Skip to main content

Xerogels, Aerogels, and Aerogel/Mineral Composites for CO2 Sequestration

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

In this chapter several sol–gel materials used for CO2 sequestration, both dried gels with divalent cations and silica aerogel/mineral composites including calcium silicate grains as an active phase, are revised. They were used for mineral sequestration of CO2, that is, for permanent carbon fixation. Their performance and prospect are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed MS, Attia YA. Sol–gel prepared aerogels for adsorption/capture of hazardous gases. First International Conference on Application Commercialization of Sol Gel Processing. Oct 10–13; Saarbrücken, Germany, 1993.

    Google Scholar 

  • Ahmed MS, Attia YA. Multi-metal oxide aerogel for capture of pollution gases from air. App Therma Eng. 1998;18:787–97.

    Article  Google Scholar 

  • Bahor B, van Brunt M, Stovall J, Blue K. Integrated waste management as a climate change stabilization wedge. Waste Manag Res. 2009;27:839–49.

    Article  Google Scholar 

  • Béarat H, Mckelvy MJ, Chizmeshya AVG, Gormley D, Nunez R, Carpenter RW, Squires K, Wolf GH. Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. Environ Sci Technol. 2006;40:4802–8.

    Article  Google Scholar 

  • Blanco E, Esquivias L, Litrán R, Piñero M, Ramírez-del-Solar M, de la Rosa-Fox N. Sonogels and derived materials. Appl Organomet Chem. 1999;13:399–418.

    Article  Google Scholar 

  • Carey JW, Wigand M, Chipera SJ, Woldegabriel G, Pawar R, Lichtner PC, Wehner SC, Raines MA, Guthrie Jr GD. Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA. Int J Greenhouse Gas Control. 2007;1:75–85.

    Article  Google Scholar 

  • Casey WH, Westrich HR, Banfield JF, Ferruzzi G, Arnold W. Leaching and reconstruction at surfaces of dissolving chain silicate minerals. Nature. 1993;366:253–6.

    Article  Google Scholar 

  • Chrysafi R, Perraki T, Kakali G. Sol–gel preparation of 2CaO · SiO2. J Eur Ceram Soc. 2007;27:1707–10.

    Article  Google Scholar 

  • Esquivias L, Piñero M, Morales-Flórez V, de la Rosa-Fox N. Aerogels synthesis by sonocatalysis – sonogels. In: Aegerter MA, Leventis N, Koebel MM, editors. Aerogels handbook. New York: Springer; 2011. p. 419–45.

    Chapter  Google Scholar 

  • Fabbri A, Corvisier J, Schubnel A, Brunet F, Goffé B, Barlet-Gouédard V, Rimmele G. Effect of carbonation on the hydro-mechanical properties of portland cements. Cem Concr Res. 2009;39(12):1156–63.

    Article  Google Scholar 

  • Hong SH, Young JF. Hydration kinetics and phase stability of dicalciumsilicate synthesized by the Pechini process. J Am Ceram Soc. 1999;82:1681–6.

    Article  Google Scholar 

  • Huijgen WJJ, Comans RNJ. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem Eng Sci. 2006;61:4242–51.

    Article  Google Scholar 

  • IPCC. Intergovernmental panel on climate change, special report: carbon dioxide capture and storage. Cambridge: Cambridge University Press; 2005.

    Google Scholar 

  • Jaramillo P, Griffin WM, McCoy ST. Life cycle inventory of CO2 in an enhanced oil recovery system. Environ Sci Technol. 2009;43:8027–32.

    Article  Google Scholar 

  • Khomane RB, Sharma BK, Saha S, Kulkarni BD. Reverse microemulsion mediated sol–gel synthesis of lithium silicate nanoparticles under ambient conditions: scope for CO2 sequestration. Chem Eng Sci. 2006;61(10):3415–8.

    Article  Google Scholar 

  • Kistler SS. Coherent expanded aerogels and jellies. Nature. 1931;127:741.

    Article  Google Scholar 

  • Kojima T, Nagamine A, Ueno N, Uemiy S. Absorption and fixation of carbon dioxide by rock weathering. Energy Convers Manage. 1997;38:S461–6.

    Article  Google Scholar 

  • Lackner KS. A guide to CO2 sequestration. Science. 2003;300:1677.

    Article  Google Scholar 

  • Lackner KS, Grimes P, Ziock HJ. Capturing carbon dioxide froim air. 2nd US-China symposium on CO2 emissions control science and technology. May 28–30; Hangzou, China, 2008.

    Google Scholar 

  • Morales-Flórez V, Santos A, Lemus A, Esquivias L. Artificial weathering pools of calcium-rich industrial waste for CO2 sequestration. Chem Eng J. 2011;166(1):132–7.

    Article  Google Scholar 

  • O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK. Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Miner metall process. 2002;19:95–103.

    Google Scholar 

  • Power IM, Harrison AL, Dipple GM. Carbon mineralization: from natural analogues to engineered systems. Rev Mineral Geochem. 2013;77:305–60.

    Article  Google Scholar 

  • Prabhalar S, Hanumantha RK, Forsling W. Dissolution of wollastonite and its flotation and surface interactions with tallow-1,3-diaminopropane (duomeen T). Min Eng. 2005;18:691–9.

    Article  Google Scholar 

  • Reynolds JG, Coronado PR, Hrubesh LW. Hydrophobic aerogels for oil-spill clean up synthesis and characterization. J Non Cryst Solids. 2001;292:127–37.

    Article  Google Scholar 

  • Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B. 1993;192:55–69.

    Article  Google Scholar 

  • Santos A, Toledo-Fernández JA, Mendoza-Serna R, Gago-Duport L, de la Rosa-Fox N, Piñero M, Esquivias L. Chemically active silica-wollastonite composites for CO2 fixation by carbonation reactions. Ind. Chem Eng. Res. 2007;46:103–7.

    Google Scholar 

  • Santos A, Ajbary M, Toledo-Fernández JA, Morales-Flórez V, Kherbeche A, Esquivias L. Reactivity of CO2 traps in aerogel-wollastonite composites. J Sol-gel Sci Technol. 2008a;48(1):224–30.

    Article  Google Scholar 

  • Santos A, Ajbary M, Kherbeche A, Piñero M, de la Rosa-Fox N, Esquivias L. Fast CO2 sequestration by aerogel composites. J Sol-gel Sci Technol. 2008b;45(3):291–7.

    Article  Google Scholar 

  • Santos A, Ajbary M, Morales-Flórez V, Kherbeche A, Piñero M, Esquivias L. Larnite powders and larnite/silica aerogel composites as effective agents for CO2 sequestration by carbonation. J Hazard Mater. 2009;168(2-3):1397–403.

    Article  Google Scholar 

  • Seifritz W. CO2 disposal by means of silicates. Nature. 1990;345:486.

    Article  Google Scholar 

  • Sipila J, Teir S, Zevenhoven R. Carbon dioxide sequestration by mineral carbonation. Literature review update 2005–2007. Heat Engineering Laboratory, Abo Akademi University; 2008.

    Google Scholar 

  • Stolaroff JK, Keith WD, Lowry GV. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ Sci Technol. 2008;42:2728–35.

    Article  Google Scholar 

  • Subha PV, Nair BN, Hareesh P, Mohamed AP, Yamaguchi T, Warrier KGK, Hareesh US. Enhanced CO2 absorption kinetics in lithium silicate platelets synthesized by a sol–gel approach. J Mater Chem A. 2014;2:12792–8.

    Article  Google Scholar 

  • Tai CY, Chen W-R, Shih S-M. Factors affecting wollastonite carbonation under CO2 supercritical conditions. AICHE J. 2006;52(1):292–9.

    Article  Google Scholar 

  • The Keeling Curve. A daily record of atmospheric carbon dioxide from Scripps Institution of Oceanography at UC San Diego. Available online: http://keelingcurve.ucsd.edu/. Accessed 23 Mar 2016.

  • Toledo-Fernández JA, Mendoza-Serna R, Morales-Flórez V, de la Rosa-Fox N, Santos A, Piñero M, Esquivias L. Aerogeles con aplicaciones en biomedicina y medioambiente. Bol Soc Esp Ceram Vidrio. 2007;46(3):138–44.

    Article  Google Scholar 

  • Wu JC-S, Sheen J-D, Chen S-Y, Fan Y-C. Feasibility of CO2 fixation via artificial rock weathering. Ind Eng Chem Res. 2001;40:3902–5.

    Article  Google Scholar 

  • Zarzycki J, Prassas M, Phallipou J. Synthesis of glasses from gels: the problem of monolithic gels. J Mater Sci. 1982;17:3371–9.

    Article  Google Scholar 

  • Zevenhoven R, Eloneva S, Teir S. Chemical fixation of CO2 in carbonates: route to valuable products and long-term storage. Catal Today. 2006;115:73–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Esquivias , Víctor Morales-Flórez or Alberto Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Esquivias, L., Morales-Flórez, V., Santos, A. (2016). Xerogels, Aerogels, and Aerogel/Mineral Composites for CO2 Sequestration. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_124-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_124-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics