Skip to main content

Biosynthesis of Nanoparticles by Fungi: Large-Scale Production

  • Reference work entry
  • First Online:
Fungal Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Nanoparticles are structures in nanoscale with a wide range of applications across various fields of technology, industry, environment, medicine, and science. Increasing demands for NPs caused to develop their production based on chemical and physical approaches, recently. These approaches carry health and environmental disadvantages with themselves. Need for safer alternatives in large-scale production of NPs ended up with development of eco-friendly methods. Industrial nanobiotechnology takes advantage of biological-based approaches to produce nanomaterial using biological renewable resources. Decreasing energy intake, greenhouse gas (GHG), and hazardous waste production are the main advantages of nanomaterial biosynthesis. In contrast, the other synthesis methods bring environmental drawbacks. Among the nanomaterials, nanoparticles have attracted the attention because of their wide spectrum of application. Microorganisms and in particular bacteria and fungi are used as the biological agents and showed a promising potential for biosynthesis of nanoparticles. Here we highlight different aspects of industrial production of NPs by fungi including advantages and disadvantages. Also, we discuss the application of different technologies in development of high-scale production of NPs by fungi-like protein engineering, metabolic engineering, synthetic biology, systems biology, and downstream processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CNS diseases:

Central nervous system disease

GHG:

Greenhouse gas

NP:

Nanoparticle

References

  1. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417

    Article  CAS  Google Scholar 

  2. Masciangioli T, Zhang W-X (2003) Peer reviewed: environmental technologies at the nanoscale. Environ Sci Technol 37:102A–108A

    Article  CAS  Google Scholar 

  3. Shameli K, Mansor Bin A, Wan Md, Zin Wan Y, Nor Azowa I, Azizah Abdul H, Mohsen, Z, Majid D, Yadollah A, Abdolhossein R (2010) Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int J Nanomed 5:875–887

    Google Scholar 

  4. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F (2011) Green synthesis and antibacterial effect of silver nanoparticles using vitex negundo L. Molecules 16:6667–6676

    Article  CAS  Google Scholar 

  5. Shameli K, Bin Ahmad M, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, Mahdavi M, Abdollahi Y (2012) Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. IJMS 13:6639–6650

    Article  CAS  Google Scholar 

  6. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  CAS  Google Scholar 

  7. Saxena A, Tripathi RM, Zafar F, Singh P (2012) Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater Lett 67:91–94

    Article  CAS  Google Scholar 

  8. Donaldson K, Stone V (2004) Nanoscience fact versus fiction. Commun ACM 47:113

    Article  Google Scholar 

  9. Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K (2014) Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release 190:607–623

    Article  CAS  Google Scholar 

  10. Xie S, Tao Y, Pan Y, Qu W, Cheng G, Huang L, Chen D, Wang X, Liu Z, Yuan Z (2014) Biodegradable nanoparticles for intracellular delivery of antimicrobial agents. J Control Release 187:101–117

    Article  CAS  Google Scholar 

  11. Ghaffar K, Giddam A, Zaman M, Skwarczynski M, Toth I (2014) Liposomes as nanovaccine delivery systems. CTMC 14:1194–1208

    Article  Google Scholar 

  12. Gonçalves IC, Henriques PC, Seabra CL, Martins MCL (2014) The potential utility of chitosan micro/nanoparticles in the treatment of gastric infection. Expert Rev Anti-Infect Ther 12:981–992

    Article  Google Scholar 

  13. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490

    Article  CAS  Google Scholar 

  14. Mahajan S, Law A, Reynolds N, Sykes Y, Roy P, Schwartz S (2012) Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine 7:5301–5314

    Google Scholar 

  15. Turkevich J (1985) Colloidal gold. Part I. Gold Bull 18:86–91

    Article  CAS  Google Scholar 

  16. Ghosh P, Han G, De M, Kim C, Rotello V (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  CAS  Google Scholar 

  17. Zhao Y, Jiang X (2013) Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale 5:8340

    Article  CAS  Google Scholar 

  18. Bertrand N, Leroux J-C (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 161:152–163

    Article  CAS  Google Scholar 

  19. Mishra D, Jain N, Rajoriya V, Jain AK (2014) Glycyrrhizin conjugated chitosan nanoparticles for hepatocyte-targeted delivery of lamivudine. J Pharm Pharmacol 66(8):1082–1093

    Google Scholar 

  20. Mody V, Siwale R, Singh A, Mody H (2010) Introduction to metallic nanoparticles. J Pharm Bioall Sci 2:282

    Article  CAS  Google Scholar 

  21. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943

    Article  CAS  Google Scholar 

  22. Sengupta J, Ghosh S, Datta P, Gomes A, Gomes A (2014) Physiologically important metal nanoparticles and their toxicity. J Nanosci Nanotechnol 14:990–1006

    Article  CAS  Google Scholar 

  23. Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (A route for large-scale production of AgNPs). Insci J 1(1):65–79

    Google Scholar 

  24. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  25. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine Nanotechnol Biol Med 6:103–109

    Article  CAS  Google Scholar 

  26. Fonte P, Reis S, Sarmento B (2016) Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release 225:75–86

    Article  CAS  Google Scholar 

  27. Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20:595–601

    Article  CAS  Google Scholar 

  28. Furno F (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024

    Article  CAS  Google Scholar 

  29. Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W (2012) Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7:1253–1271

    Article  CAS  Google Scholar 

  30. El Zowalaty M, Ibrahim NA, Salama M, Shameli K, Usman M, Zainuddin N (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed 8:4467–4479

    Google Scholar 

  31. Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ (2006) Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol 1:340–350

    Article  Google Scholar 

  32. Hiramatsu H, Osterloh FE (2004) A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511

    Article  CAS  Google Scholar 

  33. Aromal SA, Vidhu VK, Philip D (2012) Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochim Acta A Mol Biomol Spectrosc 85:99–104

    Article  CAS  Google Scholar 

  34. Ahamed M, Majeed Khan MA, Siddiqui MKJ, AlSalhi MS, Alrokayan SA (2011) Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Physica E: Low-Dimension Syst Nanostruct 43:1266–1271

    Article  CAS  Google Scholar 

  35. Mohan Kumar K, Mandal BK, Siva Kumar K, Sreedhara Reddy P, Sreedhar B (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc 102:128–133

    Article  CAS  Google Scholar 

  36. Chen J, Wang J, Zhang X, Jin Y (2008) Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys 108:421–424

    Article  CAS  Google Scholar 

  37. Moon J-W, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Everett SM, Lauf RJ, Phelps TJ (2010) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37:1023–1031

    Article  CAS  Google Scholar 

  38. Bensebaa F, Durand C, Aouadou A, Scoles L, Du X, Wang D, Le Page Y (2009) A new green synthesis method of CuInS2 and CuInSe2 nanoparticles and their integration into thin films. J Nanopart Res 12:1897–1903

    Article  Google Scholar 

  39. Darroudi M, Mansor Bin Ahmad M, Abdullah AH, Ibrahim NA, Shameli K (2011) Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int J Nanomed 6:569–574

    Google Scholar 

  40. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Scholar Res Notice 2014:1–18

    Article  Google Scholar 

  41. Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes – a review. Colloids Surf B Biointerfaces 121:474–483

    Article  CAS  Google Scholar 

  42. Gartland KMA, Bruschi F, Dundar M, Gahan PB, Viola Magni MP, Akbarova Y (2013) Progress towards the ‘Golden Age’ of biotechnology. Curr Opin Biotechnol 24:S6–S13

    Article  CAS  Google Scholar 

  43. Luetz S, Giver L, Lalonde J (2008) Engineered enzymes for chemical production. Biotechnol Bioeng 101:647–653

    Article  CAS  Google Scholar 

  44. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412

    Article  CAS  Google Scholar 

  45. Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118:155–170

    Article  CAS  Google Scholar 

  46. Leitão AL, Enguita FJ (2014) Fungal extrolites as a new source for therapeutic compounds and as building blocks for applications in synthetic biology. Microbiol Res 169:652–665

    Article  Google Scholar 

  47. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    Article  CAS  Google Scholar 

  48. Liu CC, Mack AV, Tsao ML, Mills JH, Lee HS, Choe H, Farzan M, Schultz PG, Smider VV (2008) Protein evolution with an expanded genetic code. Proc Natl Acad Sci 105:17688–17693

    Article  CAS  Google Scholar 

  49. Picataggio S (2009) Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals. Curr Opin Biotechnol 20:325–329

    Article  CAS  Google Scholar 

  50. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76

    Article  CAS  Google Scholar 

  51. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  Google Scholar 

  52. Liu Y, Shin H-D, Li J, Liu L (2014) Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects. Appl Microbiol Biotechnol 99:1109–1118

    Article  Google Scholar 

  53. Sindelar G, Wendisch VF (2007) Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl Microbiol Biotechnol 76:677–689

    Article  CAS  Google Scholar 

  54. Becker J, Reinefeld J, Stellmacher R, Schäfer R, Lange A, Meyer H, Lalk M, Zelder O, von Abendroth G, Schröder H, Haefner S, Wittmann C (2013) Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens. Biotechnol Bioeng 110:3013–3023

    Article  CAS  Google Scholar 

  55. Cheng KK, Zhao X-B, Zeng J, Zhang JA (2012) Biotechnological production of succinic acid: current state and perspectives. Biofuels Bioprod Bioref 6:17

    Article  Google Scholar 

  56. Sakurai H, Masukawa H, Kitashima M, Inoue K (2015) How close We Are to achieving commercially viable large-scale photobiological hydrogen production by cyanobacteria: a review of the biological aspects. Life 5:997–1018

    Article  Google Scholar 

  57. Beauprez JJ, De Mey M, Soetaert WK (2010) Microbial succinic acid production: natural versus metabolic engineered producers. Process Biochem 45:1103–1114

    Article  CAS  Google Scholar 

  58. Driouch H, Roth A, Dersch P, Wittmann C (2011) Filamentous fungi in good shape: microparticles for tailor-made fungal morphology and enhanced enzyme production. Bioeng Bugs 2:100–104

    Article  Google Scholar 

  59. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    Article  CAS  Google Scholar 

  60. Barry DJ, Williams GA (2011) Microscopic characterisation of filamentous microbes: towards fully automated morphological quantification through image analysis. J Microsc 244:1–20

    Article  CAS  Google Scholar 

  61. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75

    Article  CAS  Google Scholar 

  62. Wucherpfennig T, Kiep KA, Driouch H, Wittmann C, Krull R (2010) Morphology and rheology in filamentous cultivations. Adv Appl Microbiol 72:89–136

    Google Scholar 

  63. Papagianni M (2007) Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol Adv 25:244–263

    Article  CAS  Google Scholar 

  64. Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C (2011) Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol Bioeng 109:462–471

    Article  Google Scholar 

  65. Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516

    Article  CAS  Google Scholar 

  66. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  67. Naghdi M, Taheran M, Brar SK, Verma M, Surampalli RY, Valero JR (2015) Green and energy-efficient methods for the production of metallic nanoparticles. Beilstein J Nanotechnol 6:2354–2376

    Article  CAS  Google Scholar 

  68. Lai Y, Yin W, Liu J, Xi R, Zhan J (2009) One-Pot green synthesis and bioapplication of l-arginine-capped superparamagnetic Fe3O4 nanoparticles. Nanoscale Res Lett 5:302–307

    Article  Google Scholar 

  69. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  70. Shukla R, Nune SK, Chanda N, Katti K, Mekapothula S, Kulkarni RR, Welshons WV, Kannan R, Katti KV (2008) Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small 4:1425–1436

    Article  CAS  Google Scholar 

  71. Mansoori GA (2010) Synthesis of nanoparticle by fungi. US Patent Application 20100055199

    Google Scholar 

  72. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  CAS  Google Scholar 

  73. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  CAS  Google Scholar 

  74. Blackwell M (2011) The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438

    Article  Google Scholar 

  75. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  Google Scholar 

  76. Castro-Longoria E (2012) Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol 22:1000–1004

    Article  CAS  Google Scholar 

  77. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83:42–48

    Article  CAS  Google Scholar 

  78. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  79. Vahabi K, Karimi Dorcheh S (2014) Biosynthesis of silver nano-particles by Trichoderma and its medical applications. In: Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, 393–404

    Google Scholar 

  80. Moghaddam A, Namvar F, Moniri M, Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565

    Article  CAS  Google Scholar 

  81. Tarafdar JC, Raliya R, Rathore I (2012) Microbial synthesis of phosphorous nanoparticle from Tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89

    Article  CAS  Google Scholar 

  82. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  Google Scholar 

  83. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  84. Maliszewska I, Szewczyk K, Waszak K (2009) Biological synthesis of silver nanoparticles. J Phys Conf Ser 146:012025

    Article  Google Scholar 

  85. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  Google Scholar 

  86. Beveridge TJ, Hughes MN, Lee H, Leung KT, Poole RK, Savvaidis I, Silver S, Trevors JT (1997) Metal-microbe interactions: contemporary approaches. In: Advances in microbial physiology. Adv Microb Physiol 38:177–243

    Google Scholar 

  87. Das SK, Liang J, Schmidt M, Laffir F, Marsili E (2012) Biomineralization mechanism of gold by zygomycete fungi Rhizopous oryzae. ACS Nano 6:6165–6173

    Article  CAS  Google Scholar 

  88. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  89. Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess 2

    Google Scholar 

  90. Scott D, Toney M, Muzikár M (2008) Harnessing the mechanism of glutathione reductase for synthesis of active site bound metallic nanoparticles and electrical connection to electrodes. J Am Chem Soc 130:865–874

    Article  CAS  Google Scholar 

  91. Shankar SS, Ahmad A, Pasricha R, Khan MI, Kumar R, Sastry M (2004) Immobilization of biogenic gold nanoparticles in thermally evaporated fatty acid and amine thin films. J Colloid Interface Sci 274:69–75

    Article  CAS  Google Scholar 

  92. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  93. Das SK, Das AR, Guha AK (2010) Microbial synthesis of multishaped gold nanostructures. Small 6:1012–1021

    Article  CAS  Google Scholar 

  94. Kalidindi SB, Sanyal U, Jagirdar BR (2010) Metal nanoparticles via the atom-economy green approach. Inorg Chem 49:3965–3967

    Article  CAS  Google Scholar 

  95. Ide E, Angata S, Hirose A, Kobayashi K (2005) Metal–metal bonding process using Ag metallo-organic nanoparticles. Acta Mater 53:2385–2393

    Article  CAS  Google Scholar 

  96. Zhou Y (2008) Microjoining and nanojoining., Elsevier BV

    Book  Google Scholar 

  97. Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV (2006) A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res 341:2012–2018

    Article  CAS  Google Scholar 

  98. Nadagouda MN, Varma RS (2008) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10:859

    Article  CAS  Google Scholar 

  99. Xia B, He F, Li L (2013) Preparation of bimetallic nanoparticles using a facile green synthesis method and their application. Langmuir 29:4901–4907

    Article  CAS  Google Scholar 

  100. Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504

    Article  CAS  Google Scholar 

  101. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  102. Troupis A, Hiskia A, Papaconstantinou E (2002) Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. We thank the ministry of development, general secretariat of research and technology of Greece, for supporting part of this work. We also thank Dr. A. Travlos for help with the TEM images. Angew Chem Int Ed 41:1911

    Article  CAS  Google Scholar 

  103. Wei D, Qian W (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B Biointerfaces 62:136–142

    Article  CAS  Google Scholar 

  104. Potara M, Maniu D, Astilean S (2009) The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan. Nanotechnology 20:315602

    Article  Google Scholar 

  105. Wei D, Sun W, Qian W, Ye Y, Ma X (2009) The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res 344:2375–2382

    Article  CAS  Google Scholar 

  106. Khalili Fard J, Jafari S, Eghbal MA (2015) A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5:447–454

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khabat Vahabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Dorcheh, S.K., Vahabi, K. (2017). Biosynthesis of Nanoparticles by Fungi: Large-Scale Production. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-25001-4_8

Download citation

Publish with us

Policies and ethics