Skip to main content

Mesophotic Coral Ecosystems

  • Reference work entry
  • First Online:
Marine Animal Forests

Abstract

Coral reefs are among the most biodiverse and productive ecosystems on the planet. However, our understanding of these ecosystems and their inhabitants has primarily been gleaned from shallow-water studies (<40 m), while light-dependent corals and the ecosystems they support extend much deeper (e.g., 150 m in some locations). In recent decades, coral reef ecosystems have substantially declined globally due to direct and indirect anthropogenic activities that differentially impact shallow-water habitats. This decline has led to the suggestion that surface-oriented stressors and disturbances may be mediated by depth. The role of deeper coral reef ecosystems, called mesophotic coral ecosystems (MCEs), as refugia for shallow-water species has fueled new investigations into this realm facilitated in part by advances in diving technology and remote observation platforms. The increasing access to these poorly studied ecosystems is revealing new insights into the biodiversity of MCEs as well as that of shallow coral reefs. The upper mesophotic community is largely an extension of the shallow-water coral reef community, much of the flora and fauna are shared across these depths. However, there is a transition with increasing depth to a lower mesophotic community dominated by flora and fauna that are largely endemic to this zone. Investigations are also expanding depth and geographic ranges for many species, and new species are being discovered regularly in MCEs. However, caution must be taken when generalizing due to the geographically and numerically limited nature of these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agegian CR, Abbott IA. Deep water macroalgal communities: a comparison between Penguin Bank (Hawaii) and Johnston Atoll. Proc Fifth Int Coral Reef Symp. 1985;5:47–50.

    Google Scholar 

  • Andradi-Brown DA, Gress E, Wright G, Exton DA, Rogers AD. Reef fish community biomass and trophic structure changes across shallow to upper-Mesophotic reefs in the mesoamerican barrier reef, Caribbean. PLoS One. 2016;11(6):e0156641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aponte NE, Ballantine DL. Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep-Sea Res I. 2001;48:2185–94.

    Article  Google Scholar 

  • Baker E, Puglise K, Harris P. Mesophotic coral ecosystems – a lifeboat for coral reefs. Nairobi and Arendal: The United Nations Environment Programme and GRID-Arendal; 2016. p. 98.

    Google Scholar 

  • Baldwin CC, Robertson DR. A new Liopropoma sea bass (Serranidae, Epinephelinae, Liopropomini) from deep reefs off Curaçao, southern Caribbean, with comments on depth distributions of western Atlantic liopropomins. ZooKeys. 2014;409:71–92.

    Article  Google Scholar 

  • Baldwin CC, Robertson DR. A new, mesophotic Coryphopterus goby (Teleostei, Gobiidae) from the southern Caribbean, with comments on relationships and depth distributions within the genus. ZooKeys. 2015;513:123–42.

    Article  Google Scholar 

  • Baldwin CC, Robertson DR, Nonaka A, Tornabene L. Two new deep-reef basslets (Teleostei, Grammatidae, Lipogramma), with comments on the eco-evolutionary relationships of the genus. ZooKeys. 2016;638:45.

    Article  Google Scholar 

  • Ballantine D, Appeldoorn R, Yoshioka P, Weil E, Armstrong R, Garcia J, Otero E, Pagan F, Sherman C, Hernandez-Delgado E. Biology and ecology of Puerto Rican Coral Reefs. In: Riegl BM, Dodge RE, editors. Coral reefs of the USA. Dordrecht: Springer; 2008. p. 375–406.

    Chapter  Google Scholar 

  • Ballantine DL, Ruíz H, Norris JN. Notes on the benthic marine algae of Puerto Rico, XI: new records including new Meredithia (Kallymeniaceae, Rhodophyta) species. Bot Mar. 2015;58:355–65.

    Article  Google Scholar 

  • Bejarano I, Appeldoorn R, Nemeth M. Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico. Coral Reefs. 2014;33:313–28.

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M. Confronting the coral reef crisis. Nature. 2004;429:827–33.

    Article  CAS  PubMed  Google Scholar 

  • Blyth-Skyrme VJ, Rooney JJ, Parrish FA, Boland. RC (2013) Mesophotic coral ecosystems – potential candidates as essential fish habitat and habitat areas of particular concern. Pacific Islands Fishery Science Center, National Marine Fishery Science Center Administrative Report H-13-02 53p

    Google Scholar 

  • Bo M, Baker AC, Gaino E, Wirshing HH, Scoccia F, Bavestrello G. First description of algal mutualistic endosymbiosis in a black coral (Anthozoa: Antipatharia). Mar Ecol Prog Ser. 2011;435:1–11.

    Article  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O. Assessing the deep reef refugia hypothesis: focus on Caribbean reefs. Coral Reefs. 2010a;29:309–27.

    Article  Google Scholar 

  • Bongaerts P, Riginos C, Ridgway T, Sampayo EM, van Oppen MJH, Englebert N, Vermeulen F, Hoegh-Guldberg O. Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS One. 2010b;5:e10871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bongaerts P, Sampayo EM, Bridge TC, Ridgway T, Vermeulen F, Englebert N, Webster JM, Hoegh-Guldberg O. Symbiodinium diversity in mesophotic coral communities on the Great Barrier Reef: a first assessment. Mar Ecol Prog Ser. 2011a;439:117–26.

    Article  Google Scholar 

  • Bongaerts P, Bridge TC, Kline D, Muir P, Wallace C, Beaman R, Hoegh-Guldberg O. Mesophotic coral ecosystems on the walls of Coral Sea atolls. Coral Reefs. 2011b;30:335.

    Article  Google Scholar 

  • Bongaerts P, Riginos C, Hay K, van Oppen M, Hoegh-Guldberg O, Dove S. Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol Biol. 2011c;11:303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Frade P, Ogier J, Hay K, van Bleijswijk J, Englebert N, Vermeij M, Bak R, Visser P, Hoegh-Guldberg O. Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef. BMC Evol Biol. 2013;13:205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers KRW, Bak RPM, Vermeij MJA, Hoegh-Guldberg O. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Report. 2015a;5:1–9.

    Article  CAS  Google Scholar 

  • Bongaerts P, Carmichael M, Hay KB, Tonk L, Frade PR, Hoegh-Guldberg O. Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species. R Soc Open Sci. 2015b;2:140297.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bridge T, Guinotte J. Mesophotic coral reef ecosystems in the Great Barrier Reef World Heritage area: their potential distribution and possible role as refugia from disturbance. Townsville: Great Barrier Reef Marine Park Authority; 2013.

    Google Scholar 

  • Bridge TCL, Fabricius KE, Bongaerts P, Wallace CC, Muir PR, Done TJ, Webster JM. Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs. 2012a;31:179–89.

    Article  Google Scholar 

  • Bridge T, Scott A, Steinberg D. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia. Coral Reefs. 2012b;31:1057–62.

    Article  Google Scholar 

  • Bridge TC, Luiz OJ, Coleman RR, Kane CN, Kosaki RK. Ecological and morphological traits predict depth-generalist fishes on coral reefs. Proc R Soc B. 2016;283:20152332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brokovich E, Einbinder S, Shashar N, Kiflawi M, Kark S. Descending to the twilight-zone: changes in coral reef fish assemblages along a depth gradient down to 65 m. Mar Ecol Prog Ser. 2008;371:253–62.

    Article  Google Scholar 

  • Brokovich E, Ayalon I, Einbinder S, Segev N, Shaked Y, Genin A, Kark S, Kiflawi M (2010) Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Marine Ecology Progress Series 399:69–80

    Google Scholar 

  • Bryan DR, Kilfoyle K, Gilmore RG, Spieler RE. Characterization of the mesophotic reef fish community in south Florida, USA. J Appl Ichthyol. 2013;29:108–17.

    Article  Google Scholar 

  • Chan Y, Pochon X, Fisher MA, Wagner D, Concepcion GT, Kahng SE, Toonen RJ, Gates RD. Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths) coral Leptoseris. BMC Ecol. 2009;9:21. doi:10.1186/1472-6785-9-21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheney DP, Dyer JP. Deep-water benthic algae of the Florida Middle Ground. Mar Biol. 1974;27:185–90.

    Article  Google Scholar 

  • Colin PL. Observation and collection of deep-reef fishes off the coasts of Jamaica and British Honduras (Belize). Mar Biol. 1974;24:29–38.

    Article  Google Scholar 

  • Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M, Muirhead A, O’Leary RA, Ziersen BE, Van Oppen MJ. Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc R Soc B Biol Sci. 2011;278:1840–50.

    Article  Google Scholar 

  • Copus JM, Pyle RL, Earle JL. Neoniphon pencei, a new species of holocentrid (Teleostei: Beryciformes) from Rarotonga, Cook Islands. Biodiv Data J. 2015a;3(2):e4180.

    Article  Google Scholar 

  • Copus JM, Ka’apu-Lyons CA, Pyle RL. Luzonichthys seaver, a new species of Anthiinae (Perciformes, Serranidae) from Pohnpei, Micronesia. Bio Data J. 2015b;3:e4902.

    Google Scholar 

  • Culter J, Ritchie K, Earle S, Guggenheim D, Halley R, Ciembronowicz K, Hine A, Jarrett B, Locker S, Jaap W. Pulley reef: a deep photosynthetic coral reef on the West Florida Shelf, USA. Coral Reefs. 2006;25:228.

    Article  Google Scholar 

  • Drew AE, Abel KM. Studies on Halimeda: I. The distribution and species composition of Halimeda meadows throughout the Great Barrier Reef Province. Coral Reefs. 1988;6:195–205.

    Article  Google Scholar 

  • Dring MJ. Chromatic adaption of photosynthesis in benthic marine algae: an examination of its ecological significance using a theoretical model. Limnol Oceanogr. 1981;26:271–84.

    Article  Google Scholar 

  • Easton, EE, Sellanes J, Gaymer CF, Morales N, Gorny M, Berkenpas E. Diversity of deep-sea fishes of the Easter Island Ecoregion. Deep Sea Res Part II: Top Studies in Oceanogr. 2016. doi: 10.1016/j.dsr2.2016.12.006. http://www.sciencedirect.com/science/article/pii/S0967064516303903

  • Englebert N, Bongaerts P, Muir P, Hay K, Hoegh-Guldberg O (2015) Deepest zooxanthellate corals of the Great Barrier Reef and Coral Sea. Marine Biodiversity 45:1–2

    Google Scholar 

  • Enriquez S, Méndez ER, Iglesias-Prieto R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr. 2005;50:1025–32.

    Article  Google Scholar 

  • Eyal G, Eyal-Shaham L, Cohen I, Tamir R, Ben-Zvi O, Sinniger F, Loya Y. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs. 2016;35:91–102.

    Article  Google Scholar 

  • Eyal-Shaham L, Eyal G, Tamir R, Loya Y. Reproduction, abundance and survivorship of two Alveopora spp. in the mesophotic reefs of Eilat, Red Sea. Sci Report. 2016;6:20964.

    Article  CAS  Google Scholar 

  • Feitoza BM, Rosa RS, Rocha LA. Ecology and zoogeography of deep-reef fishes in northeastern Brazil. Bull Mar Sci. 2005;76:725–42.

    Google Scholar 

  • Fong P, Paul VJ. Coral reef algae. In: Dubinksy Z, Stambler N, editors. Coral reefs: an ecosystem in transition. Dordrecht: Springer; 2011. p. 241–72.

    Chapter  Google Scholar 

  • Foster MS. Rhodoliths: between rocks and soft places. J Phycol. 2001;37:659–67.

    Article  Google Scholar 

  • Foster MS, Gilberto Filho MA, Kamenos NA, Riosmena-Rodríguez R, Steller DL. Rhodoliths and rhodolith beds. In: Lang MA, Marinelli RL, Roberts SJ, Taylor PR, editors. Research and dscoveries: the revolution of science through SCUBA, Smithsonian contributions to the marine sciences number39 Washington, DC: Smithsonian Institution Scholarly Press; 2013. p. 143–55.

    Google Scholar 

  • Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RPM. Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol. 2008b;17:691–703.

    Article  CAS  PubMed  Google Scholar 

  • Frade PR, Englebert N, Faria J, Visser PM, Bak RPM. Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: is there more to it than total irradiance? Coral Reefs. 2008c;27:913–25.

    Article  Google Scholar 

  • Frade P, Bongaerts P, Winkelhagen A, Tonk L, Bak R. In situ photobiology of corals over large depth ranges: a multivariate analysis on the roles of environment, host, and algal symbiont. Limnol Oceanogr. 2008a;53:2711–23.

    Article  Google Scholar 

  • Fricke HW, Schuhmacher H. The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). Mar Ecol. 1983;4:163–94.

    Article  Google Scholar 

  • Fricke HW, Vareschi E, Schlichter D. Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia. 1987;73:371–81.

    Article  CAS  PubMed  Google Scholar 

  • Friedlander AM, Caselle JE, Ballesteros E, Brown EK, Turchik A, Sala E. The real bounty: marine biodiversity in the Pitcairn Islands. PLoS One. 2014;9:e100142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukunaga A, Kosaki RK, Wagner D, Kane C. Structure of mesophotic reef fish assemblages in the Northwestern Hawaiian Archipelago. PLoS One. 2016;11(7):e0157861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaffey SJ. Spectral reflectance of carbonate minerals in the visible and near-infrared (0.35-2.55 microns): calcite, aragonite, and dolomite. Am Mineral. 1986;71:151–62.

    CAS  Google Scholar 

  • Garcia-Sais JR. Reef habitats and associated sessile-benthic and fish assemblages across a euphotic–mesophotic depth gradient in Isla Desecheo, Puerto Rico. Coral Reefs. 2010;29(2):277–88.

    Article  Google Scholar 

  • Glynn PW. Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol. 1996;2:495–509.

    Article  Google Scholar 

  • Goreau TF, Land LS. Fore-reef morphology and depositional processes, North Jamaica. In: LF LP, editor. Reefs in time and space. Tulsa: Society of Economic Paleontologists and Mineralogists; 1974. p. 77–89.

    Chapter  Google Scholar 

  • Goulet TL. Most corals may not change their symbionts. Mar Ecol Prog Ser. 2006;321:1–7.

    Article  Google Scholar 

  • Grigg RW. Ecological studies of black coral in Hawaii. Pac Sci. 1965;19:244–60.

    Google Scholar 

  • Hanisak MD, Blair SM. The deep-water macroalgal community of the East Florida continental shelf (USA). Helgoländer Meeresun. 1988;42:133–63.

    Article  Google Scholar 

  • Hennige SJ, Smith DJ, Walsh S-J, McGinley MP, Warner ME, Suggett DJ. Acclimation and adaptation of scleractinian coral communities along environmental gradients within an Indonesian reef system. J Exp Mar Biol Ecol. 2010;391:143–52.

    Article  Google Scholar 

  • Hillis-Colinvaux L. Halimeda growth and diversity on the deep fore-reef of Enewetak Atoll. Coral Reefs. 1986a;5:19–21.

    Article  Google Scholar 

  • Hillis-Colinvaux L. Deep water populations of Halimeda in the economy of an Atoll. Bull Mar Sci. 1986b;38:155–69.

    Google Scholar 

  • Hoeksema BW, Bongaerts P, Baldwin CC. High coral cover at lower mesophotic depths: a dense Agaricia community at the leeward side of Curaçao Dutch Caribbean. Marine Biodiversity 2016; pp. 1–4. http://link.springer.com/article/10.1007/s12526-015-0431-8

  • Hoogenboom MO, Connolly SR, Anthony KRN. Interactions between morphological and physiological plasticity optimize energy acquisition in corals. Ecology. 2008;89:1144–54.

    Article  PubMed  Google Scholar 

  • Iglesias-Prieto R, Trench RK. Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser. 1994;113:163–75.

    Article  Google Scholar 

  • Iglesias-Prieto R, Beltran V, LaJeunesse T, Reyes-Bonilla H, Thome P. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc London, Ser B. 2004;271:1757–63.

    Article  CAS  Google Scholar 

  • Kahng SE, Kelley C. Vertical zonation of habitat forming benthic species on a deep photosynthetic reef (50-140 m) in the Auʿau Channel, Hawaii. Coral Reefs. 2007;26:679–87.

    Article  Google Scholar 

  • Kahng SE, Maragos JE. The deepest zooxanthellate, scleractinian corals in the world? Coral Reefs. 2006;25:254.

    Article  Google Scholar 

  • Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ. Community ecology of mesophotic coral reef ecosystems. Coral Reefs. 2010;29:255–75.

    Article  Google Scholar 

  • Kahng SE, Wagner D, Lantz C, Vetter O, Gove J, Merrifield M. Temperature related depth limits of warm-water corals. In Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia:9C; 2012.

    Google Scholar 

  • Kahng SE, Copus J, Wagner D. Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain. 2014;7:72–81.

    Article  Google Scholar 

  • Kane C, Kosaki RK, Wagner D. High levels of mesophotic reef fish endemism in the Northwestern Hawaiian Archipelago. Bull Mar Sci. 2014;90(2):693–703.

    Article  Google Scholar 

  • Keesing JK, Usher KM, Fromont J. First record of photosynthetic cyanobacterial symbionts from mesophotic temperate sponges. Mar Freshw Res. 2012;63:403–8.

    Article  CAS  Google Scholar 

  • Kinzie R. The ecology of the gorgonians (Cnidaria, Octocorallia) of Discovery Bay, Jamaica. PhD thesis, Yale University; (1970). p. 107.

    Google Scholar 

  • Kinzie RA. The zonation of West Indian gorgonians. Bull Mar Sci. 1973;23:93–155.

    Google Scholar 

  • Kirk JTO. Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridge University Press; 2011.

    Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB. Environmental limits to coral reef development: where do we draw the line? Am Zool. 1999;39:146–59.

    Article  Google Scholar 

  • Kosaki RK, Pyle R, Randall JE, Irons DK. New records of fishes from Johnston Atoll, with notes on biogeography. Pac Sci. 1991;45:186–203.

    Google Scholar 

  • Kosaki RK, Pyle RL, Leonard JC, Hauk BB, Whitton RK, Wagner D. 100% endemism in mesophotic reef fish assemblages at Kure Atoll Hawaiian Islands, Marine Biodiversity. 2016. pp. 1–2. http://link.springer.com/article/10.1007/s12526-016-0510-5

  • Kühlmann D. Composition and ecology of deep-water coral associations. Helgol Mar Res. 1983;36:183–204.

    Google Scholar 

  • Lane DJ, Hoeksema BW. Mesophotic mushroom coral records at Brunei Darussalam support westward extension of the coral triangle to the South China sea waters of Northwest Borneo. Raffles Bull Zool. 2016;64:204–12.

    Google Scholar 

  • Lee RE. Phycology. Cambridge: Cambridge University Press; 2008.

    Book  Google Scholar 

  • Lehnert H, Fischer H. Distribution patterns of sponges and corals down to 107 m off North Jamaica. Mem Qld Mus. 1999;44:307–16.

    Google Scholar 

  • Leichter JJ, Stokes MD, Genovese SJ. Deep water macroalgal communities adjacent to the Florida Keys reef tract. Mar Ecol Prog Ser. 2008;356:123–38.

    Article  Google Scholar 

  • Lesser MP, Slattery M. Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions. 2011;13(8):1855–68.

    Article  Google Scholar 

  • Lesser M, Slattery M, Stat M, Ojimi M, Gates R, Grottoli A. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology. 2010;91:990–1003.

    Article  PubMed  Google Scholar 

  • Lindfield SJ, Harvey ES, Halford AR, McIlwain JL. Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs. 2016;35:125–37.

    Article  Google Scholar 

  • Linklater M. Past and present coral distribution at the latitudinal limit of reef development, southwest Pacific Ocean. PhD thesis, University of Wollongong; (2016). p. 227.

    Google Scholar 

  • Linklater M, Carroll AG, Hamylton SM, Jordan AR, Brooke BP, Nichol SL, Woodroffe CD. High coral cover on a mesophotic, subtropical island platform at the limits of coral reef growth. Cont Shelf Res. 2016;130:34–46.

    Article  Google Scholar 

  • Littler MM, Littler DS. Bloom of the giant Anadyomene gigantondictyon sp. nov. (Anadyomene, Cladophorales) from the outer sloe (25-50 m) of the Belize Barrier Reef. J Phycol. 2012;48:60–3.

    Article  PubMed  Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JN. Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep-Sea Res. 1986;33:881–92.

    Article  CAS  Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R. Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs. 2016;35:1–9.

    Article  Google Scholar 

  • Luck DG, Forsman ZH, Toonen RJ, Leicht SJ, Kahng SE. Polyphyly and hidden species among Hawaiʻi’s dominant mesophotic coral genera, Leptoseris and Pavona (Scleractinia: Agariciidae). PeerJ. 2013;1:e132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magalhães GM, Amado-Filho GM, Rosa MR, de Moura RL, Brasileiro PS, de Moraes FC, Francini-Filho RB, Pereira-Filho GH. Changes in benthic communities along a 0–60 m depth gradient in the remote St. Peter and St. Paul Archipelago (Mid-Atlantic Ridge, Brazil). Bull Mar Sci. 2015;91(3):377–96.

    Article  Google Scholar 

  • Maragos JE, Jokiel P. Reef corals of Johnston Atoll: one of the world’s most isolated reefs. Coral Reefs. 1986;4:141–50.

    Article  Google Scholar 

  • Markager S, Sand-Jensen K. Light requirements and depth zonation of marine macroalgae. Mar Ecol Prog Ser. 1992;88:83–92.

    Article  Google Scholar 

  • Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z. Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser. 2007;334:93–102.

    Article  CAS  Google Scholar 

  • Muir P, Wallace C, Bridge TC, Bongaerts P. Diverse staghorn coral fauna on the mesophotic reefs of north-east Australia. PLoS One. 2015;10:e0117933.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nir O, Gruber D, Einbinder S, Kark S, Tchernov D. Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs. 2011;30:1089–100.

    Article  Google Scholar 

  • Ohlhorst SL, Liddell WD. The effect of substrate microtopography on reef community structure 60-120 m. Proc Sixth Int Coral Reef Symp. 1988;3:355–60.

    Google Scholar 

  • Papastamatiou Y, Meyer CG, Kosaki RK, Wallsgrove NJ, Popp BN. Movements and foraging of predators associated with mesophotic coral reefs and their potential for linking ecological habitats. Mar Ecol Prog Ser. 2015;521:155–70.

    Article  Google Scholar 

  • Parrish FA, Bolland RC. Habitat and reef-fish assemblages of banks in the Northwestern Hawaiian Islands. Mar Biol. 2004;144:1065–73.

    Article  Google Scholar 

  • Pawlik JR, McMurray SE, Erwin P, Zea S. No evidence for food limitation of Caribbean reef sponges: reply to Slattery & Lesser (2015). Mar Ecol Prog Ser. 2015a;527:281–4.

    Article  Google Scholar 

  • Pawlik JR, McMurray SE, Erwin P, Zea S. A review of evidence for food-limitation of sponges on Caribbean reefs. Mar Ecol Prog Ser. 2015b;519:265–83.

    Article  CAS  Google Scholar 

  • Pearson R, Stevens T. Distinct cross-shelf gradient in mesophotic reef fish assemblages in subtropical eastern Australia. Mar Ecol Prog Ser. 2015;532:185–96.

    Article  Google Scholar 

  • Peyton KA Aquatic invasive species impacts in Hawaiian soft sediment habitats. PhD thesis, University of Hawaii at Manoa; (2009). p. 138.

    Google Scholar 

  • Pinheiro HT, Mazzei E, Moura RL, Amado-Filho GM, Carvalho-Filho A, Braga AC, Costa PA, Ferreira BP, Ferreira CEL, Floeter SR. Fish biodiversity of the Vitória-Trindade Seamount Chain, southwestern Atlantic: an updated database. PLoS One. 2015;10:e0118180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinheiro HT, Goodbody-Gringley G, Jessup ME, Shepherd B, Chequer AD, Rocha LA. Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs. 2016;35:139–51.

    Article  Google Scholar 

  • Pochon X, Forsman Z, Spalding H, Padilla-Gamiño J, Smith C, Gates R. Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawai’i. R Soc Open Sci. 2015;2:140351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter JW. Ecology and composition of deep reef communities off the Tongue of the Ocean, Bahama Island. Discovery. 1973;9:3–12.

    Google Scholar 

  • Pyle RL. Exploring deep coral reefs: how much biodiversity are we missing? Glob Biodiv. 1996;6:3–7.

    Google Scholar 

  • Pyle RL. Assessing undiscovered fish biodiversity on deep coral reefs using advanced self-contained diving technology. Mar Technol Soc. 2000;34:82–91.

    Article  Google Scholar 

  • Pyle RL, Kosaki RK. Prognathodes basabei, a new species of butterflyfish (Perciformes, Chaetodontidae) from the Hawaiian Archipelago. ZooKeys. 2016;614:137.

    Article  Google Scholar 

  • Pyle RL, Earle JL, Greene BD. Five new species of the damselfish genus Chromis (Perciformes: Labroidei: Pomacentridae) from deep coral reefs in the tropical western Pacific. Zootaxa. 2008;1671:3–31.

    Google Scholar 

  • Pyle RL, Boland R, Bolick H, Bowen BW, Bradley CJ, Kane C, Kosaki RK, Langston R, Longenecker K, Montgomery A, Parrish FA, Popp BN, Rooney J, Smith CM, Wagner D, Spalding HL. A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ. 2016a;4:e2475.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyle RL, Greene BD, Kosaki RK. Tosanoides obama, a new basslet (Perciformes, Percoidei, Serranidae) from deep coral reefs in the Northwest Hawaiian Islands. Zoologica. 2016b;641:165–81.

    Google Scholar 

  • Rivero-Calle S Ecological aspects of sponges in mesophotic coral ecosystems. MS thesis. University of Puerto Rico; (2010). p. 85.

    Google Scholar 

  • Rosa MR, Alves AC, Medeiros DV, Coni EOC, Ferreira CM, Ferreira BP, de Souza RR, Amado-Filho GM, Pereira-Filho GH, de Moura RL. Mesophotic reef fish assemblages of the remote St. Peter and St. Paul’s Archipelago, Mid-Atlantic Ridge, Brazil. Coral Reefs. 2015;35:113–23.

    Article  Google Scholar 

  • Rowan R, Knowlton N. Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci. 1995;92:2850–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runcie JW, Gurgel CF, Mcdermid KJ. In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur J Phycol. 2008;43:377–88.

    Article  CAS  Google Scholar 

  • Sanchez JA. Black coral-octocoral distribution patterns on Imelda Bank, a deep-water reef, Colombia, Caribbean Sea. Bull Mar Sci. 1999;65:215–25.

    Google Scholar 

  • Sanchez JA, Zea S, Diaz JM. Patterns of octocoral and black cora distribution in the oceanic barrier reef-complex of Providencia Island, Southwestern Caribbean. Caribb J Sci. 1998;34:250–64.

    Google Scholar 

  • Schizas N, Lucas M, Weil E (2012) Genetic connectivity of Symbiodinium and its coral host Agaricia lamarck 12th International Coral Reef Symposium, Cairns.

    Google Scholar 

  • Shashar N, Stambler N. Endolithic algae within corals – life in an extreme environment. J Exp Mar Biol Ecol. 1992;163:277–86.

    Article  CAS  Google Scholar 

  • Simon T, Pinheiro HT, Moura R, Carvalho-Filho A, Rocha LA, Martins AS, Mazzei E, Francini-Filho RB, Amado-Filho GM, Joyeux JC. Mesophotic fishes of the Abrolhos Shelf, the largest reef ecosystem in the South Atlantic. J Fish Biol. 2016;89(1):990–1001. doi:10.1111/jfb.12967.

    Article  CAS  PubMed  Google Scholar 

  • Slattery M, Lesser MP. Trophic ecology of sponges from shallow to mesophotic depths (3 to 150 m): comment on Pawlik et al.(2015). Mar Ecol Prog Ser. 2015;527:275–9.

    Article  Google Scholar 

  • Spalding H Ecology of mesophotic macroalgae and Halimeda kanaloana meadows in the Main Hawaiian Islands. PhD thesis, University of Hawaii; (2012). p. 199.

    Google Scholar 

  • Spalding HL, Conklin KY, Smith CM, O’Kelly CJ, Sherwood AR. New Ulvaceae (Ulvophyceae, Chlorophyta) from mesophotic ecosystems across the Hawaiian Archipelago. J Phycol. 2016;52:40–53.

    Article  PubMed  Google Scholar 

  • Tenggardjaja KA, Bowen BW, Bernardi G. Vertical and horizontal genetic connectivity in Chromis verater, an endemic damselfish found on shallow and mesophotic reefs in the Hawaiian Archipelago and adjacent Johnston Atoll. PLoS One. 2014;9:e115493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. 2014;68:352–67.

    Article  CAS  PubMed  Google Scholar 

  • Thresher RE, Colin PL. Trophic structure, diversity and abundance of fishes of the deep reef (30-300 m) at Enewetak, Marshall Islands. Bull Mar Sci. 1986;38:253–72.

    Google Scholar 

  • Toller WW, Rowan R, Knowlton N. Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull. 2001;201:348–59.

    Article  CAS  PubMed  Google Scholar 

  • Tornabene L, Robertson DR, Baldwin CC. Varicus lacerta, a new species of goby (Teleostei, Gobiidae, Gobiosomatini, Nes subgroup) from a mesophotic reef in the southern Caribbean. ZooKeys. 2016;596:143.

    Article  Google Scholar 

  • Van den Hoek C, Breeman AM, Bak RPM, van Buurt G. The distribution of algae, corals, and gorgonians in relation to depth, light attenuation, water movement and grazing pressure in the fringing reef of Curacao, Netherlands Antilles. Aquat Bot. 1978;5:1–46.

    Article  Google Scholar 

  • Vaz AC, Paris CB, Olascoaga MJ, Kourafalou VH, Kang H, Reed JK. The perfect storm: match-mismatch of bio-physical events drives larval reef fish connectivity between Pulley Ridge mesophotic reef and the Florida Keys. Cont Shelf Res. 2016;125:136–46.

    Article  Google Scholar 

  • Wagner D. The spatial distribution of shallow-water (< 150 m) black corals (Cnidaria: Antipatharia) in the Hawaiian Archipelago. Mar Biodiv Rec. 2015;8:e54.

    Article  Google Scholar 

  • Wagner D, Pochon X, Irwin L, Toonen RJ, Gates RD. Azooxanthellate? Most Hawaiian black corals contain Symbiodinium. Proc R Soc B Biol Sci. 2011;278:1323–8.

    Article  CAS  Google Scholar 

  • Wagner D, Luck DG, Toonen RJ. The biology and ecology of black corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia). Adv Mar Biol. 2012;63:67–132.

    Article  PubMed  Google Scholar 

  • Wagner D, Kosaki RK, Spalding HL, Whitton RK, Pyle RL, Sherwood AR, Tsuda RT, Calcinai B. Mesophotic surveys of the flora and fauna at Johnston Atoll, Central Pacific Ocean. Mar Biodiv Rec. 2014;7:e68.

    Article  Google Scholar 

  • Wilkinson CR, Cheshire AC. Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: evidence for higher productivity in the Caribbean. Mar ecol prog ser Oldendorf. 1990;67:285–94.

    Article  Google Scholar 

  • Ziegler M, Roder CM, Büchel C, Voolstra CR. Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology. Front Mar Sci. 2015;2:4.

    Article  Google Scholar 

  • Zlatarski VN. Scleractinians of Yucatan Peninsula, Mexico: results of 1983-1984 investigation. CICIMAR Oceanides. 2007;22:45–116.

    Google Scholar 

  • Zlatarski VN, Estalella MN. Les Scléractiniaires de Cuba avec des données sur les organismes associés. Editions Académie bulgare des Sciences. Bulgarie: Sofia; 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Kahng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kahng, S., Copus, J.M., Wagner, D. (2017). Mesophotic Coral Ecosystems. In: Rossi, S., Bramanti, L., Gori, A., Orejas , C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-21012-4_4

Download citation

Publish with us

Policies and ethics