Skip to main content

Mobile and Compact NMR

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

NMR with mobile and compact devices is experiencing considerable growth in recent years in particular since instruments have become available, which are capable not only of measuring NMR relaxation but also images and high-resolution spectra. Based on permanent magnet technology, compact tabletop NMR instruments measure samples of materials and solutions positioned inside the magnet, while compact mobile instruments measure material properties of intact objects and samples nondestructively in the inhomogeneous stray field outside the magnet. Following a brief introduction to NMR with homogeneous and inhomogeneous magnetic fields and to the concepts of permanent center- and stray-field NMR magnets, the evolution of the technology over the past 10 years is reviewed and illustrated with selected applications. Relaxation and diffusion measurements find use in the analysis of foods, biological tissues, polymer materials, porous media, and objects of cultural heritage. Compact imaging instruments are mainly employed to study crops and plants as well as transport phenomena in chemical engineering and geophysics. Tabletop NMR spectrometers find increasing use in educational institutions and for chemical analysis and reaction monitoring on the workbench and in the fume hood of the synthesis laboratory, and they are being explored as a tool for process control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blümich B, Haber-Pohlmeier S, Zia W. Compact NMR. Berlin: de Gruyter; 2014.

    Book  Google Scholar 

  2. Johns M, Fridjonson EO, Vogt S, Haber A. Mobile NMR and MRI: developments and applications. Cambridge: Royal Society of Chemistry; 2015.

    Book  Google Scholar 

  3. Blümich B, Pretsch E. Compact NMR, Trends in analytical chemistry: Part A. Amsterdam: Elsevier; 2016.

    Google Scholar 

  4. Danieli E, Blümich B, Casanova F. Mobile nuclear magnetic resonance. In: Harris RK, Wasylishen RE, editors. eMagRes. Chichester: Wiley; 2012.

    Google Scholar 

  5. Danieli E, Blümich B, Casanova F. Mobile NMR. In: Simpson MJ, Simpson AJ, editors. NMR spectroscopy: a versatile tool for environmental research. New York: Wiley; 2014. p. 149–65.

    Google Scholar 

  6. Blümich B. Miniature and tabletop nuclear magnetic resonance spectrometers. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2016. https://doi.org/10.1002/9780470027318.a9458.

    Chapter  Google Scholar 

  7. van Putte K, van den Enden J. Fully automated determination of solid fat content by pulsed NMR. J Am Oil Chem Soc. 1974;51:316–20.

    Article  Google Scholar 

  8. Barker PJ, Stronks HJ. Application of the low resolution pulsed NMR “Minispec” to analytical problems in the food and agriculture industries. In: Finley JW, Schmidt SJ, Serianni AS, editors. NMR applications in biopolymers. Boston: Springer; 1990.

    Google Scholar 

  9. Jackson JA, Burnett LJ, Harmon F. Remote (inside-out) NMR. III. Detection of nuclear magnetic resonance in a remotely produced region of homogeneous magnetic field. J Magn Reson. 1980;41:411–21.

    CAS  Google Scholar 

  10. Coates GR, Xiao L, Prammer MG. NMR logging principles and applications. Houston: Halliburton Energy Service; 1999.

    Google Scholar 

  11. Hürlimann M, Heaton NJ. NMR well logging. In: Johns M, Fridjonsson EO, Vogt S, Haber A, editors. Mobile NMR and MRI: developments and applications. Cambridge: Royal Society of Chemistry; 2015. p. 11–85.

    Chapter  Google Scholar 

  12. Matzkanin GA. A review of nondestructive testing of composites using NMR. In: Höller P, Dobmann G, Ruud CO, Green RE, editors. Nondestructive characterization of materials. Berlin: Springer; 1989. p. 655–69.

    Chapter  Google Scholar 

  13. Blümich B, Perlo J, Casanova F. Mobile single-sided NMR. Prog Nucl Magn Reson Spectrosc. 2008;52:197–269.

    Article  CAS  Google Scholar 

  14. Blümich B, Casanova F. Mobile NMR. In: Webb G, editor. Modern magnetic resonance. Berlin: Springer; 2008. p. 373–82.

    Google Scholar 

  15. Zalesskiy SS, Danieli E, Blümich B, Ananikov VP. Miniaturization of NMR systems: desktop spectrometers, microcoil spectroscopy, and “NMR on a chip” for chemistry, biochemistry, and industry. Chem Rev. 2014;114:5641–94.

    Article  CAS  Google Scholar 

  16. Ha D, Sun N, Ham D. Next generation multidimensional NMR spectrometer based on semiconductor technology. eMagRes. 2015;4:117–26. https://doi.org/10.1002/9780470034590.emrstm1421.

    Article  CAS  Google Scholar 

  17. Issadore D, Westervelt RM, editors. Point-of-care diagnostics on a Chip. Heidelberg: Springer; 2013.

    Google Scholar 

  18. Soltner H, Blümler P. Dipolar Halbach magnet stacks made from identically shaped permanent magnets for magnetic resonance. Concepts Magn Reson. 2010;36A:211–22.

    Article  CAS  Google Scholar 

  19. Blümler P, Casanova F. Hardware developments: Halbach magnet arrays. In: Johns M, Fridjonsson EO, Vogt S, Haber A, editors. Mobile NMR and MRI: developments and applications. Cambridge: Royal Society of Chemistry; 2015. p. 133–57.

    Chapter  Google Scholar 

  20. Demas V, Prado PJ. Compact magnets for magnetic resonance. Concepts Magn Reson. 2009;34A:48–59.

    Article  Google Scholar 

  21. Casanova F, Perlo J, Blümich B. Single-sided NMR. Berlin: Springer; 2011.

    Book  Google Scholar 

  22. Casanova F, Perlo J, Blümich B. Depth profiling by single-sided NMR. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 107–22.

    Chapter  Google Scholar 

  23. Blümler P, Casanova F. Hardware developments: single-sided magnets. In: Johns M, Fridjonsson EO, Vogt S, Haber A, editors. Mobile NMR and MRI: developments and applications. Cambridge: Royal Society of Chemistry; 2015. p. 110–32.

    Chapter  Google Scholar 

  24. Perlo J, Casanova F, Blümich B. Advances in single-sided NMR. In: Webb G, editor. Modern magnetic resonance. Berlin: Springer; 2008. p. 1523–7.

    Google Scholar 

  25. Mitchell J, Blümler P, McDonald PJ. Spatially resolved nuclear magnetic resonance studies of planar samples. Prog Nucl Magn Reson Spectrosc. 2006;48:161–81.

    Article  CAS  Google Scholar 

  26. Blümich B, Rehorn C, Zia W. Magnets for small-scale and portable NMR. In: Korvink J, Anders J, editors. Micro and nano scale NMR: technologies and systems. New York: Wiley; 2016. p. xxx–xxx.

    Google Scholar 

  27. Perlo J, Casanova F, Blümich B. Ex situ NMR in highly homogeneous fields: 1H spectroscopy. Science. 2007;315:1110–2.

    Article  CAS  Google Scholar 

  28. Eidmann G, Savelsberg R, Blümler P, Blümich B. The NMR MOUSE: a mobile universal surface explorer. J Magn Reson A. 1996;122:104–9.

    Article  CAS  Google Scholar 

  29. Perlo J, Casanova F, Blümich B. Profiles with microscopic resolution by single-sided NMR. J Magn Reson. 2005;176:64–70.

    Article  CAS  Google Scholar 

  30. Van Landeghem M, Danieli E, Perlo J, Blümich B, Casanova F. Low-gradient single-sided NMR sensor for one-shot profiling of human skin. J Magn Reson. 2012;215:74–84.

    Article  CAS  Google Scholar 

  31. McDowell A, Fukushima E. Ultracompact NMR: 1H spectroscopy in a subkilogram magnet. Appl Magn Reson. 2008;35:185–95.

    Article  CAS  Google Scholar 

  32. Danieli E, Perlo J, Blümich B, Casanova F. Small magnets for portable NMR spectrometers. Angew Chem Int Ed. 2010;49:4133–5.

    Article  CAS  Google Scholar 

  33. Halbach K. Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl Instrum Methods. 1980;169:1–10.

    Article  CAS  Google Scholar 

  34. Blümich B. Introduction to compact NMR: a review of methods. TrAc Trends Anal Chem. 2016. https://doi.org/10.1016/j.trac.2015.12.012.

    Article  Google Scholar 

  35. Ernst RR, Bodenhausen G, Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions. Oxford: Clarendon; 1987.

    Google Scholar 

  36. Callaghan PT. Translational dynamics and magnetic resonance. Oxford: Oxford University Press; 2011.

    Book  Google Scholar 

  37. Haws EJ, Hill RR, Northrope DJ. The interpretation of proton magnetic resonance spectra. London: Heyden & Sons; 1973.

    Google Scholar 

  38. Blümich B, Casanova F, Perlo J, Presciutti F, Anselmi C, Doherty B. Noninvasive testing of art and cultural heritage by mobile NMR. Acc Chem Res. 2010;43:761–70.

    Article  CAS  Google Scholar 

  39. Capitani D, Di Tullio V, Proietti N. Nuclear magnetic resonance to characterize and monitor cultural heritage. Prog Nucl Magn Reson Spectrosc. 2012;64:29–69.

    Article  CAS  Google Scholar 

  40. Saalwächter K. Microstructure and dynamics of elastomers as studied by advanced low-resolution NMR methods. Rubber Chem Technol. 2012;85:350–86.

    Article  CAS  Google Scholar 

  41. Saalwächter K. Proton multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Prog Nucl Magn Reson Spectrosc. 2007;51:1–35.

    Article  CAS  Google Scholar 

  42. Carr HY, Purcell HM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94:630–8.

    Article  CAS  Google Scholar 

  43. Meiboom S, Gill D. Modified spin echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688–91.

    Article  CAS  Google Scholar 

  44. Bergman E, Yeredor A, Nevo U. An estimation method for improved extraction of the decay curve signal from CPMG-like measurements with a unilateral scanner. J Magn Reson. 2014;245:87–93.

    Article  CAS  Google Scholar 

  45. Borneman TW, Hürlimann MD, Cory DG. Application of optimal control to CPMG refocusing pulse design. J Magn Reson. 2010;207:220–33.

    Article  CAS  Google Scholar 

  46. Marble A. Optimization of echo amplitudes resulting from a series of 90° pulses in an inhomogeneous static field. J Magn Reson. 2012;216:37–42.

    Article  CAS  Google Scholar 

  47. Mandal S, Oh S, Hürlimann MD. Absolute phase effects on CPMG-type pulse sequences. J Magn Reson. 2015;261:121–32.

    Article  CAS  Google Scholar 

  48. Hürlimann MD. Ex situ measurement of one- and two-dimensional distribution functions. In: Casanova F, Perlo J, Blümich B, editors. Single-sided NMR. Berlin: Springer; 2011. p. 57–86.

    Chapter  Google Scholar 

  49. Voda MA, Van Duynhoven J. Bench-top NMR – food: solid fat content determination and emulsion droplet sizing. In: Johns M, Fridjonson EO, Vogt S, Haber A, editors. Mobile NMR and MRI: developments and applications. Cambridge: Royal Society of Chemistry; 2015. p. 86–109.

    Chapter  Google Scholar 

  50. Cudaj M, Hofe T, Wilhelm M, Vargas MA, Guthausen G. Medium resolution NMR at 20 MHz: possibilities and challenges. In: Renou J-P, Belton P, Webb GA, editors. Magnetic resonance in food science. An exciting future. Cambridge: Royal Society of Chemistry; 2011. p. 46–56.

    Google Scholar 

  51. Bernewitz R, Horvat M, Schuchmann H-P, Guthausen G. Structures in food: possibilities of imaging and diffusometry. In: van Duynhoven J, Belton P, Webb GA, editors. Magnetic resonance in food science. Food for thought. Cambridge: Royal Society of Chemistry; 2013. p. 91–102.

    Google Scholar 

  52. Guthausen G. Analysis of food and emulsions. TrAC Trends Anal Chem. 2016. https://doi.org/10.1016/j.trac.2016.02.011.

    Article  Google Scholar 

  53. van Duynhoven J, Voda A, Witek M, Van As H. Time-domain NMR applied to food products. Annu Rep NMR Spectrosc. 2010;69:145–97.

    Article  CAS  Google Scholar 

  54. Trezza E, Haiduc AM, Goudappel GJW, van Duynhoven JPM. Rapid phase compositional assessment of lipid-based food products by time domain NMR. Magn Reson Chem. 2006;44:1023–30.

    Article  CAS  Google Scholar 

  55. Todt H, Burk W, Guthausen G, Guthausen A, Kamlowski A, Schmalbein D. Quality control with time-domain NMR. Eur J Lipid Sci Technol. 2001;103:835–40.

    Article  CAS  Google Scholar 

  56. Kim SM, McCarthy MJ. Investigation of olive accession using nuclear magnetic resonance. J Agric Life Sci. 2010;41:75–82.

    Google Scholar 

  57. Bernewitz R, Guan X, Guthausen G, Wolf F, Schuchmann H-P. PFG-NMR on double emulsions: a detailed look into molecular processes. In: Renou J-P, Belton P, Webb GA, editors. Magnetic resonance in food science. An exciting future. Cambridge: Royal Society of Chemistry; 2011. p. 46–56.

    Google Scholar 

  58. Guthausen G, Todt H, Burk W, Schmalbein D, Kamlowski A. Time-domain NMR in quality control: (C) single-sided NMR in foods. In: Webb GA, editor. Modern magnetic resonance. Berlin: Springer; 2006. p. 1873–97.

    Google Scholar 

  59. Petrov OV, Hay J, Balcom BJ. Fat and moisture content determination with unilateral NMR. Food Res Int. 2008;7:758–64.

    Article  CAS  Google Scholar 

  60. Veliyullin E, Masthikin IV, Marble AE, Balcom BJ. Rapid determination of fat content in packed products by unilateral NMR. J Sci Food Agric. 2008;88:2563–7.

    Article  CAS  Google Scholar 

  61. Nakashima Y. Development of a single-sided nuclear magnetic resonance scanner for the in vivo quantification of live cattle marbling. Appl Magn Reson. 2015;46:593–606.

    Article  CAS  Google Scholar 

  62. Provencher SW. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun. 1982;27:213–27.

    Article  Google Scholar 

  63. Borgia GC, Brown RJS, Fantazzini P. Uniform-penalty inversion of multiexponential decay data. J Magn Reson. 2000;147:273–85.

    Article  CAS  Google Scholar 

  64. Lamanna R. On the inversion of multicomponent NMR relaxation and diffusion decays in heterogeneous systems. Concepts Magn Reson. 2005;26A:87–90.

    Article  CAS  Google Scholar 

  65. Venkataramanan L, Song YQ, Hürlimann MD. Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions. IEEE Trans Signal Process. 2002;50:1017–26.

    Article  Google Scholar 

  66. Song Y-Q. A 2D NMR method to characterize granular structure of dairy products. Prog Nucl Magn Reson Spectrosc. 2009;55:324–34.

    Article  CAS  Google Scholar 

  67. Hürlimann MD, Burcaw L, Song Y-Q. Quantitative characterization of food products by two-dimensional D-T2 and T1-T2 distribution functions in a static gradient. J Colloid Interface Sci. 2006;297:303–11.

    Article  CAS  Google Scholar 

  68. Callaghan PT. Principles of nuclear magnetic resonance microscopy. New York: Oxford University Press; 1991.

    Google Scholar 

  69. Blümich B. NMR imaging of materials. Oxford: Clarendon; 2000.

    Google Scholar 

  70. Blümich B. Applications in biology and medicine. In: Casanova F, Perlo J, Blümich B, editors. Single-sided NMR. Berlin: Springer; 2011. p. 187–202.

    Chapter  Google Scholar 

  71. Danieli E, Blümich B. Single-sided magnetic resonance depth profiling in biological and materials science. J Magn Reson. 2013;299:142–54.

    Article  CAS  Google Scholar 

  72. Oligschläger D. Advances in compact stray-field NMR. Aachen: Dissertation RWTH Aachen University; 2015.

    Google Scholar 

  73. Rössler E, Mattea C, Stapf S. Feasibility of high-resolution one-dimensional relaxation imaging at low field using a single-sided NMR scanner applied to articular cartilage. J Magn Reson. 2015;251:43–51.

    Article  CAS  Google Scholar 

  74. Windt CW, Blümler P. A portable NMR sensor to measure dynamic changes in the amount of water in living stems or fruit and its potential to measure sap flow. Tree Physiol. 2015;35:366–75.

    Article  Google Scholar 

  75. Windt CW, Soltner H, van Dusschoten D, Blümler P. A portable Halbach magnet that can be opened and closed without force: the NMR-CUFF. J Magn Reson. 2011;208:27–33.

    Article  CAS  Google Scholar 

  76. Jones M, Aptaker PS, Cox J, Gardiner BA, McDonald PJ. A transportable magnetic resonance imaging system for in-situ measurements of living trees: the tree hugger. J Magn Reson. 2012;218:133–40.

    Article  CAS  Google Scholar 

  77. Geya Y, Kimura T, Fujisaki H, Terada Y, Kose K, Haishi T, et al. Longitudinal NMR parameter measurements of Japanese pear fruit during the growing process using a mobile magnetic resonance imaging system. J Magn Reson. 2013;226:45–51.

    Article  CAS  Google Scholar 

  78. Zhang L, McCarthy MJ. NMR relaxometry study of development of freeze damage in mandarin orange. J Sci Food Agric. 2015;96:3133–9.

    Article  CAS  Google Scholar 

  79. Le P, Zhang L, Lim V, McCarthy MJ, Nitin N. A novel approach for measuring resistance of Escherichia coli and Listeria monocytogenes to hydrogen peroxide using label-free magnetic resonance imaging and relaxometry. Food Control. 2015;50:560–7.

    Article  CAS  Google Scholar 

  80. Zhang L, McCarthy MJ. Assessment of pomegranate postharvest quality using nuclear magnetic resonance. Postharvest Biol Technol. 2013;77:59–66.

    Article  Google Scholar 

  81. Kirtil E, Oztop HM, Sirjariyawat A, Ngamchuachit P, Barrett DM, McCarthy MJ. Effect of pectin methyl esterase (PME) and CaCl2 infusion on the cell integrity of fresh-cut and frozen-thawed mangoes: an NMR relaxometry study. Food Res Int. 2014;66:409–16.

    Article  CAS  Google Scholar 

  82. Ipek-Ugay S, Direßle T, Ledwig M, Guo J, Hirsch S, Sack I, et al. Tabletop magnetic resonance elastography for the measurement of viscoelastic parameters of small tissue samples. J Magn Reson. 2015;251:13–8.

    Article  CAS  Google Scholar 

  83. Macmillan B, Veliyulin E, Lamason C, Balcom BJ. Quantitative magnetic resonance measurements of low moisture content wood. Can J For Res. 2011;41:2158–62.

    Article  Google Scholar 

  84. Lamason C, Macmillan B, Balcom B, Leblonz B. Water content measurement in black spruce and aspen sapwood with benchtop and portable magnetic resonance devices. Wood Mat Eng. 2015;10:86–93.

    Article  CAS  Google Scholar 

  85. Adams A. Analysis of solid technical polymers by compact NMR. TrAC Trends Anal Chem. 2016. https://doi.org/10.1016/j.trac.2016.04.003.

    Article  Google Scholar 

  86. Schäler K, Roos M, Micke P, Golitsyn Y, Seidlitz A, Thurn-Albrecht T, et al. Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast. Solid State Nucl Magn Reson. 2015;72:50–63.

    Article  CAS  Google Scholar 

  87. Kolz J. Applications in materials science and cultural heritage. In: Casanova F, Perlo J, Blümich B, editors. Single-sided NMR. Berlin: Springer; 2011. p. 203–22.

    Chapter  Google Scholar 

  88. Maus A, Hertlein C, Saalwächter K. A robust proton NMR method to investigate hard/soft ratios, crystallinity, and component mobility in polymers. Macromol Chem Phys. 2006;207:1150–8.

    Article  CAS  Google Scholar 

  89. Adams A, Adams M, Blümich B, Kocks H-J, Hilgert O, Zimmermann S. Nondestructive testing procedure for evaluation of fracture-mechanically relevant abnormalities in partially crystalline polymers. 3R Int. 2010;4:216–25.

    Google Scholar 

  90. Adams A, Piechatzek A, Schmitt G, Siegmund G. Single-sided nuclear magnetic resonance for condition monitoring of cross-linked polyethylene exposed to aggressive media. Anal Chim Acta. 2015;887:163–71.

    Article  CAS  Google Scholar 

  91. Blümich B, Adams-Buda A, Baias M. Alterung von Polyethylen: Zerstörungsfreies Prüfen mit mobiler magnetischer Resonanz. GWF Gas Erdgas. 2007;148:95–8.

    Google Scholar 

  92. Kwamen R, Blümich B, Buda A. Estimation of self-diffusion coefficients of small penentrants in semicrystaline polymers using single-sided NMR. Macromol Rapid Commun. 2012;33:943–7.

    Article  CAS  Google Scholar 

  93. Reuvers NJW, Huinink HP, Fischer HR, Adan OG. Quantitative water uptake study in thin nylon-6 films with NMR imaging. Macromol. 2012;45:1937–45.

    Article  CAS  Google Scholar 

  94. Hedesiu C, Demco DE, Kleppinger R, Adams-Buda A, Blümich B, Remerie K, Litvinov VM. The effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in high-density polyethylene. Polymer. 2007;48:763–77.

    Article  CAS  Google Scholar 

  95. Teymouri Y, Kwamen R, Blümich B. Aging and degradation of LDPE by compact NMR. Macromol Mat Chem. 2015;300:1063–2070.

    Article  CAS  Google Scholar 

  96. Teymouri Y, Adams A, Blümich B. Compact low-field NMR: unmasking morphological changes from solvent-induced crystallization in polyethylene. Eur Polym J. 2016;80:48–57.

    Article  CAS  Google Scholar 

  97. Sun N, Wenzel M, Adams A. Morphology of high-density polyethylene pipes stored under hydrostatic pressure at elevated temperature. Polymer. 2014;55:3792–800.

    Article  CAS  Google Scholar 

  98. Campise F, Roth LE, Acosta RH, Villar MA, Vallés EM, Monti GA, et al. Contribution of linear guest and structural pendant chains to relaxation dynamics in model polymer networks probed by time-domain 1H NMR. Macromol. 2016;49:387–94.

    Article  CAS  Google Scholar 

  99. Doughty PJ, McDonald PJ. Drying coatings and other applications with GARField. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 89–106.

    Chapter  Google Scholar 

  100. Zheng X, Xianjun C, Kaikai M, Yunfeng X. Novel unilateral NMR sensor for assessing the aging status of silicone rubber insulator. IEEE Sens J. 2016;16:1168–75.

    Article  CAS  Google Scholar 

  101. Blümich B. Compact NMR helps tire, rubber testing. Rubber Plastic News, 8 Sept 2014. p. 31–3.

    Google Scholar 

  102. Chalcea RI, Fechete R, Culea E, Demco DE, Blümich B. Distributions of transverse relaxation times for soft solids measured in strongly inhomogeneous magnetic fields. J Magn Reson. 2009;196:179–90.

    Google Scholar 

  103. Höpfner J, Guthausen G, Saalwächter K, Wilhelm M. Network structure and inhomogeneities of model and commercial polyelectrolyte hydrogels as investigated by low-field proton NMR techniques. Macromolecules. 2014;47:4251–65.

    Article  CAS  Google Scholar 

  104. Song YQ. Magnetic resonance in porous media (MRPM): a perspective. J Magn Reson. 2013;229:12–24.

    Article  CAS  Google Scholar 

  105. Hürlimann MD, Song Y-Q, Fantazzini P, Bortolotti V. Magnetic resonance in porous media. AIP conference proceedings 1081. New York: Am Inst Phys; 2008.

    Google Scholar 

  106. Xie R, Xiao L. Advanced fluid typing methods for NMR logging. Pet Sci. 2011;8:163–9.

    Article  Google Scholar 

  107. Paciok E, Haber A, van Landeghem M, Blümich B. Relaxation exchange in nanoporous silica by low-field NMR. Z Physiol Chem. 2012;226:1243–57.

    Article  CAS  Google Scholar 

  108. Fleury M, Soualem J. Quantitative analysis of diffusional pore coupling from T2-store-T2 NMR experiments. J Colloid Interface Sci. 2009;336:250–9.

    Article  CAS  Google Scholar 

  109. Van Landeghem M, Haber A, d’Espinose de Lacaillerie J-B, Blümich B. Analysis of multisite 2D relaxation exchange NMR. Concepts Magn Reson. 2010;36A:153–69.

    Article  CAS  Google Scholar 

  110. Kittler WC, Galvosas P, Hunter MW. Parallel acquisition of q-space using second order magnetic fields for single-shot diffusion measurements. J Magn Reson. 2014;244:46–52.

    Article  CAS  Google Scholar 

  111. Kittler WC, Obruchkov S, Galvosas P, Hunter MW. Pulsed second order field NMR for real time PGSE and single-shot surface to volume ratio measurements. J Magn Reson. 2014;247:42–9.

    Article  CAS  Google Scholar 

  112. Mandal S, Song Y-Q. Heternuclear J-coupling measurements in grossly inhomogeneous magnetic fields. J Magn Reson. 2015;255:15–27.

    Article  CAS  Google Scholar 

  113. Donaldson M, Freed D, Mandal S, Song Y-Q. Chemical analysis using low-field magnetic resonance. TrAC Trends Anal Chem. 2016. https://doi.org/10.1016/j.trac.2016.03.008.

    Article  Google Scholar 

  114. Hirasaki GJ. NMR applications in petroleum reservoir studies. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 321–39.

    Chapter  Google Scholar 

  115. Hu H-T, Xiao L. Investigation characteristics of NMR wireline logging tools. Chin J Magn Reson. 2010;27:572. ISSN 1000–4556.

    CAS  Google Scholar 

  116. Xiao L, Liu K. Characteristics of the nuclear magnetic resonance logging response in fracture oil and gas reservoirs. New J Phys. 2011;13:045003.

    Article  CAS  Google Scholar 

  117. Liu H, Xiao L, Guo B, Zhang Z, Zong F, Deng F, et al. Heavy oil component characterization with multi-dimensional unilateral NMR. Pet Sci. 2013;10:402–7.

    Article  CAS  Google Scholar 

  118. Neudert O, Stapf S, Mattea C. Diffusion exchange NMR spectroscopy in inhomogeneous magnetic fields. J Magn Reson. 2011;208:256–61.

    Article  CAS  Google Scholar 

  119. Song Y-Q. Novel two dimensional NMR of diffusion and relaxation for material characterization. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 163–82.

    Chapter  Google Scholar 

  120. Xiao L, Liu H, Deng F, Zhang Z, An T, Zong F, Anferov V, Anferova S. Probing internal gradients dependence in sandstones with multi-dimensional NMR. Microporous Mesoporous Mater. 2013;178:90–3.

    Article  CAS  Google Scholar 

  121. Xiao L, Liao G, Xie R, Wang Z. Inversion of NMR relaxation measurements in well logging. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 501–17.

    Google Scholar 

  122. Heaton NJ, Freedman R, Karminik R, Taherian R, Walter K, DePavia L. Applications of a new-generation NMR wireline logging tool. In: SPE7740, editor. Presented at the 77th SPE Annual Technical Conference and Exhibition, San Antonio. 2002.

    Google Scholar 

  123. Perlo J, Danieli E, Perlo J, Blümich B, Casanova F. Optimized slim-line logging tool to measure soil moisture in situ. J Magn Reson. 2013;233:74–9.

    Article  CAS  Google Scholar 

  124. Sucre O, Pohlmeier A, Minière A, Blümich B. Low-field NMR logging sensor for measuring hydraulic parameters of model soils. J Hydrol. 2011;406:30–8.

    Article  Google Scholar 

  125. Walsh D, Turner P, Grunewald E, Zhang H, Butler Jr JJ, Reboulet E, et al. A small-diameter NMR logging tool for groundwater investigations. Ground Water. 2013;51:914–26.

    Article  CAS  Google Scholar 

  126. Hertrich M. Imaging of groundwater with nuclear magnetic resonance. Progr Nucl Magn Reson Spectrosc. 2008;53:227–48.

    Article  CAS  Google Scholar 

  127. Van As H, Homan N, Vergeldt FJ, Windt CW. MRI of water transport in the soil-plant-atmosphere continuum. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 315–30.

    Google Scholar 

  128. Conte P, Berns AE, Pohlmeier A, Alonzo G, editors. Special issue: Applications and new developments of magnetic resonance techniques in soil science. Open Magn Reson J. 2010;3. ISSN 1874–7898.

    Google Scholar 

  129. Jaeger F, Shchegolikhina A, Van As H, Schaumann GE. Proton NMR relaxometry as a useful tool to evaluate swelling processes in peat soils. Open Magn Reson J. 2010;3:27–45.

    Article  CAS  Google Scholar 

  130. Jaeger F, Bowe S, Van As H, Schaumann GE. Evaluation of 1H NMR relaxometry for the assessment of pore-size distribution in soil samples. Eur J Soil Sci. 2009;60:1052–64.

    Article  Google Scholar 

  131. Stinagciu L, Pohlmeier A, Blümler P, Weihermüller L, van Dusschoten V, Stapf S, et al. Characterization of unsaturated porous media by high-field and low-field NMR relaxometry. Water Resource Res. 2009;45:W08412.

    Google Scholar 

  132. Blümich B, Casanova F, Dabrowski M, Danieli E, Evertz L, Haber A, et al. Small-scale instrumentation for nuclear magnetic resonance of porous media. New J Phys. 2011;13:015003.

    Article  Google Scholar 

  133. Blümich B, Mauler J, Haber A, Perlo J, Danieli E, Casanova F. Mobile NMR for geophysical analysis and materials testing. Pet Sci. 2009;6:1–7.

    Article  CAS  Google Scholar 

  134. Freeman R, Anand V, Grand B, Ganesan K, Tabrizi P, Torres R, et al. A compact high-performance low-field NMR apparatus for measurement on fluids at very high pressures and temperatures. Rev Sci Instrum. 2014;85:025102–1–10.

    Google Scholar 

  135. García-Naranjo JC, Mastikhin IV, Colpitts BG, Balcom BJ. A unilateral magnet with an extended constant magnetic field gradient. J Magn Reson. 2010;207:337–44.

    Article  CAS  Google Scholar 

  136. Qi Y, Liu N, Wang W. The observation of residual oil evolution during water flooding using NMR D-T2 maps. Appl Magn Reson. 2015;46:1089–98.

    Article  CAS  Google Scholar 

  137. Liu Z-Y, Li Y-Q, Cui M-H, Wang F-Y, Prasiddhianti AG. Pore-scale investigation of residual oil displacement in surfactant–polymer flooding using nuclear magnetic resonance experiments. Pet Sci. 2016;13:91–9.

    Article  CAS  Google Scholar 

  138. Ouelette M, Li M, Liao G, Hussein EMA, Romero-Zeron L, Balcom BJ. Rock core analysis: metal core holders for magnetic resonance imaging under reservoid conditions. In: Johns M, Fridjonsson EO, Vogt S, Haber A, editors. Mobile NMR and MRI. Cambridge: Royal Society of Chemistry; 2016. p. 190–309.

    Google Scholar 

  139. Fechete R, Demco DE, Zhu X, Tillmann W, Möller M. Water states and dynamics in perfluorinated ionomer membranes by 1H one- and two-dimensional NMR spectroscopy, relaxometry, and diffusometry. Chem Phys Lett. 2014;597:6–15.

    Article  CAS  Google Scholar 

  140. Marble AE, LaPlante G, Mastikhin IV, Balcom BJ. Magnetic resonance detection of water in composite sandwich structures. NDT E Int. 2009;42:404–9.

    Article  CAS  Google Scholar 

  141. Deng F, Xiao L, Liao G, Zong F, Chen W. A new approach of two-dimensional NMR relaxation measurement in flowing fluid. Appl Magn Reson. 2014;45:179–92.

    Article  Google Scholar 

  142. Gomez BF, Nunes LMS, Lobo CMS, Carvalho AS, Cabeca LF, Colnago LA. In situ analysis of copper electro-deposition reaction using unilateral NMR sensor. J Magn Reson. 2015;261:83–6.

    Article  CAS  Google Scholar 

  143. Hailu K, Guthausen G, Becker W, König A, Bendfeld A, Geissler E. In-situ characterization of the cure reaction of HTPB and IPDI by simultaneous NMR and IR measurements. Polym Test. 2010;29:513–9.

    Article  CAS  Google Scholar 

  144. Marchi Netto A, Steinhaus J, Hausnerova B, Moeginger B, Blümich B. Time-resolved study of the photo-curing process of dental resins with the NMR-MOUSE. Appl Magn Reson. 2013;44:1027–39.

    Article  CAS  Google Scholar 

  145. Van Landeghem M, d’Espinose de Lacaillerie J-B, Blümich B, Korb J-P, Bresson B. The roles of hydration and evaporation during the drying of a cement paste by localized NMR. Cem Concr Res. 2013;48:86–96.

    Article  CAS  Google Scholar 

  146. Cano-Barrita PFJ, Marble AE, Balcom BJ, Garcia JC, Masthikin IV, Thomas MDA, et al. Embedded NMR sensors to monitor water loss causes by hydration in Portland cement mortar. Cem Concr Res. 2009;30:324–8.

    Article  CAS  Google Scholar 

  147. Díaz-Díaz F, Cano-Barrita PFJ, Balcom BJ, Solís-Nájera SE, Rodríguez AO. Embedded NMR sensor to monitor compressive strength development and pore size distribution in hydrating concrete. Sensors. 2013;13:15985–99.

    Article  CAS  Google Scholar 

  148. Oligschläger D, Kupferschläger K, Poschadel T, Watzlaw J, Blümich B. Miniature mobile NMR sensors for material testing and moisture-monitoring. Diffus Fundam. 2014;22:1–25.

    Google Scholar 

  149. Proietti N, Capitani D, Lamanna R, Presciutti F, Rossi E, Segre AL. Fresco paintings studied by unilateral NMR. J Magn Reson. 2005;177:111–7.

    Article  CAS  Google Scholar 

  150. Di Tullio V, Proietti N, Gobbino M, Capitani D, Olmi R, Priori S, et al. Non-destructive mapping of dampness and salts in degraded wall paintings in hypogeous buildings: the case of St. Clement at mass fresco in St. Clement Basilica, Rome. Anal Bioanal Chem. 2010;396:1885–96.

    Article  CAS  Google Scholar 

  151. Di Tullio V, Proietti N, Capitani D, Nicolini I, Mecchi AM. NMR depth profiling as a non-invasive analytical tool to probe the penetration depth of hydrophobic treatments and inhomogeneities in treated porous stones. Anal Bioanal Chem. 2011;400:3151–64.

    Article  CAS  Google Scholar 

  152. Haber A, Blümich B, Souvorova D, Del Federico E. Ancient Roman wall paintings mapped nondestructively by portable NMR. Anal Bioanal Chem. 2011;401:1441–52.

    Article  CAS  Google Scholar 

  153. Fukunaga K, Meldrum T, Zia W, Ohno M, Fuchida T, Blümich B. Nondestructive investigation of the internal structure of fresco paintings. IEEE Digit Herit. 2013;1:81–8.

    Google Scholar 

  154. Rühli F, Böni T, Perlo J, Casanova F, Baias M, Egarter E, et al. Non-invasive spatial tissue discrimination in ancient mummies and bones in situ by portable nuclear magnetic resonance. J Cult Herit. 2007;8:257–63.

    Article  Google Scholar 

  155. Senni L, Casieri C, Bovino A, Gaetani MC, De Luca F. A portable NMR sensor for moisture monitoring of wooden works of art, particularly paintings on wood. Wood Sci Technol. 2011;43:167–80.

    Article  CAS  Google Scholar 

  156. Presciutti F, Perlo J, Casanova F, Glöggler S, Miliani C, Blümich B, et al. Noninvasive nuclear magnetic resonance profiling of painting layers. Appl Phys Lett. 2008;93:033505-1–3.

    Article  CAS  Google Scholar 

  157. Del Federico E, Centeno SA, Kehlet C, Currier P, Stockman D, Jerschow A. Unilateral NMR applied to the conservation of works of art. Anal Bioanal Chem. 2010;396:213–20.

    Article  CAS  Google Scholar 

  158. Fife GR, Stabik B, Kelley AE, King JN, Blümich B, Hoppenbrouwers R, et al. Characterization of aging and solvent treatments of painted surfaces using single-sided NMR. Magn Reson Chem. 2015;53:58–63.

    Article  CAS  Google Scholar 

  159. Masic A, Chierotti MR, Gobetto R, Martra G, Rabin I, Coluccia S. Solid-state and unilateral NMR study of deterioration of a Dead Sea Scroll fragment. Anal Bioanal Chem. 2012;402:1551–7.

    Article  CAS  Google Scholar 

  160. Zhu L, Del Federico E, Llott AJ, Klokkernes T, Kehlet C, Jerschow A. MRI and unilateral NMR study of reindeer skin tanning processes. Anal Chem. 2015;87:3820–5.

    Article  CAS  Google Scholar 

  161. Badea E, Sendrea C, Carsote C, Adams A, Blümich B. Unilateral NMR and thermal microscopy studies of vegetable tanned leather exposed to dehydrothermal treatment and light irradiation. Microchem J. 2016;129:158–65.

    Article  CAS  Google Scholar 

  162. Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006.

    Google Scholar 

  163. Kose K, Haishi T, Handa S. Applications of permanent-magnet compact MRI systems. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 365–82.

    Google Scholar 

  164. Kose K. Compact MRI for chemical engineering. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 77–88.

    Chapter  Google Scholar 

  165. Rössler E, Mattea C, Mollava A, Stapf S. Low-field one-dimensional and direction dependent relaxation imaging of bovine articular cartilage. J Magn Reson. 2011;213:112–8.

    Article  CAS  Google Scholar 

  166. McDonald PJ, Akhmerov A, Backhouse LJ, Pitts S. Magnetic resonance profiling of human skin in vivo using GARField magnets. J Pharm Sci. 2005;94:1850–60.

    Article  CAS  Google Scholar 

  167. Ciampi E, van Ginkel M, McDonald PJ, Pitts S, Bonnist EY, Singleton S, et al. Dynamic in vivo mapping of model moisturiser ingress into human skin by GARField MRI. NMR Biomed. 2010;24:135–44.

    Article  CAS  Google Scholar 

  168. Van As H, van Duynhoven J. MRI of plants and foods. J Magn Reson. 2013;229:25–34.

    Article  CAS  Google Scholar 

  169. Tomiha S, Iita N, Okada F, Handa S, Kose K. Relaxation time measurements of bone marrow protons in the calcaneus using a compact MRI system at 0.2 Tesla field strength. Magn Reson Chem. 2008;60:485–8.

    Article  Google Scholar 

  170. Kimura T, Geya Y, Terada Y, Kose K, Haishi T, Gemma H, et al. Development of a mobile magnetic resonance imaging system for outdoor tree measurements. Rev Sci Instrum. 2011;82:053704.

    Article  CAS  Google Scholar 

  171. Nagata A, Kose K, Terada Y. Development of an outdoor MRI system for measuring flow in a living tree. J Magn Reson. 2016;265:129–38.

    Article  CAS  Google Scholar 

  172. Van As H, Schenen T, Vergeldt FJ. MRI of intact plants. Photosynth Res. 2009;102:213–22.

    Article  CAS  Google Scholar 

  173. Windt CW, Vergeldt FJ, de Jager PA, van As H. MRI of long-distance water-transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ. 2006;29:1715–29.

    Article  CAS  Google Scholar 

  174. Rascher U, Blossfeld S, Fiorani F, Jahnke S, Jansen M, Kuhn AJ, et al. Non-invasive approaches for phenotyping of enhanced performance traits in bean. Funct Plant Biol. 2011;38:968–83.

    Article  CAS  Google Scholar 

  175. van Duynhoven JPM, Goudappel GJW, Weglarz WP, Windt CW, Cabrer PR, Mohoric A, et al. Noninvasive assessment of moisture migration in food products by MRI. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 331–52.

    Google Scholar 

  176. McCarthy MJ, Gambhir PN, Goloshevsky AG. NMR for food quality control. In: Stapf S, Han S-I, editors. NMR imaging in chemical engineering. Weinheim: Wiley-VCH; 2006. p. 471–89.

    Chapter  Google Scholar 

  177. Milczarek RR, McCarthy MJ. Low-field MR sensors for fruit inspection. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 289–302.

    Google Scholar 

  178. Zhang L, McCarthy MJ. Black heart characterization and detection in pomegranate using NMR relaxometry and MR imaging. Postharvest Biol Technol. 2012;67:96–101.

    Article  CAS  Google Scholar 

  179. Tao F, Zhang L, McCarty MJ, Beckles DM, Saltveit M. Magnetic resonance imaging provides spatial resolution of chilling injury in Micro-Tom tomato (solanum lycopersicum L.) fruit. Postharvest Biol Technol. 2014;97:62–7.

    Article  Google Scholar 

  180. Mitchell J, Staniland J, Wilson A, Howe A, Clarke A, Fordham EJ, et al. Magnetic resonance imaging of chemical EOR in core to complement field pilot studies. Aberdeen: International Symposium, Society of Core Analysts. 2012. SCA2012–30.

    Google Scholar 

  181. Romero-Zeron LB, Ongsurakul S, Li L, Balcom B. Visualization of the effect of porous media wettability on polymer flooding performance through unconsolidated porous media using magnetic resonance imaging. J Pet Sci Technol. 2010;28:52–67.

    Article  CAS  Google Scholar 

  182. Petrov OV, Ersland G, Balcom BJ. T2 distribution mapping profiles with phase-encode MRI. J Magn Reson. 2011;209:39–46.

    Article  CAS  Google Scholar 

  183. Mitchell J, Edwards JE, Fordham E, Stanlland J, Chassagne R, Cherukupalli PK, et al. Quantitative remaining oil interpretation using magnetic resonance: from the laboratory to the pilot. SPE EOR Conference. www.onepetro.org 2012. SPE-154704-MS. https://doi.org/10.2118/154704-MS.

  184. Ferno MA, Haugen A, Graue A. Visualizing oil displacement in fractured carbonate rocks-impacts on oil recovery at different hydrostatic stress and wettability conditions. 5th US-Canada Rock Mechanics Symposium. www.onepetro.org 2010. ARMA-10-288.

  185. Kwak HT, Funk JJ, Yousef AA, Balcom BJ. New insights into microscopic fluid/rock Interaction: MR-CT microscopy approach. SPE Ann Tech Conf Exhib. www.onepetro.org 2012. SPE-159194-MS. https://doi.org/10.2118/159194-MS.

  186. Meybodi HE, Kharrat R, Araghi MN. Experimental studying of pore morphology and wettability effects on microscopic and macroscopic displacement efficiency of polymer flooding. J Pet Sci Technol. 2010;78:347–63.

    Google Scholar 

  187. Bortolotti V, Macini P, Mesini EN, Fantazzini P, Gombia M, Srisuriyachai F. Probing wettability reversal in carbonatic rocks by spatially resolved and non-resolved 1H-NMR relaxation analysis. SPE Ann Tech Conf Exhib. www.onepetro.org 2010. SPE-133937-MS. https://doi.org/10.2118/133937-MS.

  188. Han H, Ouellette M, MacMillan B, Goora F, MacGregor R, Green D, et al. High pressure magnetic resonance imaging with metallic vessels. J Magn Reson. 2011;213:90–7.

    Article  CAS  Google Scholar 

  189. Merz S, Pohlmeier A, Vanderborght J, van Dusschoten D, Vereecken H. Moisture profiles of the upper soil layer during evaporation monitored by NMR. Water Resour Res. 2014;50:5184–95.

    Article  Google Scholar 

  190. Haynes H, Lakshmanan S, Ockelford A-M, Vignaga E, Holmes WM. The emerging use of magnetic resonance imaging to study river bed dynamics. Spetrosc Eur. 2015;21:6–8.

    Google Scholar 

  191. Danieli E, Berdel K, Perlo J, Michaeli W, Masberg U, Blümich B, et al. Determining object boundaries from MR images with sub-pixel resolution: towards in-line inspection with a mobile tomograph. J Magn Reson. 2010;207:53–8.

    Article  CAS  Google Scholar 

  192. Lavenson DM, Tozzi EJ, McCarthy MJ, Powell RL. Effective diffusivities of BSA in cellulosic fiber beds measured with magnetic resonance imaging. Cellulose. 2012;19:1085–95.

    CAS  Google Scholar 

  193. Perlo J, Siletta E, Danieli E, Cattaneo G, Acosta R, Blümich B, et al. Desktop MRI as a promising tool for mapping intra-aneurismal flow. Magn Reson Imaging. 2015;33:328–35.

    Article  Google Scholar 

  194. Lim V, Hobby A, McCarthy MJ, McCarthy KL. Laminar mixing of miscible fluids in a SMX mixer evaluated by magnetic resonance imaging (MRI). Chem Eng Sci. 2015;137:1024–33.

    Article  CAS  Google Scholar 

  195. Mihailova O, Lim V, McCarthy MJ, McCarthy KL, Bakalis S. Laminar mixing in a SMX static mixer evaluated by positron emission particle tracking (PEPT) and magnetic resonance imaging (MRI). Chem Eng Sci. 2015;137:1014–23.

    Article  CAS  Google Scholar 

  196. Adachi S, Ozeki T, Shigeki R, Handa S, Kose K, Haishi T, et al. Development of a compact magnetic resonance imaging system for a cold room. Rev Sci Instrum. 2009;80:054701.

    Article  CAS  Google Scholar 

  197. Nakamura T, Tamada D, Yanagi Y, Itoh Y, Nemoto T, Utumi H, et al. Development of a superconducting bulk magnet for NMR and MRI. J Magn Reson. 2015;259:68–75.

    Article  CAS  Google Scholar 

  198. Ogawa K, Nakamura T, Terada Y, Kose K, Haishi T. Development of a magnetic resonance microscope using a high Tc bulk superconducting magnet. Appl Phys Lett. 2011;98:234101.

    Article  CAS  Google Scholar 

  199. Nordon A, McGill CA, Littlejohn D. Evaluation of low-field nuclear magnetic resonance spectrometry for at-line process analysis. Appl Spectrosc. 2002;56:75–82.

    Article  CAS  Google Scholar 

  200. Dalitz F, Cudaj M, Maiwald M, Guthausen G. Process and reaction monitoring by low-field NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2012;60:52–70.

    Article  CAS  Google Scholar 

  201. Danieli E, Perlo J, Casanova F, Blümich B. High-performance shimming with permanent magnets. In: Codd SL, Seymour D, editors. Magnetic resonance microscopy. Weinheim: Wiley-VCH; 2009. p. 487–500.

    Google Scholar 

  202. Singh K, Blümich B. NMR spectroscopy with compact instruments. TrAC Trends Anal Chem. 2016. https://doi.org/10.1016/j.trac.2016.02.014.

    Article  Google Scholar 

  203. Riegel SD, Leskowitz GM. Benchtop NMR spectrometers in academic teaching. TrAC Trends Anal Chem. 2016. https://doi.org/10.1016/j.trac.2016.01.001.

    Article  Google Scholar 

  204. Elipe MVS, Milburn RR. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons. Magn Reson Chem. 2016;54:437–43.

    Article  CAS  Google Scholar 

  205. Küster SK, Casanova F, Danieli E, Blümich B. High-resolution NMR spectroscopy under the fume hood. Phys Chem Chem Phys. 2011;13:13172–6.

    Article  CAS  Google Scholar 

  206. Zientek N, Laurain C, Meyer K, Kraume M, Guthausen G, Maiwald M. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring. J Magn Reson. 2014;249:53–62.

    Article  CAS  Google Scholar 

  207. Gouilleux B, Charrier B, Danieli E, Dumez J-N, Akoka S, Felpin FX, et al. Real-time reaction monitoringh by ultrafast 2D NMR on a benchtop spectrometer. Analyst. 2015;140:7854–8.

    Article  CAS  Google Scholar 

  208. Gouilleux B, Charrier B, Akoka S, Felpin FX, Rodriguez-Zubiri M, Giraudeau P. Ultrafast 2D NMR on a benchtop spectrometer: applications and perspectives. TrAC Trends Anal Chem. 2016. https://doi.org/10.1016/j.trac.2016.01.014.

    Article  Google Scholar 

  209. Meyr K, Kern S, Zientek N, Guthausen G, Mailwald M. Process control with compact NMR. TrAC Trends Anal Chem. 2016. https://doi.org/10.1016/j.trac.2016.03.016.

    Article  Google Scholar 

  210. Garro-Linck Y, Killner M, Danieli E, Blümich B. Mobile low-field NMR spectroscopy for biodiesel analysis. Appl Magn Reson. 2013;44:41–53.

    Article  CAS  Google Scholar 

  211. Killner MHM, Garro-Link Y, Danieli E, Rohwedder JJR, Blümich B. Compact NMR specroscopy for real-time monitoring of a biodiesel production. Fuel. 2014;130:240–7.

    Google Scholar 

  212. Obeidat SM. The use of 1H NMR and PCA for quality assessment of gasoline of different octane number. Appl Magn Reson. 2015;46:875–83.

    Article  CAS  Google Scholar 

  213. Guthausen G, Garnier A, Reimert R. Investigation of hydrogenation of toluene to methylcyclohexane in a trickle bed reactor by low-field nuclear magnetic resonance spectroscopy. Appl Spectrosc. 2009;63:1121–7.

    Article  CAS  Google Scholar 

  214. Kreyenschulte D, Paciok E, Regestein L, Blümich B, Büchs J. Online monitoring of fermentation processes via non-invasive low-field NMR. Biotechnol Bioeng. 2015;112:810–21.

    Article  CAS  Google Scholar 

  215. Vargas MA, Cudaj M, Hailu K, Sachsenheimer K, Guthausen G. Online low-field 1H NMR spectroscopy: monitoring of emulsion polymerization of butyl acrylate. Macromolecules. 2010;43:5561–8.

    Article  CAS  Google Scholar 

  216. Sans V, Porwool L, Dragone V, Cronin L. A self-optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy. Chem Sci. 2015;6:1258–64.

    Article  CAS  Google Scholar 

  217. Cudaj M, Guthausen G, Hofe T, Wilhelm M. SEC-MR-NMR: online coupling of size exclusion chromatography and medium resolution NMR spectroscopy. Macromol Rapid Commun. 2011;32:665–70.

    Article  CAS  Google Scholar 

  218. Cudaj M, Guthausen G, Hofe T, Wilhelm M. Online coupling of size exclusion chromatography and low-field 1H-NMR spectroscopy. Macromol Chem Phys. 2012;18:1933–42.

    Article  CAS  Google Scholar 

  219. Sillerud LO, McDowell AF, Adolphi N, Serda RE, Adams DP, Vasile MJ, et al. 1H NMR detection of superparamagnetic nanoparticles using a microcoil and novel tuning circuit. J Magn Reson. 2006;181:181–90.

    Article  CAS  Google Scholar 

  220. Cistola DP, Robinson MD. Compact NMR relaxometry of relaxometry of human blood and blood components. TrAC Trends Anal Chem. 2016. https://doi.org/10.1016/j.trac.2016.04.020.

    Article  Google Scholar 

  221. Luo Z-X, Fox L, Cummings M, Lowrey TJ, Daviso E. New forntiers in in vitro medical diagnostics by low field T2 magnetic resonance relaxometry. TrAC Trends Anal Chem. 2016. https://doi.org/10.1016/j.trac.2016.02.025.

    Article  Google Scholar 

  222. Haun JB, Castro CM, Wang R, Peterson VM, Marinelli BS, Lee H, et al. Micro-NMR for rapid molecular analysis of human tumor samples. Sci Transl Med. 2011;3:71ra16.

    Article  Google Scholar 

  223. Shao H, Min C, Issadore D, Liong M, Yoon TY, Weissleder R, et al. Magnetic nanoparticles and micro NMR for diagnostic applications. Theranostics. 2012;2:55–65.

    Article  CAS  Google Scholar 

  224. Min C, Shao H, Issadore D, Liong M, Weissleder R, Lee H. Diagnostic magnetic resonance technology. In: Issadore D, Westerveld RM, editors. Point-of care diagnostics on a chip. Heidelberg: Springer; 2013. p. 197–222.

    Chapter  Google Scholar 

  225. Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez J, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60:892–9.

    Article  CAS  Google Scholar 

  226. Utz M, Landers J. Magnetic resonance and microfluidics. Science. 2010;330:1056–8.

    Article  CAS  Google Scholar 

  227. Harel E. Lab-on-a-chip detection by magnetic resonance methods. Prog Nucl Magn Reson Spectrosc. 2010;57:293–305.

    Article  CAS  Google Scholar 

  228. Finch G, Yilmaz A, Utz M. An optimized detector for in-situ high-resolution NMR in microfluidic devices. J Magn Reson. 2016;262:73–80.

    Article  CAS  Google Scholar 

  229. Sun N, Yoon T-J, Lee H, Andress W, Weissleder R, Ham D. Palm NMR and 1-chip NMR. IEEE J Solid State Circ. 2011;46:342–52.

    Article  Google Scholar 

  230. Sun N, Ham D. Handheld NMR systems for biomolecular sensing. In: Johns M, Fridjonsson EO, Vogt S, Haber A, editors. Mobile NMR and MRI. Cambridge: Royal Society of Chemistry; 2016. p. 158–82.

    Google Scholar 

  231. Sun N, Liu Y, Qin L, Lee H, Weissleder R, Ham D. Small NMR biomolecular sensors. Solid-State Electron. 2013;84:13–21.

    Article  CAS  Google Scholar 

  232. Oligschläger D, Glöggler S, Watzlaw J, Brendel K, Jaschtschuk D, Colell J, et al. A miniaturized NMR-MOUSE with a high magnetic field gradient (Mini-MOUSE). Appl Magn Reson. 2015;46:181–202.

    Article  CAS  Google Scholar 

  233. Pille C. Health and nutrition advisor. Bachelor thesis. Münster School of Design, Münster; 2014.

    Google Scholar 

  234. Blümich B, Paciok E. Outlook: Quo Vadis, NMR? In: Johns M, Fridjonson EO, Vogt S, Haber A, editors. Mobile NMR and MRI. Cambridge: Royal Society of Chemistry; 2016. p. 310–30.

    Google Scholar 

  235. Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692–703.

    Article  CAS  Google Scholar 

  236. Larive CK, Barding GA, Dinges MM. NMR spectroscopy for metabolomics and metabolic profiling. Anal Chem. 2015;87:133–46.

    Article  CAS  Google Scholar 

  237. Ravanbakhsh S, Liu P, Bjorndahl TC, Mandal R, Grant JR, Wilson M, et al. Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS One. 2015;10:e0124219.

    Article  CAS  Google Scholar 

  238. Wongravee K, Lloyd GR, Silwood CJ, Grootveld M, Brereton RG. Supervised self organizing maps for classification and determination of potentially discriminatory variables: illustrated by application to nuclear magnetic resonance metabolomic profiling. Anal Chem. 2010;82:628–38.

    Article  CAS  Google Scholar 

  239. Luchinat C, Tenori L. Analysis of 1H NMR metabolomics: from individual fingerprints to food analysis. In: Capozzi F, Laghi L, Belton PS, editors. Magnetic resonance in food science: defining food by magnetic resonance. Cambridge: Royal Society of Chemistry; 2015. p. 190–200.

    Chapter  Google Scholar 

  240. Halse ME. Perspectives for hyperpolarization in compact NMR. TrAC Trends Anal Chem. 2016. https://doi.org/10.1016/j.trac.2016.05.004.

    Article  Google Scholar 

  241. Jeschke G, Frydman L, editors. Hyperpolarization NMR comes of age. A special Issue on the present and future of dynamic nuclear polarization. J Magn Reson. vol. 264. Amsterdam: Elsevier; 2016.

    Google Scholar 

  242. Acosta RH, Blümler P, Münnemann K, Spiess HW. Mixture and dissolution of laser polarized noble gases: spectroscopic and imaging applications. Prog Nucl Magn Reson Spectrosc. 2012;66:40–69.

    Article  CAS  Google Scholar 

  243. Ardenkjaer-Larsen JH. On the present and future of dissolution-DNP. J Magn Reson. 2016;264:3–12.

    Article  CAS  Google Scholar 

  244. Green RA, Adams RW, Duckett SB, Mewis RE, Williamson DC. The theory and practice of hyperpolarization in magnetic resonance using parahydrogen. Progr Magn Reson Spectrosc. 2012;67:1–48.

    Article  CAS  Google Scholar 

  245. Wemmer DE. Hyperpolarized xenon biosensors and hyperCest. In: Meersmann T, Brunner E, editors. Hyperpolarized xenon-129 magnetic resonance: concpets, production, techniques and applications. Oxford: Royal Chemistry of Society; 2015. p. 249–60.

    Chapter  Google Scholar 

  246. Jimenez-Martinez R, Kennedy DJ, Rosenbluth M, Donley EA, Knappe S, Seltzer SJ, et al. Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip. Nat Commun. 2014;5:3908.

    Article  CAS  Google Scholar 

  247. Parker AJ, Zia W, Rehorn CWG, Blümich B. Shimming Halbach magnets utilizing genetic algorithms to profit from material imperfections. J Magn Reson. 2016;265:83–9.

    Article  CAS  Google Scholar 

  248. Danieli E, Blümich B, Zia, Leonards H. Method for a targeted shaping of the magnetic field of permanent magnets. WO 2015043684 A1 pending. published 2 Apr 2015.

    Google Scholar 

  249. Terada Y, Ishi K, Tamada D, Kose K. Power optimization of a planar single-channel shim coil for a permanent magnet circuit. Appl Phys Express. 2013;6:026701.

    Article  CAS  Google Scholar 

  250. While PT, Korvink JG. Designing MR shim arrays with irregular coil geometry: theoretical considerations. IEEE Trans Biomed Eng. 2014;61:1614–20.

    Article  Google Scholar 

  251. Ledbetter MP, Crawford CW, Pines A, Wemmer DE, Knappe S, Kitching J, et al. Optical detection of NMR J-spectra at zero magnetic field. J Magn Reson. 2009;199:25–9.

    Article  CAS  Google Scholar 

  252. Savukov IM, Lee S-K, Romalis MV. Optical detection of liquid-state NMR. Nature. 2006;442:1021–4.

    Article  CAS  Google Scholar 

  253. Meier RC, Höfflin J, Badility V, Wallrabe U, Korvink JG. Microfluidic integration of wirebonded microcoils for on-chip applications in nuclear magnetic resonance. J Micromech Microeng. 2014;24:045021.

    Article  CAS  Google Scholar 

  254. Spengler N, Moazenzadeh A, Meier RC, Badilita V, Korvink JG, Wallrabe U. Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance. J Micromech Microeng. 2014;24:034004.

    Article  CAS  Google Scholar 

  255. Spengler J, Höfflin J, Moazenzadeh A, Mager D, MacKinnon N, Badilita B, et al. Heternuclear micro-helmholtz coil facilitates μmrRange spatial and sub-hz spectral resolution NMR of nL-volume samples on customisable microfluidic chips. PLoS One. 2016;11:e0146384.

    Article  CAS  Google Scholar 

  256. Suefke M, Liebisch A, Blümich B, Appelt S. External high-quality-factor resonator tunes up nuclear magnetic resonance. Nat Phys. 2015;11:767–71.

    Article  CAS  Google Scholar 

  257. Anders J, Handwerker J, Ortmanns M, Boero G. A low-power high-sensitivity single-chip receiver for NMR microscopy. J Magn Reson. 2016;266:41–50.

    Article  CAS  Google Scholar 

  258. Grisi M, Gualco G, Boero G. A broadband single-chip transceiver for multi-nuclear NMR probes. Rev Sci Instrum. 2015;86:044703.

    Article  CAS  Google Scholar 

  259. Ha D, Paulsen J, Sun N, Song Y-Q, Ham D. Scalable NMR spectroscopy with semiconductor chips. Proc Natl Acad Sci. 2014;111:11955–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Blümich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Blümich, B. (2018). Mobile and Compact NMR. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_75

Download citation

Publish with us

Policies and ethics