Skip to main content

Graphene and Carbon Dots in Mesoporous Materials

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

This chapter wishes to provide the reader with some examples of composite materials obtained through integration of carbon-based nanostructures, graphene and carbon dots, into mesoporous materials and some of the issues thereof. After a brief introduction to the chemistry of graphene and its derivatives, relevant for understanding the problems associated with the preparation of graphene-based nanocomposites, the reader is guided through some examples illustrating the problems related to the control of pore organization into these mesoporous materials. Some significant applications of graphene-based sandwich-like structures and films, such as energy storage or optical sensors, are also described before introducing the reader into the chemistry of carbon dots and its integration into mesoporous structures. Some important examples of the applications of carbon dots, such as bio-related applications or mesoporous particles embedding carbon dots for sorption and catalysis, are then illustrated. Finally, the integration and application of carbon dots into mesoporous films and some hints onto carbon quantum dots and graphene quantum dots are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49:6726–44.

    Article  Google Scholar 

  • Bellunato A, Arjmandi Tash H, Cesa Y, Schneider GF. Chemistry at the edge of graphene. Chem Phys Chem. 2016;17:785–801.

    Google Scholar 

  • Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015;347:1246501–1.

    Google Scholar 

  • Briscoe J, Marinovic A, Sevilla M, Dunn S, Titirici M. Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew Chem Int Ed. 2015;54:4463–8.

    Article  Google Scholar 

  • Cançado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011;11:3190–6.

    Article  Google Scholar 

  • Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc. 2007;129:11318–9.

    Article  Google Scholar 

  • Cao L, Yang S-T, Wang X, Luo PG, Liu JH, Sahu S, Liu Y, Sun Y-P. Competitive performance of carbon “quantum” dots in optical bioimaging. Theranostics. 2012;2(3):295–301.

    Article  Google Scholar 

  • Carboni D, Lasio B, Alzari V, Mariani A, Loche D, Casula MF, et al. Graphene-mediated surface enhanced Raman scattering in silica mesoporous nanocomposite films. Phys Chem Chem Phys. 2014;16:25809–18.

    Article  Google Scholar 

  • Carboni D, Lasio B, Loche D, Casula MF, Mariani A, Malfatti L, et al. Introducing Ti-GERS: Raman scattering enhancement in graphene-mesoporous titania films. J Phys Chem Lett. 2015;6:3149–54.

    Article  Google Scholar 

  • Chen H, Wang GD, Sun X, Todd T, Zhang F, Xie J, et al. Mesoporous silica as nanoreactors to prepare Gd-encapsulated carbon dots of controllable sizes and magnetic properties. Adv. Funct. Mater. 2016;26:3973–82.

    Google Scholar 

  • Chen H, Wang GD, Sun X, Todd T, Zhang F, Xie J, Shen B. Mesoporous silica as nanoreactors to prepare Gd-encapsulated carbon dots of controllable sizes and magnetic properties. Adv Funct Mater. 2016. doi:10.1002/adfm.201504177.

    Google Scholar 

  • Cheng C, Tan X, Lu D, Wang L, Sen T, Lei J, El-Toni AM, Zhang J, Zhang F, Zhao D. Carbon-dot-sensitized, nitrogen-doped TiO2 in mesoporous silica for water decontamination through nonhydrophobic enrichment–degradation mode. Chem Eur J. 2015;21:17944–50.

    Article  Google Scholar 

  • Choi D-H, Ryoo R. Template synthesis of ordered mesoporous organic polymeric materials using hydrophobic silylated KIT-6 mesoporous silica. J Mater Chem. 2010;20:5544.

    Article  Google Scholar 

  • Ciesielski A, Samorì P. Supramolecular approaches to graphene: from self-assembly to molecule-assisted liquid-phase exfoliation. Adv. Mater. Weinheim. 2016;28:6030–6051.

    Google Scholar 

  • Clark T. σ-Holes. WIREs Comput Mol Sci. 2012;3:13–20.

    Article  Google Scholar 

  • Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, et al. Hierarchically ordered macro–mesoporous TiO2–graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano. 2011;5:590–6.

    Article  Google Scholar 

  • Eda G, Lin Y-Y, Mattevi C, Yamaguchi H, Chen H-A, Chen I-S, Chen CW, Chhowalla M. Blue photoluminescence from chemically derived graphene oxide. Adv Mater. 2010;22:505–9.

    Article  Google Scholar 

  • Eigler S, Hirsch A. Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angew Chem Int Ed Engl. 2014;53:7720–38.

    Article  Google Scholar 

  • Eigler S, Enzelberger-Heim M, Grimm S, Hofmann P, Kroener W, Geworski A, et al. Wet chemical synthesis of graphene. Adv Mater. 2013;25:3583–7.

    Article  Google Scholar 

  • Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8:235–46.

    Article  Google Scholar 

  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91.

    Article  Google Scholar 

  • Geng W, Liu H, Yao X. Enhanced photocatalytic properties of titania–graphene nanocomposites: a density functional theory study. Phys Chem Chem Phys. 2013;15:6025.

    Article  Google Scholar 

  • Georgakilas V, Perman JA, Tucek J, Zboril R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015;115:4744–822.

    Article  Google Scholar 

  • Gokus T, Nair RR, Bonetti A, Böhmler M, Lombardo A, Novoselov KS, Geim AK, Ferrari AC, Hartschuh A. Making graphene luminescent by oxygen plasma treatment. ACS Nano. 2009;3:3963–8.

    Article  Google Scholar 

  • Innocenzi P, Malfatti L. Mesoporous thin films: properties and applications. Chem Soc Rev. 2013;42:4198–216.

    Article  Google Scholar 

  • Innocenzi P, Malfatti L, Lasio B, Pinna A, Loche D, Casula MF, et al. Sol–gel chemistry for graphene–silica nanocomposite films. New J Chem. 2014;38:3777.

    Article  Google Scholar 

  • Innocenzi P, Malfatti L, Carboni D. Graphene and carbon nanodots in mesoporous materials: an interactive platform for functional applications. Nanoscale. 2015;7:12759–72.

    Article  Google Scholar 

  • Inoue S, Uchihashi T, Yamamoto D, Ando T. Direct observation of surfactant aggregate behavior on a mica surface using high-speed atomic force microscopy. Chem Commun (Camb). 2011;47:4974–6.

    Article  Google Scholar 

  • Kelarakis A. From highly graphitic to amorphous carbon dots: a critical review. MRS Energy Sustain. 2014;1:e1–15.

    Article  Google Scholar 

  • Krysmann MJ, Kelarakis A, Dallas P, Giannelis EP. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J Am Chem Soc. 2012;134:747–50.

    Article  Google Scholar 

  • Lai C-W, Hsiao Y-H, Peng Y-K, Chou P-T. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J Mater Chem. 2012;22:14403–9.

    Article  Google Scholar 

  • Lamont RE, Ducker WA. Surface-induced transformations for surfactant aggregates. J Am Chem Soc. 1998;120:7602–7.

    Article  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–8.

    Article  Google Scholar 

  • Lee C-W, Roh KC, Kim K-B. A highly ordered cubic mesoporous silica/graphene nanocomposite. Nanoscale. 2013;5:9604.

    Article  Google Scholar 

  • Lei J, Yang L, Lu D, Yan X, Cheng C, Liu Y, Wang L, Zhang J. Carbon dot-incorporated PMO nanoparticles as versatile platforms for the design of ratiometric sensors, multichannel traceable drug delivery vehicles, and efficient photocatalysts. Adv Opt Mater. 2015;3:57–63.

    Article  Google Scholar 

  • Li H, He X, Liu Y, Yu H, Kang Z, Lee S-T. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater Res Bull. 2011;46:147–51.

    Article  Google Scholar 

  • Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J-J. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 2013;5:4015–39.

    Article  Google Scholar 

  • Liang YT, Vijayan BK, Gray KA, Hersam MC. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett. 2011;11:2865–70.

    Article  Google Scholar 

  • Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, et al. Can graphene be used as a substrate for Raman enhancement? Nano Lett. 2010;10:553–61.

    Article  Google Scholar 

  • Ling X, Moura LG, Pimenta MA, Zhang J. Charge-transfer mechanism in graphene-enhanced Raman scattering. J Phys Chem C. 2012;116:25112–8.

    Article  Google Scholar 

  • Ling X, Huang S, Deng S, Mao N, Kong J, Dresselhaus MS, et al. Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc Chem Res. 2015;48:1862–70.

    Article  Google Scholar 

  • Liu W, Ma C, Yang H, Zhang Y, Yan M, Ge S, Yu J, Song X. Electrochemiluminescence immunoassay using a paper electrode incorporating porous silver and modified with mesoporous silica nanoparticles functionalized with blue-luminescent carbon dots. Microchim Acta. 2014;181:1415–22.

    Article  Google Scholar 

  • Liu Y, Liu C-Y, Zhang Z-Y, Yang W-D, Nie S-D. Plasmon-enhanced photoluminescence of carbon dots–silica hybrid mesoporous spheres. J Mater Chem C. 2015;3:2881–5.

    Article  Google Scholar 

  • Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. Raman spectroscopy in graphene. Phys Rep. 2009;473:51–87; Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8:235–46.

    Google Scholar 

  • Malfatti L, Falcaro P, Pinna A, Lasio B, Casula MF, Loche D, et al. Exfoliated graphene into highly ordered mesoporous titania films: highly performing nanocomposites from integrated processing. ACS Appl Mater Interfaces. 2014;6:795–802.

    Article  Google Scholar 

  • Manne S, Gaub HE. Molecular organization of surfactants at solid-liquid interfaces. Science. 1995;270:1480–2.

    Article  Google Scholar 

  • Mazzier D, Favaro M, Agnoli S, Silvestrini S, Granozzi G, Maggini M, Moretto A. Synthesis of luminescent 3D microstructures formed by carbon quantum dots and their self-assembly properties. Chem Commun. 2014;50:6592–5.

    Article  Google Scholar 

  • Nie H, Li MJ, Li QS, Liang SJ, Tan YY, Sheng L, Shi W, Zhang SX-A. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater. 2014;26:3104–12.

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Bubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.

    Article  Google Scholar 

  • Nuvoli D, Valentini L, Alzari V, Scognamillo S, Bittolo Bon S, Piccinini M, et al. High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J Mater Chem. 2011;21:3428–31.

    Article  Google Scholar 

  • Nuvoli D, Alzari V, Sanna R, Scognamillo S, Piccinini M, Peponi L, et al. The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes. Nanoscale Res Lett. 2012;7:674–7.

    Article  Google Scholar 

  • Pandey S, Mewada A, Thakur M, Pillai S, Dharmatti R, Phadke C, Sharon M. Synthesis of mesoporous silica oxide/C-dot complex (meso-SiO2/C-dots) using pyrolysed rice husk and its application in bioimaging. RSC Adv. 2014;4:1174–9.

    Article  Google Scholar 

  • Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater. 2014;13:624–30.

    Article  Google Scholar 

  • Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. 2001;39:507–14.

    Article  Google Scholar 

  • Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater. 2009;21:5563–5.

    Article  Google Scholar 

  • Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK. Chaotic Dirac billiard in graphene quantum dots. Science. 2008;320:356–8.

    Article  Google Scholar 

  • Ray SC, Saha A, Jana NR. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C. 2009;113:18546–51.

    Article  Google Scholar 

  • Rozada R, Paredes JI, López MJ, Villar-Rodil S, Cabria I, Alonso JA, et al. From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration. Nanoscale. 2015;7:2374–90.

    Article  Google Scholar 

  • Sadhanala HK, Khateia J, Nanda KK. Facile hydrothermal synthesis of carbon nanoparticles and possible application as white light phosphors and catalysts for the reduction of nitrophenol. RSC Adv. 2014;4:11481–5.

    Article  Google Scholar 

  • Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl. 2014;53:4756–95.

    Article  Google Scholar 

  • Shang L, Bian T, Zhang B, Zhang D, Wu LZ, Tung CH, et al. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew Chem Int Ed Engl. 2014;53:250–4.

    Article  Google Scholar 

  • Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun. 2012;48:3686–99.

    Article  Google Scholar 

  • Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y. Quantum-sized carbon dots for bright and colourful photoluminescence. J Am Chem Soc. 2006;128:7756–7.

    Article  Google Scholar 

  • Suzuki K, Malfatti L, Carboni D, Loche D, Casula MF, Moretto A, Maggini M, Takahashi M, Innocenzi P. Energy transfer induced by carbon quantum dots in porous zinc oxide nanocomposite films. J Phys Chem C. 2015;119:2837–43.

    Article  Google Scholar 

  • Tang J, Kong B, Wu H, Xu M, Wang YC, Wang YL, Zhao DY, Zheng G. Carbon nanodots featuring efficient fret for real-time monitoring of drug delivery and two-photon imaging. Adv Mater. 2013;25:6569–74.

    Article  Google Scholar 

  • Tang Y, Zhang Y, Deng J, Qi D, Leow WR, Wei J, et al. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew Chem Int Ed Engl. 2014;53:13488–92.

    Article  Google Scholar 

  • Tang L, Wang Y, Li J. The graphene/nucleic acid nanobiointerface. Chem Soc Rev. 2015;44:6954–80.

    Article  Google Scholar 

  • Wang Z-M, Wang W, Coombs N, Soheilnia N, Ozin GA. Graphene oxide–periodic mesoporous silica sandwich nanocomposites with vertically oriented channels. ACS Nano. 2010;4:7437–50.

    Article  Google Scholar 

  • Wang F, Xie Z, Zhang H, Liu C-Y, Zha Y-G. Highly luminescent organosilane-functionalized carbon dots. Adv Funct Mater. 2011a;21:1027–31.

    Article  Google Scholar 

  • Wang X, Qu K, Xu B, Rena J, Qu X. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem. 2011b;21:2445–50.

    Article  Google Scholar 

  • Wang L, Cheng C, Tapas S, Lei J, Matsuoka M, Zhang J, Zhang F. Carbon dots modified mesoporous organosilica as an adsorbent for the removal of 2,4 dichlorophenol and heavy metal ions. J Mater Chem A. 2015;3:13357–64.

    Article  Google Scholar 

  • Wang X, Sun G, Li N, Chen P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 2016;45:2239–62.

    Google Scholar 

  • Wu ZS, Zhou G, Yin LC, REN W, Li F, Cheng HM. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 2012;1:107–31.

    Article  Google Scholar 

  • Xie Z, Wang F, Liu C-Y. Organic–inorganic hybrid functional carbon dot gel glasses. Adv Mater. 2012;24:1716–21.

    Article  Google Scholar 

  • Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126:12736–7.

    Article  Google Scholar 

  • Xu W, Ling X, Xiao J, Dresselhaus MS, Kong J, Xu H, et al. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc Natl Acad Sci U S A. 2012;109:9281–6.

    Article  Google Scholar 

  • Yang H, Kuperman A, Coombs N, Mamiche-Afara S, Ozin GA. Synthesis of oriented films of mesoporous silica on mica. Nature. 1996;379:703–5.

    Article  Google Scholar 

  • Yang S, Cao L, Luo P, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun Y. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131:11308–9.

    Article  Google Scholar 

  • Yang S, Feng X, Wang L, Tang K, Maier J, Müllen K. Graphene-based nanosheets with a sandwich structure. Angew Chem Int Ed Engl. 2010;122:4905–9.

    Article  Google Scholar 

  • Yang S, Feng X, Müllen K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv Mater. 2011;23:3575–9.

    Article  Google Scholar 

  • Yang S, Yue W, Zhu J, Ren Y, Yang X. Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv Funct Mater. 2013;23:3570–6.

    Article  Google Scholar 

  • Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A. 2015;3:11700–15.

    Article  Google Scholar 

  • Yongqiang D, Hongchang P, Shuyan R, Congqiang C, Yuwu C, Ting Y. Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots. Carbon. 2013;64:245–51.

    Article  Google Scholar 

  • Zai J, Qian X. Three dimensional metal oxides–graphene composites and their applications in lithium ion batteries. RSC Adv. 2015;5:8814–34.

    Article  Google Scholar 

  • Zhang Z, Hao J, Zhang J, Zhang B, Tang J. Protein as the source for synthesizing fluorescent carbon dots by a one-pot hydrothermal route. RSC Adv. 2012;2:8599–601.

    Article  Google Scholar 

  • Zheng L, Chi Y, Dong Y, Lin J, Wang B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc. 2009;131:4564–5.

    Article  Google Scholar 

  • Zhou JG, Booker C, Li R, Zhou X, Sham T-K, Sun X, Ding Z. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc. 2007;129:744–5.

    Article  Google Scholar 

  • Zhou L, Li Z, Liu Z, Ren J, Qu X. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging. Langmuir. 2013;29:6396–403.

    Article  Google Scholar 

  • Zhu S, Tang S, Zhang J, Yang B. Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem Commun. 2012;48:4527–39.

    Article  Google Scholar 

  • Zhu S, Shao J, Song Y, Zhao X, Du J, Wang L, Wang H, Zhang K, Zhang J, Yang B. Investigating the surface state of graphene quantum dots. Nanoscale. 2015a;7:7927–33.

    Article  Google Scholar 

  • Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015b;8:355–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Malfatti , Davide Carboni or Plinio Innocenzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Malfatti, L., Carboni, D., Innocenzi, P. (2016). Graphene and Carbon Dots in Mesoporous Materials. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_150-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_150-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics