Skip to main content

Macroporous Morphology Control by Phase Separation

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Polymerization-induced phase separation has been utilized to control the macroporous morphology of sol-gel derived materials in a variety of compositions including oxides and phosphates. Monolithic gels with well-defined co-continuous macropores and solid skeletons can be prepared from precursors such as metal alkoxides, organically modified organosilanes, and salts of various metals. The volume and size of macropores can be precisely controlled with sharp distributions by the starting compositions and reaction conditions. Additional tailoring of the micro-mesopores within micrometer-sized gel skeletons is possible either by supramolecular templating or appropriate post-gelation treatments represented by a solvothermal aging. The hierarchically porous monoliths thus obtained can be applied to various liquid-solid contact devices such as separation media for liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agrawal DK, Huang CY, McKinstry HA. NZP: a new family of low-thermal expansion materials. Int J Thermophys. 1991;12:697–710.

    Article  Google Scholar 

  • Alberti G, Casciola M, Costantino U, Vivani R. Layered and pillared metal(IV) phosphates and phosphonates. Adv Mater. 1996;8:291–303.

    Article  Google Scholar 

  • Amatani T, Nakanishi K, Hirao K. Monolithic periodic mesoporous silica with well-defined macropores. Chem Mater. 2005;17:2114–9.

    Article  Google Scholar 

  • Anantharamulu N, Rao KK, Rambabu G, Kumar BV, Radha V, Vithal M. A wide-ranging review on Nasicon type materials. J Mater Sci. 2011;46:2821–37.

    Article  Google Scholar 

  • Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH. Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mater. 2005;17:395–401.

    Article  Google Scholar 

  • Cao G, Hong HG, Mallouk TE. Layered metal phosphates and phosphonates: from crystals to monolayers. Acc Chem Res. 1992;25:420–7.

    Article  Google Scholar 

  • Clearfield A. Role of ion exchange in solid-state chemistry. Chem Rev. 1988;88:125–48.

    Article  Google Scholar 

  • Colomban P. Proton conductors: solids, membranes and gels-materials and devices. Cambridge: Cambridge University Press; 1992.

    Book  Google Scholar 

  • Costamagna P, Yang C, Bocarsly AB, Srinivasan S. Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C. Electrochim Acta. 2002;47:1023–33.

    Article  Google Scholar 

  • De Gennes PG. Scaling concepts in polymer physics. Ithaca: Cornell University Press; 1979.

    Google Scholar 

  • Díaz A, Saxena V, González J, David A, Casañas B, Carpenter C, Batteas JD, Colón JL, Clearfield A, Hussain MD. Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy. Chem Commun. 2012;48:1754–6.

    Article  Google Scholar 

  • Doherty CM, Caruso RA, Smarsly BM, Adelhelm P, Drummond CJ. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem Mater. 2009;21:5300–6.

    Article  Google Scholar 

  • Eghbali H, Sandra K, Detobel F, Lynen F, Nakanishi K, Sandra P, Desmet G. Performance evaluation of long monolithic silica capillary columns in gradient liquid chromatography using peptide mixtures. J Chromatogr A. 2011;1218:3360–6.

    Article  Google Scholar 

  • Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1971.

    Google Scholar 

  • Fujita K, Konishi J, Nakanishi K, Hirao K. Strong light scattering in macroporous TiO2 monoliths induced by phase separation. Appl Phys Lett. 2004;85:5595–7.

    Article  Google Scholar 

  • Fujita K, Tokudome Y, Nakanishi K, Miura K, Hirao K. Cr3+-doped macroporous Al2O3 monoliths prepared by the metal-salt-derived sol-gel method. J Non Cryst Solids. 2008;354:659–64.

    Article  Google Scholar 

  • Fukumoto S, Nakanishi K, Kanamori K. Direct preparation and conversion of copper hydroxide-based monolithic xerogels with hierarchical pores. New J Chem. 2015;39:6771–7.

    Article  Google Scholar 

  • Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL. Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater. 2001a;13:999–1007.

    Article  Google Scholar 

  • Gash AE, Tillotson TM, Satcher JH, Hrubesh LW, Simpson RL. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non Cryst Solids. 2001b;285:22–8.

    Article  Google Scholar 

  • Ginestra AL, Patrono P, Berardelli ML, Galli P, Ferragina C, Massucci MA. Catalytic activity of zirconium phosphate and some derived phases in the dehydration of alcohols and isomerization of butenes. J Catal. 1987;103:346–56.

    Article  Google Scholar 

  • Guo XZ, Nakanishi K, Kanamori K, Zhu Y, Yang H. Preparation of macroporous cordierite monoliths via the sol-gel process accompanied by phase separation. J Eur Ceram Soc. 2014a;34:817–23.

    Article  Google Scholar 

  • Guo XZ, Cai XB, Song J, Zhu Y, Nakanishi K, Kanamori K, Yang H. Facile synthesis of monolithic mayenite with well-defined macropores via an epoxide-mediated sol-gel process accompanied by phase separation. New J Chem. 2014b;38:5832–9.

    Article  Google Scholar 

  • Hasegawa G. Studies on porous monolithic materials prepared via sol-gel process. Springer thesis. Tokyo/Heidelberg/New York/Dordrecht/London: Springer; 2013.

    Google Scholar 

  • Hasegawa G, Kanamori K, Nakanishi K, Hanada T. Facile preparation of transparent monolithic titania gels utilizing a chelating ligand and mineral salts. J Sol-Gel Sci Technol. 2010a;53:59–66.

    Article  Google Scholar 

  • Hasegawa G, Kanamori K, Nakanishi K, Hanada T. Facile preparation of hierarchically porous TiO2 monoliths. J Am Ceram Soc. 2010b;93:3110–5.

    Article  Google Scholar 

  • Hashimoto T, Itakura M, Hasegawa H. Late stage spinodal decomposition of a binary polymer mixture. I. Critical test of dynamical scaling on scattering function. J Chem Phys. 1986;85:6118–28.

    Article  Google Scholar 

  • Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem Int Ed. 2013a;52:1986–9.

    Article  Google Scholar 

  • Hayase G, Kanamori K, Hasegawa G, Maeno A, Kaji H, Nakanishi K. A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility. Angew Chem Int Ed. 2013b;52:10788–91.

    Article  Google Scholar 

  • Hogarth WHJ, da Costa JCD, Drennan J, Lu GQ. Proton conductivity of mesoporous sol-gel zirconium phosphates for fuel cell applications. J Mater Chem. 2005;15:754–8.

    Article  Google Scholar 

  • Hong HY, Goodenough JB. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater Res Bull. 1976;11:173–82.

    Article  Google Scholar 

  • Itagaki A, Nakanishi K, Hirao K. Phase separation in sol-gel system containing mixture of 3- and 4-functional alkoxysilanes. J Sol-Gel Sci Technol. 2003;26:153–6.

    Article  Google Scholar 

  • Iwasaki M, Miwa S, Ikegami T, Tomita M, Tanaka N, Ishihama Y. One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. Anal Chem. 2010;82:2616–20.

    Article  Google Scholar 

  • Kaji H, Nakanishi K, Soga N. Polymerization-induced phase separation in silica sol-gel systems containing formamide. J Sol-Gel Sci Technol. 1993;1:35–46.

    Article  Google Scholar 

  • Kajihara K, Kuwatani S, Maehana R, Kanamura K. Macroscopic phase separation in a tetraethoxysilane–water binary sol-gel system. Bull Chem Soc Jpn. 2009a;82:1470–6.

    Article  Google Scholar 

  • Kajihara K, Hirano M, Hosono H. Sol-gel synthesis of monolithic silica gels and glasses from phase-separating tetraethoxysilane–water binary system. Chem Commun. 2009b; 2580–2.

    Google Scholar 

  • Kanamori K, Nakanishi K. Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chem Soc Rev. 2011;40:754–70.

    Article  Google Scholar 

  • Kanamori K, Yonezawa H, Nakanishi K, Hirao K, Jinnai H. Structural formation of hybrid siloxane-based polymer monolith in confined spaces. J Sep Sci. 2004;27:874–86.

    Article  Google Scholar 

  • Kanamori K, Nakanishi K, Hanada T. Thick silica gel coatings on methylsilsesquioxane monoliths using anisotropic phase separation. J Sep Sci. 2006;29:2463–70.

    Article  Google Scholar 

  • Kanamori K, Kodera Y, Hayase G, Nakanishi K, Hanada T. Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol-gel system. J Colloid Interface Sci. 2011;357:336–44.

    Article  Google Scholar 

  • Kido Y, Nakanishi K, Miyasaka A, Kanamori K. Synthesis of monolithic hierarchically porous iron-based xerogels from iron(III) salts via an epoxide-mediated sol-gel process. Chem Mater. 2012;24:2071–7.

    Article  Google Scholar 

  • Kido Y, Nakanishi K, Okumura N, Kanamori K. Hierarchically porous nickel/carbon composite monoliths prepared by sol-gel method from an ionic precursor. Microporous Mesoporous Mater. 2013;176:64–70.

    Article  Google Scholar 

  • Kido Y, Hasegawa G, Kanamori K, Nakanishi K. Porous chromium-based ceramic monoliths: oxides (Cr2O3), nitrides (CrN), and carbides (Cr3C2). J Mater Chem A. 2014;2:745–52.

    Article  Google Scholar 

  • Kobayashi Y, Amatani T, Nakanishi K, Hirao K, Kodaira T. Spontaneous formation of hierarchical macro-mesoporous ethane-silica monolith. Chem Mater. 2004;16:3652–5658.

    Article  Google Scholar 

  • Komarneni S, Roy R. Use of γ-zirconium phosphate for Cs removal from radioactive waste. Nature. 1982;299:707–8.

    Article  Google Scholar 

  • Konishi J, Fujita K, Nakanishi K, Hirao K. Monolithic TiO2 with controlled multiscale porosity via a template-free sol-gel process accompanied by phase separation. Chem Mater. 2006a;18:6069–74.

    Article  Google Scholar 

  • Konishi J, Fujita K, Nakanishi K, Hirao K. Phase-separation-induced titania monoliths with well-defined macropores and mesostructured framework from colloid-derived sol-gel systems. Chem Mater. 2006b;18:864–6.

    Article  Google Scholar 

  • Konishi J, Fujita K, Oiwa S, Nakanishi K, Hirao K. Crystalline ZrO2 monoliths with well-defined macropores and mesostructured skeletons prepared by combining the alkoxy-derived sol-gel process accompanied by phase separation and the solvothermal process. Chem Mater. 2008;20:2165–73.

    Article  Google Scholar 

  • Konishi J, Fujita K, Nakanishi K, Hirao K, Morisato K, Miyazaki S, Ohira M. Sol-gel synthesis of macro-mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds. J Chromatogr A. 2009;1216:7375–8.

    Article  Google Scholar 

  • Kuwatani S, Maehana R, Kajihara K, Kanamura K. Amine-buffered phase separating tetraethoxysilane–water binary mixture: a simple precursor of sol-gel derived monolithic silica gels and glasses. Chem Lett. 2010;39:712–3.

    Article  Google Scholar 

  • Lin R, Ding Y. A review on the synthesis and applications of mesostructured transition metal phosphates. Materials. 2013;6:217–43.

    Article  Google Scholar 

  • Livage J, Henry M, Sanchez C. Sol-gel chemistry of transition metal oxides. Prog Solid State Chem. 1988;18:259–341.

    Article  Google Scholar 

  • Ma Y, Tong W, Zhou H, Suib SL. A review of zeolite-like porous materials. Microporous Mesoporous Mater. 2000;37:243–52.

    Article  Google Scholar 

  • Ma Y, Chassy AW, Miyazaki S, Motokawa M, Morisato K, Uzu H, Ohira M, Furuno M, Nakanishi K, Minakuchi H, Mriziq K, Farkas T, Fiehn O, Tanaka N. Efficiency of short, small-diameter columns for reversed-phase liquid chromatography under practical operating conditions. J Chromatogr A. 2015;1383:47–57.

    Article  Google Scholar 

  • Meng X, Fujita K, Murai S, Konishi J, Mano M, Tanaka K. Random lasing in ballistic and diffusive regimes for macroporous silica-based systems with tunable scattering strength. Opt Express. 2010;18:12153–60.

    Article  Google Scholar 

  • Miyamoto K, Hara T, Kobayashi H, Morisaka H, Tokuda D, Horie K, Koduki K, Makino S, Núñez O, Yang C, Kawabe T, Ikegami T, Takubo H, Ishihama Y, Tanaka N. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Anal Chem. 2008;80:8741–50.

    Article  Google Scholar 

  • Miyamoto R, Ando Y, Kurusu C, Bai H-Z, Nakanishi K, Ippommatsu M. Fabrication of large-sized silica monolith exceeding 1000 mL with high structural homogeneity. J Sep Sci. 2013;36:1890–6.

    Article  Google Scholar 

  • Miyazaki S, Miah MY, Morisato K, Shintani Y, Kuroha T, Nakanishi K. Titania-coated monolithic silica as separation medium for high performance liquid chromatography of phosphorus-containing compounds. J Sep Sci. 2005;28:39–44.

    Article  Google Scholar 

  • Murai S, Fujita K, Konishi J, Hirao K, Tanaka K. Random lasing from localized modes in strongly-scattering systems consisting of macroporous titania monoliths infiltrated with dye solution. Appl Phys Lett. 2010;97:031118-(1-3).

    Article  Google Scholar 

  • Murai S, Fujita K, Iwata K, Tanaka K. Scattering-based hole burning in Y3Al5O12:Ce3+ monoliths with hierarchical porous structures prepared via the sol-gel route. J Phys Chem C. 2011;115:7676–81.

    Article  Google Scholar 

  • Nakanishi K. Pore structure control of silica gels based on phase separation. J Porous Mater. 1997;4(2):67–112.

    Article  Google Scholar 

  • Nakanishi K. Macroporous silica and alkylene-bridged polysilsesquioxane gels with templated nanopores. Mater Res Soc Symp Proc. 2004;788:L7.5.1–10.

    Google Scholar 

  • Nakanishi K, Kanamori K. Organic–inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J Mater Chem. 2005;15:3776–86.

    Article  Google Scholar 

  • Nakanishi K, Soga N. Phase separation in gelling silica – organic polymer solution: systems containing poly(sodium styrenesulfonate). J Am Ceram Soc. 1991;74:2518–30.

    Article  Google Scholar 

  • Nakanishi K, Soga N. Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formation behavior and effect of solvent composition. J Non-Cryst Solids. 1992;139:1–13.

    Article  Google Scholar 

  • Nakanishi K, Komura H, Takahashi R, Soga N. Phase separation in silica sol-gel system containing poly(ethylene oxide). I. Phase relation and gel morphology. Bull Chem Soc Jpn. 1994;67:1327–35.

    Article  Google Scholar 

  • Nakanishi K, Nagakane T, Soga N. Designing double pore structure in alkoxy-derived silica incorporated with nonionic surfactant. J Porous Mater. 1998;5:103–10.

    Article  Google Scholar 

  • Nakanishi K, Takahashi R, Nagakane T, Kitayama K, Koheiya N, Shikata H, Soga N. Formation of hierarchical pore structure in silica gel. J Sol-Gel Sci Technol. 2000;17:191–210.

    Article  Google Scholar 

  • Nakanishi K, Yamato T, Hirao K. Phase separation in alkylene-bridged polysilsesquioxane sol-gel systems. Mater Res Soc Symp Proc. 2002;726:Q9.7.1–6.

    Google Scholar 

  • Nakanishi K, Sato Y, Ruyat Y, Hirao K. Supramolecular templating of mesopores in phase-separating silica sol-gels incorporated with cationic surfactant. J Sol-Gel Sci Technol. 2003;26:567–70.

    Article  Google Scholar 

  • Nakanishi K, Amatani T, Yano S, Kodaira T. Multiscale templating of siloxane gels via polymerization-induced phase separation. Chem Mater. 2008;20:1108–15.

    Article  Google Scholar 

  • Numata M, Takahashi R, Yamada I, Nakanishi K, Sato S. Sol-gel preparation of Ni/TiO2 catalysts with bimodal pore structures. Appl Catal A-Gen. 2010;383:66–72.

    Article  Google Scholar 

  • Reboul J, Furukawa S, Horike N, Tsotsalas M, Hirai K, Uehara H, Kondo M, Louvain N, Sakata O, Kitagawa S. Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nat Mater. 2012;11:717–23.

    Article  Google Scholar 

  • Roy R, Agrawal DK, Mckinstry HA. Very low thermal expansion coefficient materials. Annu Rev Mater Sci. 1989;19:59–81.

    Article  Google Scholar 

  • Sato Y, Nakanishi K, Hirao K, Jinnai H, Shibayama M, Melnichenko YB, Wignall GD. Formation of ordered macropores and templated nanopores in silica sol-gel system incorporated with EO-PO-EO triblock copolymer. Colloids Surf A Physicochem Eng Asp. 2001;187(188):117–22.

    Article  Google Scholar 

  • Sumida K, Moitra N, Reboul J, Fukumoto S, Nakanishi K, Kanamori K, Furukawa S, Kitagawa S. Mesoscopic superstructures of flexible porous coordination polymers synthesized via coordination replication. Chem Sci. 2015;6:5938–46.

    Article  Google Scholar 

  • Takahashi R, Sato S, Sodesawa T, Oguma K, Matsutani K, Mikami N. Silica gel with continuous macropores prepared from water glass in the presence of poly(acrylic acid). J Non-Cryst Solids. 2005;351:331–9.

    Article  Google Scholar 

  • Tarutani N, Tokudome Y, Fukui M, Nakanishi K, Takahashi M. Fabrication of hierarchically porous monolithic layered double hydroxide composites with tunable microcages for effective oxyanion adsorption. RSC Adv. 2015;5:57187–92.

    Article  Google Scholar 

  • Tian B, Liu X, Tu B, Yu C, Fan J, Wang L, Xie S, Stucky GD, Zhao D. Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs. Nat Mater. 2003;2:159–63.

    Article  Google Scholar 

  • Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K. Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation. Chem Mater. 2007a;19:3393–8.

    Article  Google Scholar 

  • Tokudome Y, Fujita K, Nakanishi K, Kanamori K, Miura K, Hirao K, Hanada T. Sol-gel synthesis of macroporous YAG from ionic precursors via phase separation route. J Ceram Soc Jpn. 2007b;115:925–8.

    Article  Google Scholar 

  • Tokudome Y, Nakanishi K, Kanamori K, Fujita K, Akamatsu H, Hanada T. Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths. J Colloid Interface Sci. 2009a;338:506–13.

    Article  Google Scholar 

  • Tokudome Y, Nakanishi K, Hanada T. Effect of La addition on thermal microstructural evolution of macroporous alumina monolith prepared from ionic precursors. J Ceram Soc Jpn. 2009b;117:351–5.

    Article  Google Scholar 

  • Tokudome Y, Nakanishi K, Kanamori K, Hanada T. In situ SAXS observation on metal-salt-derived alumina sol-gel system accompanied by phase separation. J Colloid Interface Sci. 2010a;352:303–8.

    Article  Google Scholar 

  • Tokudome Y, Nakanishi K, Kosaka S, Kariya A, Kaji H, Hanada T. Synthesis of high-silica and low-silica zeolite monoliths with trimodal pores. Microporous Mesoporous Mater. 2010b;132:538–42.

    Article  Google Scholar 

  • Tokudome Y, Miyasaka A, Nakanishi K, Hanada T. Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol-gel reaction from ionic precursors. J Sol-Gel Sci Technol. 2011;57:269–78.

    Article  Google Scholar 

  • Tokudome Y, Tarutani N, Nakanishi K, Takahashi M. Layered double hydroxide (LDH)-based monolith with interconnected hierarchical channels: enhanced sorption affinity for anionic species. J Mater Chem A. 2013;1:7702–8.

    Article  Google Scholar 

  • Unger KK, Tanaka N, Machtejevas E, editors. Monolithic silicas in separation science: concepts, syntheses, characterization, modeling and applications. Weinheim: Wiley-VCH; 2011.

    Google Scholar 

  • Woo K, Lee HJ, Ahn JP, Park YS. Sol-gel mediated synthesis of Fe2O3 nanorods. Adv Mater. 2003;15:1761–4.

    Article  Google Scholar 

  • Yachi A, Takahashi R, Sato S, Sodesawa T, Azuma T. Silica with bimodal pores for solid catalysts prepared from water glass. J Sol-Gel Sci Technol. 2004;31:373–6.

    Article  Google Scholar 

  • Zhang F, Wong SS. Ambient large-scale template-mediated synthesis of high-aspect ratio single-crystalline, chemically doped rare-earth phosphate nanowires for bioimaging. ACS Nano. 2010;4:99–112.

    Article  Google Scholar 

  • Zhu Y, Morimoto Y, Shimizu T, Morisato K, Takeda K, Kanamori K, Nakanishi K. Synthesis of hierarchically porous polymethylsilsesquioxane monoliths with controlled mesopores for HPLC separation. J Ceram Soc Jpn. 2015a;123:770–8.

    Article  Google Scholar 

  • Zhu Y, Shimizu T, Kitashima T, Morisato K, Moitra N, Brun N, Kanamori K, Takeda K, Tafu M, Nakanishi K. Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption. New J Chem. 2015b;39:2444–50.

    Article  Google Scholar 

  • Zhu Y, Kanamori K, Moitra N, Kadono K, Ohi S, Shimobayashi N, Nakanishi K. Metal zirconium phosphate macroporous monoliths: versatile synthesis, thermal expansion and mechanical properties. Microporous Mesoporous Mater. 2016a;225:122–7.

    Article  Google Scholar 

  • Zhu Y, Yoneda K, Kanamori K, Takeda K, Kiyomura T, Kurata H, Nakanishi K. Hierarchically porous titanium phosphate monoliths and their crystallization behavior in ethylene glycol. New J Chem. 2016b;40:4153–9.

    Article  Google Scholar 

Download references

Acknowledgments

Contributions of Prof. Koji Fujita, Dr. Shunsuke Murai, Dr. Kazuyoshi Kanamori, Dr. Yang Zhu, Kyoto University, Prof. Yasuaki Tokudome, Osaka Prefecture University, and Dr. George Hasegawa, Osaka University, are warmly acknowledged. All the research would have been impossible without full support of Emeritus Profs. Naohiro Soga and Teiichi Hanada, Kyoto University. Hearty thanks also go to all the students, postdocs, and researchers from companies for their indispensable inputs throughout the research. Continuous financial supports from Kakenhi, MEXT, Japan and ALCA project, JST, Japan are especially acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Nakanishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Nakanishi, K. (2016). Macroporous Morphology Control by Phase Separation. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics