Skip to main content

Sol-Gel Processed Photocatalytic Titania Films

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Industrialization of products with photocatalytic coatings began around the middle of the 1990s, mainly focusing on self-cleaning or sterilization coatings prepared with titanium alkoxide or TiO2 nanoparticles. The concept is that the transparent TiO2 surface is endowed with photocatalytic oxidation power, which decomposes organic stains and bacteria. This chapter describes the materials and processes that make up the key technologies involved in photocatalytic coatings. The basic principles of photocatalytic self-cleaning coatings are explained in detail, including descriptions of photocatalytic decomposition of surface stains or bacteria and photoinduced hydrophilic conversion. In addition, we review the preparation of nanostructured TiO2 materials processed by the sol–gel method, coatings prepared by sintering nanoparticles, titania sol-gel coatings and composites, and dopant additions. The main applications of these photocatalytic products are photocatalytic paints, molded products, membrane and film materials, and glass and mirror products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Salim N, Bagshaw SA, Bittar A, Kemmitt T, McQuillan AJ, Mills AM, Ryan MJ. Characterisation and activity of sol–gel-prepared TiO2 photocatalysts modified with Ca, Sr, or Ba ion additives. J Mater Chem. 2000;10:2358–63.

    Article  Google Scholar 

  • Anderson C, Bard AJ. An-improved photocatalyst of TiO2/SiO2 prepared by a sol–gel synthesis. J Phys Chem. 1995;99:9882–5.

    Article  Google Scholar 

  • Anderson C, Bard AJ. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J Phys Chem B. 1997;101:2611–6.

    Article  Google Scholar 

  • Ao CH, Lee SC, Yu JC. Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2. J Photochem Photobiol A. 2003;156:171–7.

    Article  Google Scholar 

  • Arana J, Dona-Rodriguez JM, Tello Rendon E, Garriga i Cabo C, Gonzalez-Diaz O, Herrera-Melian JA, Perez-Pena J, Colon G, Navio JA. TiO2 activation by using activated carbon as a support. Part II. Photoreactivity and FTIR study. Appl Catal B. 2003a;44:153–60.

    Article  Google Scholar 

  • Arana J, Dona-Rodriguez JM, Tello Rendon E, Garriga i Cabo C, Gonzalez-Diaz O, Herrera-Melian JA, Perez-Pena J, Colon G, Navio JA. TiO2 activation by using activated carbon as a support. Part I. Surface characterization and decantiability study. Appl Catal B. 2003b;44:161–72.

    Article  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293:269–71.

    Article  Google Scholar 

  • Bach H, Schroeder H. Kristallstruktur und optische eigenschaften von dünnen organogenen titanoxyd-schichten auf glasunterlagen. Thin Solid Films. 1967;1:255–76.

    Article  Google Scholar 

  • Bedja I, Kamat PV. Capped semiconductor colloids—synthesis and photoelectrochemical behavior of TiO2–capped SnO2 nanocrystallites. J Phys Chem. 1995;99:9182–8.

    Article  Google Scholar 

  • Bessekhouad Y, Robert D, Weber JV. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J Photochem Photobiol A. 2003;157:47–53.

    Article  Google Scholar 

  • Borgarello E, Kiwi J, Gratzel M, Pelizzetti E, Visca M. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J Am Chem Soc. 1982;104:2996–3002.

    Article  Google Scholar 

  • Cao Y, Zhang X, Yang W, Du H, Bai Y, Li T, Yao J. A bicomponent TiO2/SnO2 particulate film for photocatalysis. Chem Mater. 2000;12:3445–8.

    Article  Google Scholar 

  • Castaneda L, Alonso JC, Ortiz A, Andrade E, Saniger JM, Banuelos JG. Spray pyrolysis deposition and characterization of titanium oxide thin films. Mater Chem Phys. 2002;77:938–44.

    Article  Google Scholar 

  • Cheng P, Zheng M, Jin Y, Huang Q, Gu M. Preparation and characterization of silica doped titania photocatalyst through sol–gel method. Mater Lett. 2003;57:2989–94.

    Article  Google Scholar 

  • Colon G, Hidalgo MC, Navio JA. A novel preparation of high surface area TiO2 nanoparticles from alkoxide precursor and using active carbon as additive. Catal Today. 2002;76:91–101.

    Article  Google Scholar 

  • da Silva CG, Faria JL. Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J Photochem Photobiol A. 2003;155:133–43.

    Article  Google Scholar 

  • Daniel LS, Nagai H, Aoyama S, Mochizuki C, Hara H, Baba N, Sato M. Percolation threshold for electrical resistivity of Ag nanoparticle/titania composite thin films fabricated using molecular precursor method. J Mater Sci. 2012;47:3890–9.

    Article  Google Scholar 

  • Daniel LS, Nagai H, Sato M. Absorption spectra and photocurrent densities of Ag nanoparticle/TiO2 composite thin films with various amounts of Ag. J Mater Sci. 2013a;48:7162–70.

    Google Scholar 

  • Daniel LS, Nagai H, Yoshida N, Sato M. Photocatalytic activity of vis-responsive Ag-nanoparticles/TiO2 composite thin films fabricated by molecular precursor method (MPM). Catal. 2013b;3/3:625–45.

    Google Scholar 

  • Di Paola A, Palmisano L, Venezia AM, Augugliaro V. Coupled semiconductor systems for photocatalysis. Preparation and characterization of polycrystalline mixed WO3/WS2 powders. J Phys Chem B. 1999;103:8236–44.

    Article  Google Scholar 

  • Do YR, Lee W, Dwight K, Wold A. The effect of WO3 on the photocatalytic activity of TiO2. J Solid State Chem. 1994;108:198–201.

    Article  Google Scholar 

  • Frank SN, Bard AJ. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J Phys Chem. 1977;81:1484–8.

    Article  Google Scholar 

  • Fujishima A, Honda K. Electronchemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–8.

    Article  Google Scholar 

  • Fujishima A, Hashimoto K, Watanabe T. TiO2 photocatalysis fundamentals and applications. Tokyo: BKC; 1999.

    Google Scholar 

  • Gomez R, Lopez T, Orti-Islas E, Navarrete J, Sanchez E, Tzompanztzi F, Bokhimi X. Effect of sulfation on the photoactivity of TiO2 sol–gel derived catalysts. J Mol Catal A. 2003;192:217–26.

    Article  Google Scholar 

  • Goutailler G, Guillard C, Daniele S, Hubert-Pfalzgraf LG. Low temperature and aqueous sol–gel deposite of photocatalytic active nanoparticulate TiO2. J Mater Chem. 2003;13:342–6.

    Article  Google Scholar 

  • Hattori A, Tada H. High photocatalytic activity of F-doped TiO2 film on glass. J Sol-Gel Sci Technol. 2001;22:47–52.

    Article  Google Scholar 

  • Hattori A, Tokihisa Y, Tada H, Ito S. Acceleration of oxidation and retardation of reductions in photocatalysis of a TiO2/SnO2 bilayer-type catalyst. J Electrochem Soc. 2000;147:2279–83.

    Article  Google Scholar 

  • Hattori A, Tokihisa Y, Tada H, Tohge N, Ito S, Hongo K, Shiratsuchi R, Nogami G. Patterning effect of a sol–gel TiO2 overlayer on the photocatalytic activity of a TiO2/SnO2 bilayer-type photocatalyst. J Sol–Gel Sci Technol. 2001;22:53–61.

    Article  Google Scholar 

  • Heller A. Chemistry and applications of photocatalytic oxidations of thin organic films. Acc Chem Res. 1995;28:503–8.

    Article  Google Scholar 

  • Henderson MA. Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir. 1996;12:5093–8.

    Article  Google Scholar 

  • Hidaka H, Zhao J, Pelizzetti E, Serpone N. Photodegradation of surfactants 8. Comparison of photocatalytic process between anionic sodium dodecylbenzenesulfonate and cationic benzyldodecyldimethylammonium chloride on the TiO2 surface. J Phys Chem. 1992;96:2226–30.

    Article  Google Scholar 

  • Hoyer P. Formation of a titanium dioxide nanotube array. Langmuir. 1996;12:1411–3.

    Article  Google Scholar 

  • Huang W, Tang X, Wang Y, Koltypin Y, Gedanken A. Selective synthesis of anatase and rutile via ultrasound irradiation. Chem Commun. 2000;1415–6.

    Google Scholar 

  • Hugenschmidt MB, Gamble L, Campbell CT. The interaction of H2O2 (1 1 0) surface. Surf Sci. 1994;302:329–40.

