Skip to main content

Evolution of the Brain, The

  • Living reference work entry
  • First Online:
Encyclopedia of Evolutionary Psychological Science

Synonyms

Brain evolution; Comparative neuroanatomy; Paleoneurology

Definition

Evolutionary neuroscience is an interdisciplinary field of study which seeks to understand the evolution of the brain and nervous system and provides a framework for interpreting evolutionary changes in the brain and brain component size or shape.

Introduction

The field of evolutionary neuroscience has provided us with an enormous amount of comparative data and relevant theoretical principles to support our current understanding of the evolution of the nervous system. Evolutionary neuroscientists are interested in understanding how the brain evolves and in reconstructing the natural history of the nervous system from a structural and functional perspective. Evidence of brain evolution can be documented through the lens of various biological fields, including biological anthropology, ethology, paleontology, comparative psychology, comparative neuroanatomy, cognitive science, and molecular biology and genetics....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allman, J., McLaughlin, T., & Hakeem, A. (1993). Brain weight and life-span in primate species. Proceedings of National Academy of Science (USA), 90, 118–122.

    Article  Google Scholar 

  • Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058.

    Article  PubMed  Google Scholar 

  • Bennet, P. M., & Harvey, P. H. (1985). Relative brain size and ecology in birds. Journal of the Zoological Society of London A, 207, 151–169.

    Article  Google Scholar 

  • Bianchi, S., Bauernfeind, A. L., Gupta, K., Stimpson, C. D., Spocter, M. A., Bonar, C. J., Manger, P. R., Hof, P. R., Jacobs, B., & Sherwood, C. C. (2011). Neocortical neuron morphology in Afrotheria: Comparing the rock hyrax with the African elephant. Annals of the New York Academy of Sciences, 1225, 37–46.

    Article  PubMed  Google Scholar 

  • Butler, A. B., & Hodos, W. (2005). Comparative vertebrate neuroanatomy (2nd ed.). New York: Wiley-Liss.

    Book  Google Scholar 

  • Catania, K. C., Northcutt, R. G., & Kaas, J. H. (1999). The development of a biological novelty: A different way to make appendages as revealed in the snout of the star-nosed mole Condylura cristata. Journal of Experimental Biology, 2002, 2719–2726.

    Google Scholar 

  • Clayton, N. S., Griffiths, D. P., Emery, N. J., & Dickinson, A. (2001). Elements of episodic-like memory in animals. Philosophical Transactions of the Royal Society of London B, 356, 1483–1491.

    Article  Google Scholar 

  • Clutton-Brock, T. H., & Harvey, P. H. (1980). Primates, brains and ecology. Journal of the Zoological Society of London A, 190, 309–323.

    Article  Google Scholar 

  • Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178–190.

    Article  Google Scholar 

  • Finger, S. (2000). Minds behind the brain. Oxford: Oxford University Press.

    Google Scholar 

  • Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.

    Article  PubMed  Google Scholar 

  • Harvey, P. H., & Krebs, J. H. (1990). Comparing brains. Science, 249, 140–146

    Google Scholar 

  • Healy, S. D., & Krebs, J. R. (1996). Food storing and the hippocampus in Paridae. Brain, Behavior and Evolution, 47, 195–199.

    Article  PubMed  Google Scholar 

  • Hutcheon, J. M., Kirsch, J. A. W., & Garland, T. J. (2002). A comparative analysis of brain size in relation to foraging ecology and phylogeny in the Chiroptera. Brain, Behavior and Evolution, 60, 165–180.

    Article  PubMed  Google Scholar 

  • Iwanuik, A. N., & Nelson, J. E. (2003). Developmental differences are correlated with relative brain size in birds: A comparative analysis. Canadian Journal of Zoology, 81, 1913–1928.

    Article  Google Scholar 

  • Jerison, H. (1973). Evolution of the brain and intelligence. New York: Academic.

    Google Scholar 

  • Krubitzer, L., Campi, K. L., & Cooke, D. F. (2011). All rodents are not the same: A modern synthesis of cortical organization. Brain, Behavior and Evolution, 78, 51–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manger, P. R., Hemingway, J., Spocter, M. A., & Gallagher, A. (2012). The mass of the human brain: Is it a spandrel. In S. Reynolds & A. Gallagher (Eds.), African genesis: Perspectives on hominin evolution, Cambridge studies in biological and evolutionary anthropology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Manger, P. R., Spocter, M. A., & Patzke, N. (2013). The evolutions of large brain size in mammals- ‘the Over 700g Club Quartet’. Brain, Behavior and Evolution, 82(1), 68–78.

    Article  PubMed  Google Scholar 

  • Northcutt, R. G. (1981). Evolution of the telencephalon in non-mammals. Annual Review of Neuroscience, 4, 301–350.

    Article  PubMed  Google Scholar 

  • Northcutt, R. G., & Kaas, J. H. (1995). The emergence and evolution of mammalian neocortex. Trends in Neurosciences, 18, 373–379.

    Article  PubMed  Google Scholar 

  • Pettigrew, J. D., Manger, P. R., & Fine, S. L. B. (1998). The sensory world of the platypus. Philosophical Transactions of the Royal Society of London B, 353, 1199–1210.

    Article  Google Scholar 

  • Radinsky, L. (1968). The evolution of somatic sensory specialization in otter brains. Journal of Comparative Neurology, 134, 495–505.

    Article  PubMed  Google Scholar 

  • Schmidt-Nielsen, K. (1984). Scaling: Why animals size is so important. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Spocter, M. A., Raghanti, M. A., Butti, C., Hof, P. R., & Sherwood, C. C. (2015). The minicolumn in a comparative context. In M. Casanova & I. Opris (Eds.), Recent advances on the modular organization of the cerebral cortex. Dordrecht: Springer Publishing.

    Google Scholar 

  • Striedter, G. F. (2005). Principles of brain evolution. Sunderland: Sinauer Associates.

    Google Scholar 

  • Striedter, G. F. (2007). A history of ideas in evolutionary neuroscience. In J. Kaas (Ed.), Evolutionary neuroscience (1st ed.). New York: Associated Press.

    Google Scholar 

  • van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the primate visual cortex: An integrated systems perspective. Science, 255, 419–423.

    Article  PubMed  Google Scholar 

  • Welker, W. L., & Campos, G. B. (1963). Physiological significance of sulci in somatic sensory cerebral cortex in mammals of the family Procyonidae. Journal of Comparative Neurology, 120, 19–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad A. Spocter .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lemert, J.R., Spocter, M.A. (2018). Evolution of the Brain, The. In: Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_3094-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16999-6_3094-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16999-6

  • Online ISBN: 978-3-319-16999-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics