-VCH Verlag GMBH, Berlin, pp 439–479

    Google Scholar 

  • Glibowski P, Pikus S (2011) Amorphous and crystal inulin behavior in a water environment. Carbohydr Polym 83:635–639

    Article  CAS  Google Scholar 

  • Goula AM, Karapantsios TD, Achilias DS, Adamopoulos KG (2008) Water sorption isotherms and glass transition temperature of spray dried tomato pulp. J Food Eng 85:73–83

    Article  Google Scholar 

  • Grandther G, Joly N, Cavrot JP, Grannet R, Bandur G, Rusnac L, Martin P, Krausz P (2005) Synthesis of plastic films from inulin bye acylation. Polym Bull 55:235–241

    Article  Google Scholar 

  • Haque MK, Roos YH (2006) Difference in the physical state and thermal behavior of spray-dried and freeze-dried lactose and lactose/protein mixtures. Innovat Food Sci Emerg Technol 7:62–73

    Article  CAS  Google Scholar 

  • Jaya S, Das H (2009) Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders. Food Bioproc Technol 2:89–95

    Article  CAS  Google Scholar 

  • Jiang B, Liu Y, Bhandari B, Zhou W (2008) Impact of caramelization on the glass transition temperature of several caramelized sugars. Part I: chemical analyses. J Agric Food Chem 56:5138–5147

    Article  CAS  Google Scholar 

  • Kalichevsky MT, Blanshard JMV, Marsh RDL (1993) Applications of mechanical spectroscopy to the study of glassy biopolymers and related systems. In: Blanshard JMV, Lillford PJ (eds) The glassy state in foods. Nottingham University Press, Nottingham, pp 133–156

    Google Scholar 

  • Kasapis S (2006) Definition and applications of the network glass transition temperature. Food Hydrocolloid 20:218–228

    Article  CAS  Google Scholar 

  • Kawai K, Fukami K, Thanatuksorn P, Viriyarattanasak C, Kajiwara K (2011) Effects of moisture content, molecular weight, and crystallinity on the glass transition temperature of inulin. Carbohydr Polym 83:934–939

    Article  CAS  Google Scholar 

  • Kay SJ, Nottingham SF (2008) Chemical composition and inulin chemistry. In: Biology and chemistry of Jerusalem Artichoke: Helian tuberosus L. CRC Press/Taylor and Francis Group, Boca Raton, pp 61–85

    Google Scholar 

  • Khalloufi S, El-Maslouhi Y, Ratti C (2000) Mathematical model for prediction of glass transition temperature of fruit powders. J Food Sci 65(5):842–848

    Article  CAS  Google Scholar 

  • Kim Y, Faqih MN, Wang SS (2001) Factors affecting gel formation of inulin. Carbohydr Polym 46:135–145

    Article  CAS  Google Scholar 

  • Labuza TP, Hyman CR (1998) Moisture migration and control in multi-domain foods. Trends Food Sci Technol 9:47–55

    Article  CAS  Google Scholar 

  • Liu Y, Bhandari B, Zhou W (2006) Glass transition and enthalpy relaxation of amorphous food saccharides: a review. J Agric Food Chem 54:5701–5717

    Article  CAS  Google Scholar 

  • Mancilla MAN, López GM (2006) Water soluble carbohydrates and fructans structure patterns from Agave and Dasylirion Species. J Agric Food Chem 54:7832–7839

    Article  Google Scholar 

  • Meyer D, Bayarri S, Tárrega A, Costell E (2011) Inulin as texture modifier in dairy products. Food Hydrocolloid 25:1881–1890

    Article  CAS  Google Scholar 

  • Miquel ME, Hall LD (2002) Measurement by MRI of storage changes in commercial chocolate confectionary products. Food Res Int 35:993–998

    Article  CAS  Google Scholar 

  • Moraga G, Martínez NN, Chiralt A (2004) Water sorption isotherms and glass transition in strawberries: influence of pretreatment. J Food Eng 62:315–321

    Article  Google Scholar 

  • Moraga G, Martínez NN, Chiralt A (2006) Water sorption isotherms and phase transitions in kiwifruit. J Food Eng 72:147–156

    Article  Google Scholar 

  • Nguyen PH, Hasek J, Kohlwein SD, Romero C, Choi JH, Vancura A (2005) Interaction of Pik1p and Sjl proteins in membrane trafficking. FEMS Yeast Res 5(4–5):363–371

    Article  CAS  Google Scholar 

  • Obón JM, Castellar MR, Alacid M, Fernández LJA (2009) Production of a red -purple food colorant from Opuntia stricta fruits by spray drying and its applications in food model systems. J Food Eng 9(4):471–479

    Article  Google Scholar 

  • Pitarresi G, Giacomazza D, Triolo D, Giammona G, Biagio PLS (2012) Rheological characterization and release properties of inulin-based hydrogels. Carbohydr Polym 88:1033–1040

    Article  CAS  Google Scholar 

  • Plazek DJ, Bero CA (2003) Precise glass temperatures. J Phys 15:S789–S802

    CAS  Google Scholar 

  • Rhaman MS (2010) Food stability determination by macro-micro region concept in the state diagram and by defining a critical temperature. J Food Eng 99(4):402–416

    Article  Google Scholar 

  • Ribeiro Santivarangkna C, Aschenbrenner M, Kulozik U, Foerst P (2011) Roles of glassy state on stabilities of freeze-dried probiotics. J Food Sci 76(8):R152–R156

    Article  Google Scholar 

  • Rodriguéz GJ, Puig A, Salvador A, Hernando I (2012) Optimization of a sponge cake formulation with inulin as fat replacer: structure, physicochemical and sensory properties. J Food Sci 77:189–197

    Article  Google Scholar 

  • Ronkart NS, Blecker C, Fougnies C, Van Herck JC, Wouters J, Paquot M (2006) Determination of physical changes of inulin related to sorption isotherms: an X-ray diffraction, modulated differential scanning calorimetry and environmental scanning electron microscopy study. Carbohydr Polym 63:210–217

    Article  CAS  Google Scholar 

  • Ronkart NS, Paquot M, Fougnies C, Deroanne C, Blecker C (2009) Effect of water uptake on amorphous inulin properties. Food Hydrocolloid 23:922–927

    Article  CAS  Google Scholar 

  • Roos Y, Karel M (1991) Applying state diagrams to food processing and development. Food Technology 45(12):66, 68–71, 107

    CAS  Google Scholar 

  • Roos YH (1995) Phase transition in foods. Academic, San Diego, Food science and technology

    Google Scholar 

  • Roos YH (2002) Importance of glass transition and water activity to spray drying and stability of dairy powders. Lait 82:475–484

    Article  CAS  Google Scholar 

  • Sá MM, Sereno AM (1994) Glass transition and state diagram for typical natural fruits and vegetables. Thermochim Acta 246:285–297

    Article  Google Scholar 

  • Saavedra-Leos MZ, Álvarez-Salas C, Esneider-Alcalá MA, Toxqui-Terán A, Pérez-García SA, Ruiz-Cabrera MA (2011) Towards an improved calorimetric methodology for glass transition temperature determination in amorphous sugars. CYTA J Food 10(4):258–267

    Article  Google Scholar 

  • Saavedra-Leos MZ, Grajales-Lagunes A, González-García R, Toxqui-Terán A, Pérez-García SA, Ruiz-Cabrera MA (2012) Glass transition study in model food systems prepared with mixtures of fructose, glucose and sucrose. J Food Sci 77(5):E118–E126

    Article  CAS  Google Scholar 

  • Saavedra-Leos MZ, Leyva-Porras C, Martínez-Guerra E, Pérez-García SA, Aguilar-Martínez JA, Álvarez-Salas C (2014) Physical properties of inulin and inulin–orange juice: physical characterization and technological application. Carbohydr Polym 105:10–19

    Article  CAS  Google Scholar 

  • Sablani SS, Kasapis S, Rahman MS (2007) Evaluating water activity and glass transitions concepts for food stability. J Food Eng 78:266–271

    Article  Google Scholar 

  • Sablani SS, Syamaladevi RM, Swanson BG (2010) A review of methods, data and applications of state diagrams of food systems. Food Eng Rev 2:168–203

    Article  CAS  Google Scholar 

  • Santivarangkna C, Aschenbrenner M, Kulozik U, Foerst P (2011) Role of glassy state on stabilities of freeze-dried probiotics. J Food Sci 76(8):152–156

    Article  Google Scholar 

  • Schenz TW (1995) Glass transition and product stability: an overview. Food Hydrocolloid 9(4):307–315

    Article  CAS  Google Scholar 

  • Silva MA, Sobral PJA, Kieckbusch TG (2006) State diagrams of freeze-dried camu-camu (Myrciaria dubia Mc Vaugh) pulp with and without maltodextrin addition. J Food Eng 77:426–432

    Article  CAS  Google Scholar 

  • Silveira MBR, Monereo SM, Molina BB (2003) Alimentos funcionales y nutrición óptima. Revista Española de Salud Pública 77:317–333

    Google Scholar 

  • Slade L, Levine H (1988) Non-equilibrium behavior of small carbohydrate–water systems. Pure Appl Chem 60(12):1841–1864

    Article  CAS  Google Scholar 

  • Slade L, Levine H (1994) Mono- and disaccharides: selected physicochemical and functional aspects. In: Eliasson AC (ed) Carbohydrates in food. Marcel Dekker, New York, pp 41–157, 1996

    Google Scholar 

  • Sobral PJA, Telis VRN, Habitante AMQB, Sereno A (2001) Phase diagram for freeze-dried persimmon. Thermochim Acta 376:83–89

    Article  CAS  Google Scholar 

  • Staffolo M, Bertola N, Martino M, Bevilacqua A (2004) Influence of dietary fiber addition on sensory and rheological properties of yogurt. Int Dairy J 14:263–268

    Article  Google Scholar 

  • Telis VRN, Sobral PJA (2001) Glass transitions for freeze-dried and air-dried pineapple. Lebensmittel Wissenschaft und Technologie 34:199–205

    Article  CAS  Google Scholar 

  • Telis VRN, Sobral PJA (2002) Glass transitions for freeze-dried and air-dried tomato. Food Res Int 35:435–443

    Article  CAS  Google Scholar 

  • Tonon RV, Baroni AF, Brabet C, Gibert O, Pallet D, Hubinger MD (2009) Water sorption and glass transition temperature of spray dried acai (Euterpe oleracea Mart.) juice. J Food Eng 94:215–221

    Article  CAS  Google Scholar 

  • Truong V, Bhandari BR, Howes T (2005) Optimization of co-current spray drying process of sugar-rich foods. Part I- Moisture and glass transition temperature profile during drying. J Food Eng 71(1):55–65

    Article  Google Scholar 

  • Tseng Y, Xiong Y, Boatright W (2008) Effects of inulin/oligofructose on the thermal stability and acid-induced gelation of soy proteins. J Food Sci 73(2):44–50

    Article  Google Scholar 

  • Vanhal I, Blond GJ (1999) Impact of melting conditions of sucrose on its glass transition temperature. J Agric Food Chem 47:4285–4290

    Article  CAS  Google Scholar 

  • Vereyken IJ, Chupin V, Hoekstra FA, Smeekens SC, de Kruijff B (2003) The effect of fructan on membrane lipid organization and dynamics in the dry state. Biophys J 84:3759–3766

    Article  CAS  Google Scholar 

  • Verraest DL, Peters JA, van Kekkum H, van Rosmalen GM (1996) Carboxymethyl inulin: a new inhibitor for calcium carbonate precipitation. JAOCS 73(1):55–61

    CAS  Google Scholar 

  • Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–359

    Article  CAS  Google Scholar 

  • Wang H, Zhang S, Chen G (2008) Glass transition and state diagram for fresh and freeze-dried Chinese gooseberry. J Food Eng 84:307–312

    Article  Google Scholar 

  • Warchol M, Perrin S, Grill JP, Schneider F (2002) Characterization of a purified β-fructofuranosidase from Bifidobacterium infantis ATCC 15697. Lett Appl Microbiol 35(6):462–467

    Article  CAS  Google Scholar 

  • Welti CJ, Guerrero JA, Bárcenas ME, Aguilera JM, Vergara F, Barbosa CGV (1999) Glass transition temperature (Tg) and water activity (aw) of dehydrated apple products. J Food Proc Eng 22:91–101

    Article  Google Scholar 

  • Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48:27–42

    Article  CAS  Google Scholar 

  • Zahn S, Pepke F, Rohm H (2010) Effect of inulin as a fat replacer on texture and sensory properties of muffins. Int J Food Sci Technol 45:2531–2537

    Article  CAS  Google Scholar 

  • Zimeri JE, Kokini JL (2002) The effect of moisture content on the crystallinity and glass transition temperature of inulin. Carbohydr Polym 48:299–304

    Article  CAS  Google Scholar 

  • Zimeri JE, Kokini JL (2003) Phase transitions of inulin–waxy maize starch systems in limited moisture environments. Carbohydr Polym 51:183–190

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The technical support provided by Alberto Toxqui-Terán and Miguel Esneider-Alcalá, in the MDSC and OM experiments performed during the development of the state diagrams, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenaida Saavedra-Leos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Leyva-Porras, C., López-Pablos, A.L., Alvarez-Salas, C., Pérez-Urizar, J., Saavedra-Leos, Z. (2015). Physical Properties of Inulin and Technological Applications. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_80

Download citation

Publish with us

Policies and ethics