    Article  Google Scholar 

  • Ichiura H, Kitaoka T, Tanaka H. Photocatalytic oxidation of NO x using composite sheets containing TiO2 and a metal compound. Chemosphere. 2003;51:855–60.

    Article  Google Scholar 

  • Ihara T, Ando M, Koike H, Sugihara S. Photocatalysis. 2001;5:19–22 (written in Japanese).

    Google Scholar 

  • Ikeda K, Sakai H, Baba R, Hashimoto K, Fujishima A. Photocatalytic reactions involving radical chain reactions using microelectrode. J Phys Chem B. 1997;101:2617–20.

    Article  Google Scholar 

  • Imai H, Takai Y, Shimizu K, Matsuda M, Hirashima H. Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J Mater Chem. 1999;9:2971–2.

    Article  Google Scholar 

  • Inoue H, Matsuyama T, Liu B, Sakata T, Mori H, Yoneyama H. Photocatalytic activities for carbon dioxide reduction of TiO2 microcrystals prepared in SiO2 matrics using a sol–gel method. Chem Lett. 1994;23:653–6.

    Article  Google Scholar 

  • Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2−x N x powders. J Phys Chem B. 2003;107:5483–6 [They prepared TiO2–x N x powders by annealing anatase TiO2 powder under NH3 flow].

    Article  Google Scholar 

  • Isago T, Morino A, Kawai S, Nagami N, Sato S, Ishitsu H. Preparation and characterization of a SnO2/TiO2 bilayer thin film photocatalyst. J Ceram Soc Jpn. 2001;109:789–92.

    Article  Google Scholar 

  • Ishibashi K, Nosaka Y, Hashimoto K, Fujishima A. Time-dependent behavior of active oxygen species formed on photoirradiated TiO2 films in air. J Phys Chem B. 1998;102:2117–20.

    Article  Google Scholar 

  • Jackson NB, Wang CM, Luo Z, Schwitzgebel J, Ekerdt JG, Brock JR, Heller A. Attachment of TiO2 powders to hollow glass microbeads—activity of the TiO2-coated beads in the photoassisted oxidation of ethanol to acetaldehyde. J Electrochem Soc. 1991;138:3660–4.

    Article  Google Scholar 

  • Kamat PV. Composite semiconductor nanoclusters. Stud Surface Sci Catal. 1997; 103 (Semiconductor nanoclusters: physical, chemical, and catalytic aspects): 237–59, and references therein.

    Google Scholar 

  • Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B. 2002;106:5029–34.

    Article  Google Scholar 

  • Kato K, Tsuzuki A, Taoda H, Torii Y, Kato T, Butsugan Y. Crystal-structures of TiO2 thin coatings prepared from the alkoxide solution via the dip-coating technique affecting the photocatalytic decomposition of aqueous acetic-acid. J Mater Sci. 1994;29:5911–5.

    Article  Google Scholar 

  • Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S. A patterned TiO2 (anatase)/TiO2 (rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem Int Ed. 2002;41(15):2811–3.

    Article  Google Scholar 

  • Kikuchi E, Itoh K, Fujishima A. Photoelectrochemical behaviour of the titanium dioxide thin film electrodes prepared with spray-pyrolysis. Nippon Kagaku Kaishi. 1987; 1970–4.

    Google Scholar 

  • Kobayashi S, Hanabusa K, Hamasaki N, Kimura M, Shirai H. Preparation of TiO2 hollow-fibers using supramolecular assemblies. Chem Mater. 2000;12:1523–5.

    Article  Google Scholar 

  • Kominami H, Kato J, Murakami S, Ishii Y, Kohno M, Yabutani K, Yamamoto T, Kera Y, Inoue M, Inui T, Ohtani B. Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities. Catal Today. 2003;84:181–9.

    Article  Google Scholar 

  • Kwon YT, Song KY, Lee WI, Choi GJ, Do YR. Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. J Catal. 2000;191:192–9.

    Article  Google Scholar 

  • Lin J, Lin Y, Liu P, Meziani MJ, Allard LF, Sun Y. Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension. J Am Chem Soc. 2002;124:11514–8.

    Article  Google Scholar 

  • Maki T, Teranishi Y, Kokubo T, Sakka S. Preparation of porous TiO2 fibers by unidirectional freezing of gel. Yogyo-Kyokai-Shi. 1985;93:387–93.

    Article  Google Scholar 

  • Martin C, Solana G, Rives V, Merci G, Palmisano L, Sclafami A. Physico-chemical properties of WO3/TiO2 systems employed for 4-nitrophenol photodegradation in aqueous medium. Catal Lett. 1997;49:235–43.

    Article  Google Scholar 

  • Matsumoto T, Murakami Y, Takasu Y. Size control of titanium oxide sheets by regulating catalysis in a catalytic sol–gel process and their UV absorption properties. J Phys Chem B. 2000;104:1916–20.

    Article  Google Scholar 

  • Matthews RW. Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium-dioxide. J Catal. 1986;97:565–8.

    Article  Google Scholar 

  • Merci G, Palmisano L, Sclafami A, Venezia AM, Campostrini R, Carturan G, Martin C, Rives V, Solana G. Influence of tungsten oxide on structural and surface properties of sol–gel prapared TiO2 employed for 4-nitrophenol photodegradation. J Chem Soc Faraday Trans. 1996;92:819–29.

    Article  Google Scholar 

  • Merci G, Augugliaro V, Lopez-Munoz MJ, Martin C, Palmisano L, Rives V, Schiavello M, Tilley RJD, Venezia AM. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 1. Surface and bulk characterization. J Phys Chem B. 2001a;105:1026–32.

    Article  Google Scholar 

  • Merci G, Augugliaro V, Lopez-Munoz MJ, Martin C, Palmisano L, Rives V, Schiavello M, Tilley RJD, Venezia AM. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid–solid regime. J Phys Chem B. 2001b;105:1033–40.

    Article  Google Scholar 

  • Mills A, Elliot N, Parkin IP, O’Neill SA, Clark RJ. Novel TiO2 CVD films for semiconductor photocatalysis. J Photochem Photobiol A. 2002;151:171–9.

    Article  Google Scholar 

  • Minero C, Catozzo F, Pelizzetti E. Role of adsorption in photocatalyzed reactions of organic-molecules in aqueous TiO2 suspensions. Langmuir. 1992;8:481–6.

    Article  Google Scholar 

  • Miyauchi M, Nakajima A, Hashimoto K, Watanabe T. A highly hydrophilic thin film under 1 μW/cm2 UV illumination. Adv Mater. 2000a;12:1923–7.

    Article  Google Scholar 

  • Miyauchi M, Nakajima A, Fujishima A, Watanabe T, Hashimoto K. Photoinduced surface reactions on TiO2 and SrTiO3 films: photocatalytic oxidation and photoinduced hydrophilicity. Chem Mater. 2000b;12:3–5.

    Article  Google Scholar 

  • Miyauchi M, Nakajima A, Hashimoto K, Watanabe T. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem Mater. 2002a;14:2812–6, and other references cited therein.

    Article  Google Scholar 

  • Miyauchi M, Nakajima A, Watanabe T, Hashimoto K. Photoinduced hydrophilic conversion of TiO2/WO3 layered thin films. Chem Mater. 2002b;14:4714–20.

    Article  Google Scholar 

  • Murakami Y, Matsumoto T, Takasu Y. Salt catalysts containing basic anions and acidic cations for the sol–gel process of titanium alkoxide: controlling the kinetics and dimensionality of the resultant titanium oxide. J Phys Chem B. 1999;103:1836–40.

    Article  Google Scholar 

  • Murasawa T, Teramoto S. Japan Patent P1995-51646; 1995.

    Google Scholar 

  • Nagai H, Sato M. Chapter 13. Heat treatment in molecular precursor method for fabricating metal oxide thin films. In: Czerwinski F, editor. Heat treatment-conventional and novel applications, InTech; 2012.

    Google Scholar 

  • Navio JA, Colon G, Macias M, Real C, Litter MI. Iron-doped titania semiconductor powders prepared by a sol–gel method. Part I: synthesis and characterization. Appl Catal A. 1999a;177:111–20.

    Article  Google Scholar 

  • Navio JA, Testa JJ, Djedjeian P, Padron JR, Rodriguez D, Litter MI. Iron-doped titania semiconductor powders prepared by a sol–gel method. Part I: photocatalytic properties. Appl Catal A. 1999b;178:191–203.

    Article  Google Scholar 

  • Negishi N, Iyoda T, Hashimoto K, Fujishima A. Preparation of transparent TiO2 thin film photocatalyst and its photocatalytic activity. Chem Lett. 1995;24:841–2.

    Article  Google Scholar 

  • Negishi N, Takeuchi K, Ibusuki T. The surface structure of titanium dioxide thins film photocatalyst. Appl Surf Sci. 1997;121/122:417–20.

    Article  Google Scholar 

  • Noda H, Oikawa IC, Ogata T, Matsuki K, Kamata H. Preparation of titanium(IV) oxides and its characterization. Chem Soc Jpn. 1986;8:1084–90.

    Google Scholar 

  • Nonami T, Taoda H, Hue NT, Watanabe E, Iseda K, Tazawa M, Fukaya M. Apatite formation on TiO2 photocatalyst film in a pseudo body solution. Mater Res Bull. 1998;33:125–31.

    Article  Google Scholar 

  • Ohko Y, Hashimoto K, Fujishima A. Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J Phys Chem A. 1997;101:8057–62.

    Article  Google Scholar 

  • Ohko Y, Fujishima A, Hashimoto K. Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst. J Phys Chem B. 1998;102:1724–9.

    Article  Google Scholar 

  • Ohtani B, Handa J, Nishimoto S, Kagiya T. Highly active semiconductor photocatalyst: extra-fine crystallite of brookite TiO2 for redox reaction in aqueous propan-2-ol and/or silver sulfate solution. Chem Phys Lett. 1985;120:292–4.

    Article  Google Scholar 

  • Peiro AM, Peral J, Domingo C, Domenech X, Ayllon JA. Low-temperature deposition of TiO2 thin films with photocatalytic activity from colloidal anatase aqueous solutions. Chem Mater. 2001;13:2567–73.

    Article  Google Scholar 

  • Pelizzetti E, Carlin V, Maurino V, Minero C, Dolci M, Marchesini A. Degradation of atrazine in soil through induced photocatalytic process. Soil Sci. 1990;150:523–6.

    Article  Google Scholar 

  • Pruden AL, Ollis DF. Photoassisted heterogeneous catalysis—the degradation of tricholoroethylene in water. J Catal. 1983;82:404–17.

    Article  Google Scholar 

  • Rampaul A, Parkin IP, O’Neill SA, DeSouza J, Mills A, Elliott N. Titania and tungsten doped titania thin films on glass; active photocatalysts. Polyhedron. 2003;22:35–44.

    Article  Google Scholar 

  • Ranjit KT, Cohen H, Willner I, Bossmann S, Braun AM. Lanthanide oxide-doped titanium dioxide: effective photocatalysts for the degradation of organic pollutants. J Mater Sci. 1999;34:5273–80.

    Article  Google Scholar 

  • Rengakuji S. Photocatalyst. 2002;8:28–31 (written in Japanese).

    Google Scholar 

  • Rogers KD, Lane DW, Chapman AJ, Painter JD. The structural features of TiO2 thin films formed by pyrosol methods. J Mater Sci Mater-El. 2003;14:573–7.

    Article  Google Scholar 

  • Saito T, Saito K. Japan Patent P1997-248467; 1997.

    Google Scholar 

  • Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K. Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces. Langmuir. 1998;14/20:5918–20

    Google Scholar 

  • Sakatani Y, Koike H. Japan Patent P2001-72419A; 2001.

    Google Scholar 

  • Sakatani Y, Okusako A, Koike H, Ando H. Photocatalysis. 2001;4:51–4 (written in Japanese).

    Google Scholar 

  • Sato S. Photocatalytic activity of NO x -doped TiO2 in the visible-light region. Chem Phys Lett. 1986;123:126–8.

    Article  Google Scholar 

  • Sato M, Hara H, Nishide T, Sawada T. A water-resistant precursor in a wet process for TiO2 thin film formation. J Mater Chem. 1996;6:1767–70.

    Article  Google Scholar 

  • Sato M, Tannji T, Hara H, Nishide T, Sakashita Y. SrTiO3 film fablication and powder synthesis from a non-polymerized precursor system of a stable Ti(IV) complex and Sr(II) salt of edta. J Mater Chem. 1999;9:1539–42.

    Google Scholar 

  • Serpone N, Borgarello E, Gratzel M. Visible-light induced generation of hydrogen from H2S in mixed semiconductor dispersion—improved efficiency through inter-particle electron-transfer. J Chem Soc Chem Commun. 1984;342–4.

    Google Scholar 

  • Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H. Exploiting the interparticle electron transfer process in the photocatalyzed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobiol A. 1995;85:247–55.

    Article  Google Scholar 

  • Shi L, Li C, Gu H, Fang D. Morphology and properties of ultrafine SnO2–TiO2 coupled semiconductor particles. Mater Chem Phys. 2000;62:62–7.

    Article  Google Scholar 

  • Shiyanovskaya I, Hepel M. Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine. J Electrochem Soc. 1998;145:3981–5.

    Article  Google Scholar 

  • Shiyanovskaya I, Hepel M. Bicomponent WO3/TiO2 films as photoelectrodes. J Electrochem Soc. 1999;146:243–9.

    Article  Google Scholar 

  • Sibu CP, Kumar SR, Mukundan P, Warrier KGK. Structural modifications and associated properties of lanthanide oxide doped sol–gel nanosized titanium oxide. Chem Mater. 2002;14:2876–81.

    Article  Google Scholar 

  • So WW, Park SB, Kim KJ, Shin CH, Moon SJ. The crystalline phase stability of titania particles prepared at room temperature by the sol–gel method. J Mater Sci. 2001;36:4299–305.

    Article  Google Scholar 

  • Song KY, Park MK, Kwon YT, Lee HW, Chung WJ, Lee WI. Preparation of transparent particulate MoO3/TiO2 and WO3/TiO3 film and their photocatalytic properties. Chem Mater. 2001;13:2349–55.

    Article  Google Scholar 

  • Tada H, Hattori A, Tokihisa Y, Imai K, Tohge N, Ito S. A patterned TiO2/SnO2 bilayer type photocatalyst. J Phys Chem B. 2000;104:4585–7.

    Article  Google Scholar 

  • Takami K, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Dependence of structure on the process condition of the self-organized inorganic/organic graded thin film utilizing polymer adsorption. Organic–inorganic hybrids, 12–14 June 2000, University of Surrey, Guildford.

    Google Scholar 

  • Takeda N, Torimoto T, Sampath S, Kuwabata S, Yoneyama H. Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J Phys Chem. 1995;99:9986–91.

    Article  Google Scholar 

  • Tomkiewicz M. Scaling properties in photocatalysis. Catal Today. 2000;58:115–23.

    Article  Google Scholar 

  • Tryba B, Morawski AW, Inagaki M. Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl Catal B. 2003;41:427–33.

    Article  Google Scholar 

  • Uchida H, Itoh S, Yoneyama H. Photocatalytic decomposition of propyzamide using TiO2 supported on activated carbon. Chem Lett. 1993;22:1995–8.

    Google Scholar 

  • Wakamura M, Hashimoto K, Watanabe T. Photocatalysis by calcium hydroxyapatite modified with Ti(IV): albumin decomposition and bactericidal effect. Langmuir. 2003;19:3428–31.

    Article  Google Scholar 

  • Wang CC, Ying JY. Sol–gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater. 1999;11:3113–20.

    Article  Google Scholar 

  • Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Light-induced amphiphilic surfaces. Nature. 1997;388:431–2.

    Article  Google Scholar 

  • Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater. 1998;10:135–8.

    Article  Google Scholar 

  • Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K. Studies of surface wettability conversion on TiO2 single-crystal surfaces. J Phys Chem B. 1999;103:2188–94.

    Article  Google Scholar 

  • Wang JA, Limas-Ballesteros R, Lopez T, Moreno A, Gomez R, Novaro O, Bokhimi X. Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts. J Phys Chem B. 2001;105:9692–8.

    Article  Google Scholar 

  • Watanabe T, Kitamura A. Japan Patent P1993-253544; 1993.

    Google Scholar 

  • Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films. 1999;351:260–3.

    Article  Google Scholar 

  • Watanabe T, Fukayama S, Miyauchi M, Fujishima A, Hashimoto A. Photocatalytic activity and photo-induced wettability conversion of TiO2 thin film prepared by sol–gel process on a soda-lime glass. J Sol–Gel Sci Technol. 2000a;19:71–6.

    Article  Google Scholar 

  • Watanabe T, Takami K, Nakajima A, Hashimoto K, Adachi T. Preparation and properties of inorganic–organic functionally graded films—application for intermediate layer between TiO2 coatings and polymer products. Organic–inorganic hybrids, 12–14 June 2000b, University of Surrey, Guildford.

    Google Scholar 

  • Wilson GJ, Will GD, Frost RL, Montgomery SA. Efficient microwave hydrothermal preparation of nanocrystalline anatase TiO2 colloids. J Mater Chem. 2002;12:1787–91.

    Article  Google Scholar 

  • Xu WW, Kershaw R, Dwight K, Wold A. Preparation and characterization, of TiO2 films by a novel spray pyrolysis method. Mater Res Bull. 1990;25:1385–92.

    Article  Google Scholar 

  • Xu A, Gao Y, Liu H. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J Catal. 2002;207:151–7.

    Article  Google Scholar 

  • Yamagishi M, Kuriki S, Song PK, Shigesato Y. Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering. Thin Solid Films. 2003;442:227–31.

    Article  Google Scholar 

  • Yamazaki S, Fujinaga N, Araki K. Effect of sulfate ions for sol–gel synthesis of titania photocatalyst. Appl Catal A. 2001;210:97–102.

    Article  Google Scholar 

  • Yamazakinishida S, Nagano KJ, Phillips LA, Cerveramarch S, Anderson MA. Photocatalytic degradation of trichloroethylene in the gas-phase using titanium-dioxide pellets. J Photochem Photobiol A. 1993;70:95–9.

    Article  Google Scholar 

  • Yanagi H, Ohoka Y, Hishiki T, Ajito K, Fujishima A. Characterization of dye-doped TiO2 films prepared by spray-pyrolysis. Appl Surf Sci. 1997;113/114:426–31.

    Article  Google Scholar 

  • Yanagisawa K, Ovenstone J. Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting materials and temperature. J Phys Chem B. 1999;103:7781–7.

    Article  Google Scholar 

  • Yang J, Mei S, Ferreira JMF. Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Mater Sci Eng C. 2001;15:183–5.

    Article  Google Scholar 

  • Yin H, Wada Y, Kitamura T, Sumida T, Hasegawa Y, Yanagida S. Novel synthesis of phase-pure nano-particulate anatase and rutile TiO2 using TiCl4 aqueous solutions. J Mater Chem. 2002;12:378–83.

    Article  Google Scholar 

  • Yu JC, Yu J, Ho W, Zhang L. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasound irradiation. Chem Commun. 2001;1942–3.

    Google Scholar 

  • Yu J, Yu JC, Cheng B, Zhao X. Photocatalytic activitiy and characterization of the sol–gel derived Pb-doped TiO2 thin films. J Sol-Gel Sci Technol. 2002a;24:39–48.

    Article  Google Scholar 

  • Yu JC, Yu J, Ho W, Jiang Z, Zhang L. Effects of F doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater. 2002b;14:3808–16.

    Article  Google Scholar 

  • Yusuf MM, Imai H, Hirashima H. Preparation of porous titania film by modified sol–gel method and its application to photocatalyst. J Sol-Gel Sci Technol. 2002;25:65–74.

    Article  Google Scholar 

  • Zhang Z, Wang C-C, Zakaria R, Ying JY. Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B. 1998;102:10871–8.

    Article  Google Scholar 

  • Zhang Y, Xiong G, Yao N, Yang W, Fu X. Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol–gel method. Catal Today. 2001a;68:89–95.

    Article  Google Scholar 

  • Zhang Q, Gao L, Zheng S. Preparation of mesoporous TiO2 photocatalyst by selective dissolving of titania-silica binary oxides. Chem Lett. 2001b;30:1124–5.

    Article  Google Scholar 

  • Zhang Q, Gao L, Sun J, Zheng S. Preparation of long TiO2 nanocrystalline from uitraine rutile nanocrystals. Chem Lett. 2002;31:226–7.

    Article  Google Scholar 

  • Zhang L, Zhu Y, He Y, Li W, Sun H. Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel. Appl Catal. 2003;40:287–92.

    Article  Google Scholar 

  • Zhu Y, Zhang L, Yao W, Cao L. The chemical states and properties of doped TiO2 film photocatalyst prepared using the sol–gel method with TiCl4 as a precursor. Appl Surf Sci. 2000;158:32–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Yoshida, N., Watanabe, T. (2016). Sol-Gel Processed Photocatalytic Titania Films. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_68-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_68-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics