Skip to main content

Oxide (TiO2) Nanotubes Obtained Through Sol–Gel Method

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

A large variety of elongated tubular nanomaterials from metal oxides and hydroxides have been reported, including Al2O3, BaTiO3, cobalt oxides, Ni(OH)2, Mg(OH)2, ZnO, vanadium oxides, MnO2, hematite, Cu(OH)2, ZrO2, and so on. Among these, TiO2-based tubular nanomaterials are of particular importance because of their n-type conductivity and photocatalytic activity, in addition to a relatively simple and low-cost preparation processing, which has stimulated a huge number of successive studies focused on their preparation, structure design, and applications. The application of titanate and titania nanotubes includes electrodes for lithium secondary battery and fuel cells, photocatalysis, hydrophobic/hydrophilic surfaces, catalysts for organic synthesis, biological, and others. In this chapter, the structure, preparation, and some of the potential applications of titanate and titania nanotubes are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albu SP, Ghicov A, Macak JM, Schmuki P. 250 μm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys Status Solidi. 2006;1:R65–7.

    Google Scholar 

  • Armstrong AR, Armstrong G, Canales J, Bruce PG. Nanotubes with the TiO2-B structure. Chem Commun. 2005;19:2454–6.

    Article  Google Scholar 

  • Azad AM. Mater Sci Eng A. Fabrication of transparent alumina (Al_(2)O_(3)) nanofibers by electrospinnin. 2006;435:468–73.

    Google Scholar 

  • Bae C, Yoo H, Kim S, Lee K, Kim J, Sung MM, Shin H. Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications. Chem Mater. 2008;20:756–67.

    Article  Google Scholar 

  • Bavykin DV, Walsh FC. Elongated titanate nanostructures and their applications. Eur J Inorg Chem. 2009;2009:977–97.

    Article  Google Scholar 

  • Bavykin DV, Gordeev SN, Moskalenko AV, Lapkin AA, Walsh FC. Apparent two-dimensional behavior of TiO2 nanotubes revealed by light absorption and luminescence. J Phys Chem B. 2005;109:8565–9.

    Article  Google Scholar 

  • Bavykin DV, Friedrich JM, Walsh FC. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater. 2006;18:2807–24.

    Article  Google Scholar 

  • Boercker JE, Enache-Pommer E, Aydil ES. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells. Nanotechnology. 2009;19:095604.

    Article  Google Scholar 

  • Byrne MT, McCarthy JE, Bent M, Blake R, Gun’ko YK, Horvath E, Konya Z, Kukovecz A, Kiricsib I, Colemanc JN. Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. J Mater Chem. 2007;17:2351–8.

    Article  Google Scholar 

  • Chen Q, Zhou WZ, Du GH, Peng LM. Trititanate nanotubes made via a single alkali treatment. Adv Mater. 2002;14:1208–11.

    Article  Google Scholar 

  • Cheng F, Chen J. Storage of hydrogen and lithium in inorganic nanotubes and nanowires. J Mater Res. 2006;21:2744–57.

    Article  Google Scholar 

  • Cheng Q, Pavlinek V, He Y, Li C, Lengalova A, Saha P. Facile fabrication and characterization of novel polyaniline/titanate composite nanotubes directed by block copolymer. Eur Polym J. 2007;43:3780–6.

    Article  Google Scholar 

  • Cheng F, Tao Z, Liang J, Chen J. Template-directed materials for rechargeable lithium-ion batteries. Chem Mater. 2008;20:667–81.

    Article  Google Scholar 

  • Fan R, Karnik R, Yue M, Li D, Majumdat A, Yang P. DNA translocation in inorganic nanotubes. Nano Lett. 2005;5:1633–7.

    Article  Google Scholar 

  • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–8.

    Article  Google Scholar 

  • Ghicov A, Tsuchiya H, Macak JM, Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun. 2005;7:505–9.

    Article  Google Scholar 

  • Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res. 2001;16:3331–4.

    Article  Google Scholar 

  • Hafner JH, Cheung C-L, Woolle AT, Lieber CM. Structural and functional imaging with carbon nanotube AFM probes. Prog Biophys Mol Biol. 2001;77:73–110.

    Article  Google Scholar 

  • Hoyer P. Formation of a titanium dioxide nanotube array. Langmuir. 1996a;12:1411–3.

    Article  Google Scholar 

  • Hoyer P. Semiconductor nanotube formation by a two-step template process. Adv Mater. 1996b;8:857–9.

    Article  Google Scholar 

  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  Google Scholar 

  • Jia CJ, Sun LD, Yan ZG, You LP, Luo F, Han XD, Pang YC, Zhang Z, Yan CH. Single-crystalline iron oxide nanotubes. Angew Chem Int Ed. 2005;44:4328–33.

    Article  Google Scholar 

  • Jung JH, Kobayashi H, van Bommel KJC, Shinkai S, Shimizu T. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template. Chem Mater. 2002;14:1445–7.

    Article  Google Scholar 

  • Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of titanium oxide nanotube. Langmuir. 1998;14:3160–3.

    Article  Google Scholar 

  • Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Adv Mater. 1999;11:1307–11.

    Article  Google Scholar 

  • Kitano M, Nakajima K, Kondo JN, Hayashi S, Hara M. Protonated tianate nanotubes as solid acid catalyst. J Am Chem Soc. 2011;132:6622–3.

    Article  Google Scholar 

  • Kukovecz Á, Hodos M, Horváth E, Radnóczi G, Kónya Z, Kiricsi I. Oriented crystal growth model explains the formation of titania nanotubes. J Phys Chem B. 2005;109:17781–3.

    Article  Google Scholar 

  • Lee SB, Mitchell DT, Trofin L, Nevanen TK, Martin CR, Söderlung H. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science. 2002;296:2198–200.

    Article  Google Scholar 

  • Lee CK, Wang CC, Juang LC, Lyu MD, Hung SH, Liu SS. Effects of sodium content on the microstructures and basic dye cation exchange of titanate nanotubes. Colloids Surf A. 2008;317:164–73.

    Article  Google Scholar 

  • Li J, Tang Z, Zhang Z. H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability. Electrochem Commun. 2005;7:62–7.

    Article  Google Scholar 

  • Li J, Tang Z, Zhang Z. Pseudocapacitive characteristic of lithium ion storage in hydrogen titanate nanotubes. Chem Phys Lett. 2006;418:506–10.

    Article  Google Scholar 

  • Liu A, Wei M, Honma I, Zhou H. Direct electrochemistry of myoglobin in titanate nanotubes film. Anal Chem. 2005;77:8068–74.

    Article  Google Scholar 

  • Ma R, Bando Y, Sasaki T. Nanotubes of lepidocrocite titanates. Chem Phys Lett. 2003;380:577–82.

    Article  Google Scholar 

  • Ma R, Fukuda K, Sasaki T, Osada M, Bando Y. Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. J Phys Chem B. 2005;109:6210.

    Article  Google Scholar 

  • Macak JM, Sirotna K, Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta. 2005;50:3679–84.

    Article  Google Scholar 

  • Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Deliv. 2003;2:29–37.

    Article  Google Scholar 

  • Martinson ABF, Elam JW, Hupp JT, Pellin MJ. ZnO nanotube based dye-sensitized solar cells. Nano Lett. 2007;7:2183–7.

    Article  Google Scholar 

  • Matos BR, Santiago EI, Fonseca FC, Linardi M, Lavayen V, Lacerda RG, Ladeira LO, Ferlauto AS. Nafion–titanate nanotube composite membranes for PEMFC operating at high temperature. J Electrochem Soc. 2007;154:B1358–61.

    Article  Google Scholar 

  • Mattsson A, Österlund L. Adsorption and photoinduced decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2 nanoparticles. J Phys Chem C. 2010;114:14121–32.

    Article  Google Scholar 

  • Mayya KS, Gittins DI, Dibaj AM, Caruso F. Nanotubes prepared by templating sacrificial nickel nanorods. Nano Lett. 2001;1:727–30.

    Article  Google Scholar 

  • Michailowski A, AlMawlawi D, Cheng G, Moskovits M. Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chem Phys Lett. 2001;349:1–5.

    Article  Google Scholar 

  • Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Söderlund H, Martin CR. Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc. 2002;124:11864–5.

    Article  Google Scholar 

  • Nakahira A, Kato W, Tamai M, Isshiki T, Nishio K. Synthesis of nanotube from a layered H2Ti4O9⋅H2O in a hydrothermal treatment using various titania sources. J Mater Res. 2004;39:4239–45.

    Google Scholar 

  • Ngamsinlapasathian S, Sakulkhaemaruethai S, Pavasupree S, Kitiyanan A, Sreethawong T, Suzuki Y, Yoshikawa S. Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. J Photochem Photobiol A Chem. 2004;164:145–51.

    Article  Google Scholar 

  • Niederberger M, Muhr HJ, Krumeich F, Bieri F, Gunther D, Nesper R. Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem Mater. 2000;12:1995–2000.

    Article  Google Scholar 

  • Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K, Yanagida S. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Phys Chem Chem Phys. 2005;7:4157–63.

    Article  Google Scholar 

  • Okada K, Tokudome Y, Falcaro P, Takamatsu Y, Nakahira A, Takahashi M. Titanate nanofunnel brushes: toward functional interfacial applications. Chem Commun. 2012;48:6130–3.

    Article  Google Scholar 

  • Okada K, Takamatsu Y, Nakahira A, Tokudome Y, Takahashi M. Highly oriented growth of titanate nanotubes (TNTs) in micro and confinement spaces on sol–gel derived amorphous TiO2 thin films undermoderate hydrothermal condition. J Sol–gel Sci Technol. 2013;65:36–40.

    Article  Google Scholar 

  • Okada K, Ricco R, Tokudome Y, Styles MJ, Hill AJ, Takahashi M, Falcaro P. Copper conversion into Cu(OH)2 nanotubes for positioning Cu3(BTC)2 MOF crystals: controlling the growth on flat, 3D architecture and patterns. Adv Funct Mater. 2014;24:1969–77.

    Article  Google Scholar 

  • Okada K, Asakura G, Nakahira A, Tokudome Y, Takahashi M. Macroporous titanate nanotube/TiO2 monolith for fast and large-capacity cation exchange. Chem Mater. 2015;27:1885–91.

    Article  Google Scholar 

  • O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737–40.

    Article  Google Scholar 

  • O’Sullivan JP, Wood JC. The morphology and mechanism of formation of porous anodic films on aluminium. Proc R Soc A. 1970;317:511–43.

    Article  Google Scholar 

  • Park J, Kim H, Bard AJ. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 2006;6:24–8.

    Article  Google Scholar 

  • Pascual J, Camassel J, Mathieu H. Fine structure in the intrinsic absorption edge of TiO2. Phys Rev B. 1978;18:5606–14.

    Article  Google Scholar 

  • Quan X, Yang S, Ruan X, Zhao H. Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol. 2005;39:3770–5.

    Article  Google Scholar 

  • Ruan C, Paulose M, Varghese OK, Mor GK, Grimes CA. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B. 2005;109:15754–9.

    Article  Google Scholar 

  • Sakai N, Ebina Y, Takada K, Sasaki T. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J Am Chem Soc. 2004;126:5851–8.

    Article  Google Scholar 

  • Seo DS, Lee JK, Kim H. Preparation of nanotube-shaped TiO2 powder. J Cryst Growth. 2001;229:428–32.

    Article  Google Scholar 

  • Song H, Qiu X, Guo D, Li F. Role of structural H2O in TiO2 nanotubes in enhancing Pt/C direct ethanol fuel cell anode electro-catalysts. J Power Sources. 2008a;178:97–102.

    Article  Google Scholar 

  • Song HJ, Zhang ZZ, Men XH. Tribological behavior of polyurethane-based composite coating reinforced with TiO2 nanotubes. Eur Polym J. 2008b;44:1012–22.

    Article  Google Scholar 

  • Spahr ME, Bitterli P, Nesper R, Muller M, Krumeich F, Nissen HU. Redox-active nanotubes of vanadium oxide. Angew Chem Int Ed. 1998;37:1263–5.

    Article  Google Scholar 

  • Takahashi M, Tsukigi K, Uchino T, Yoko T. Enhanced photocurrent in thin film TiO2 electrodes prepared by sol–gel method. Thin Solid Films. 2001;388:231–5.

    Article  Google Scholar 

  • Takahashi K, Wang Y, Cao G. Ni − V2O5 · nH2O core − shell nanocable arrays for enhanced electrochemical intercalation. J Phys Chem B. 2005;109:48–51.

    Article  Google Scholar 

  • Tang H, Lévy F, Berger H, Schmid PE. Urbach tail of anatase TiO2. Phys Rev B. 1995;52:7771–4.

    Article  Google Scholar 

  • Tao F, Shen Y, Liang Y, Li H. Synthesis and characterization of Co(OH)2/TiO2 nanotube composites as supercapacitor materials. J Solid State Electrochem. 2007;11:853–8.

    Article  Google Scholar 

  • Taveira LV, Macák JM, Tsuchiy H, Dick LFP, Schmuki P. Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. J Electrochem Soc. 2005;152:B405–10.

    Article  Google Scholar 

  • Tenne R, Margulis L, Genut M, Hodes G. Polyhedral and cylindrical structures of tungsten disulphide. Nature. 1992;360:444–6.

    Article  Google Scholar 

  • Thorne A, Kruth A, Tunstall D, Irvine JST, Zhou W. Formation, structure, and stability of titanate nanotubes and their proton conductivity. J Phys Chem B. 2005;109:5439–44.

    Article  Google Scholar 

  • Tian ZR, Voigt JA, Liu J, Mckenzie B, Xu H. Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc. 2003;125:12384–5.

    Article  Google Scholar 

  • Tokudome Y, Okada K, Nakahira A, Takahashi M. Switchable and reversible water adhesion on superhydrophobic titanate nanostructures fabricated on soft substrates: photopatternable wettability and thermomodulatable adhesivity. J Mater Chem A. 2013;2:58–61.

    Article  Google Scholar 

  • Tsai CC, Teng H. Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem Mater. 2004;16:4352–8.

    Article  Google Scholar 

  • Tsuchiya H, Macak JM, Ghicov A, Taveira L, Schmuki P. Self-organized porous TiO2 and ZrO2 produced by anodization. Corros Sci. 2005a;47:3324–35.

    Article  Google Scholar 

  • Tsuchiya H, Macak JM, Taveira L, Balaur E, Ghicov A, Sirtna K, Schmuki P. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem Commun. 2005b;7:576–80.

    Article  Google Scholar 

  • Wang Y, Cao G. Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem Mater. 2006;18:2787–804.

    Article  Google Scholar 

  • Wang W, Varghese OK, Paulose M, Grimes CA. A study on the growth and structure of titania nanotubes. J Mater Res. 2004;19:417–22.

    Article  Google Scholar 

  • Wang M, Guo D, Li H. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J Solid State Chem. 2005;178:1996–2000.

    Article  Google Scholar 

  • Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM. Covalently functionalized nanotubes as nanometer-size probes in chemistry and biology. Nature. 1998;394:52–5.

    Article  Google Scholar 

  • Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans. 2003;3:3898–901.

    Article  Google Scholar 

  • Yang Y, Wang X, Sun C, Li L. Structure study of single crystal BaTiO3 nanotube arrays produced by the hydrothermal method. Nanotechnology. 2009;20:055709 (5pages).

    Article  Google Scholar 

  • Zhang J, Sun L, Liao C, Yan C. A simple route towards tubular ZnO. Chem Commun. 2002;2:262–3.

    Article  Google Scholar 

  • Zhang S, Peng LM, Chen Q, Du GH, Dawson G, Zhou WZ. Formation mechanism of H2Ti3O7 nanotubes. Phys Rev Lett. 2003a;91:256103.

    Article  Google Scholar 

  • Zhang W, Wen X, Yang S, Berta Y, Wang ZL. Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv Mater. 2003b;15:822–5.

    Article  Google Scholar 

  • Zhang M, Jin Z, Zhang J, Yang J, Guo X, Li W, Wang X, Zhang Z. Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J Mol Catal A:Chem. 2004;217:203–10.

    Article  Google Scholar 

  • Zhang J, Wei S, Lin J, Luo J, Lui S, Song H, Elawad E, Ding X, Gao J, Qi S, Tang C. Template-free preparation of bunches of aligned boehmite nanowires. J Phys Chem B. 2006;2:21680–3.

    Article  Google Scholar 

  • Zhang H, Li GR, An LP, Yan TY, Gao XP, Zhu HY. Electrochemical lithium storage of titanate and titania nanotubes and nanorods. J Phys Chem C. 2007;111:6143–8.

    Article  Google Scholar 

  • Zheng D, Sun S, Fan W, Yu H, Fan C, Cao G, Yin Z, Song X. One-step preparation of single-crystalline β-MnO2 nanotubes. J Phys Chem B. 2005;109:16439–43.

    Article  Google Scholar 

  • Zheng W, Zheng YF, Jin KW, Wang N. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films. Talanta. 2008;74:1414–9.

    Article  Google Scholar 

  • Zhou Y, Cao L, Zhang F, He B, Li H. Lithium insertion into TiO2 nanotube prepared by the hydrothermal process. J Electrochem Soc. 2003;150:A1246–9.

    Article  Google Scholar 

  • Zhu K, Neale NR, Miedaner A, Frank AJ. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007;7:69–74.

    Article  Google Scholar 

  • Zhuo L, Ge J, Cao L, Tang B. Solvothermal synthesis of CoO, Co3O4, Ni(OH)2 and Mg(OH)2 nanotubes. Cryst Growth Des. 2009;9:1–6.

    Article  Google Scholar 

  • Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal. 1999;27:629–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahide Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Takahashi, M. (2016). Oxide (TiO2) Nanotubes Obtained Through Sol–Gel Method. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_105-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_105-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics