Skip to main content

The Elucidation and Metabolic Engineering of Terpenoid Indole Alkaloid Pathway in Catharanthus roseus Hairy Roots

  • Reference work entry
  • First Online:
Transgenesis and Secondary Metabolism

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 1038 Accesses

Abstract

Catharanthus roseus (Madagascar periwinkle) produces many pharmaceutically important chemicals such as vinblastine, vincristine, serpentine, and ajmalicine. They are synthesized through the highly branched and complex terpenoid indole alkaloid (TIA) pathway in C. roseus. Among the compounds produced in this pathway, vinblastine and vincristine are efficient anticancer drugs widely used in the clinic and are only found in C. roseus. Due to low accumulation of these TIAs within the plant and the infeasibility of production using chemical synthesis at industrial scale, the market price of these drugs remains high. In addition, inconsistent production along with increased demand causes these drugs to often show up on the FDA drug shortage list. With advanced knowledge of molecular biology, metabolic engineering, and bioinformatics, the construction of a robust and efficient alternative production platform in C. roseus hairy roots by manipulating the TIA pathway has become a promising strategy in recent years. In addition, recent advances in high-throughput sequencing technology have greatly sped up the elucidation of the TIA pathway. This review highlights present efforts to discover TIA pathway genes, their compartmentalization, and regulation in C. roseus and summarizes TIA pathway engineering efforts in C. roseus hairy roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Heijden R, Jacobs DI, Snoeijer W, Hallared D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Article  Google Scholar 

  2. Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF et al (2013) Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (l.) g. Don. Molecules 18:9770–9784

    Article  CAS  Google Scholar 

  3. Wink M, Schmeller T, Latz-Bruning B (1998) Modes of action of allelochemical alkaloids: interaction with neuroreceptors, DNA, and other molecular targets. J Chem Ecol 24:1881–1937

    Article  CAS  Google Scholar 

  4. Tundis R, Loizzo MR, Menichini F, Statti GA, Menichini F (2008) Biological and pharmacological activities of iridoids: recent developments. Mini Rev Med Chem 8:399–420

    Article  CAS  Google Scholar 

  5. Viljoen A, Mncwangi N, Vermaak I (2012) Anti-inflammatory iridoids of botanical origin. Curr Med Chem 19:2104–2127

    Article  CAS  Google Scholar 

  6. Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J et al (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606

    Google Scholar 

  7. Contin A, van der Heijden R, Lefeber AWM, Verpoorte R (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 434:413–416

    Article  CAS  Google Scholar 

  8. Simkin AJ, Miettinen K, Claudel P, Burlat V, Guirimand G, Courdavault V et al (2013) Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85:36–43

    Article  CAS  Google Scholar 

  9. Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220

    Article  CAS  Google Scholar 

  10. Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C et al (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138–142

    Article  CAS  Google Scholar 

  11. Salim V, Wiens B, Masada-Atsumi S, Yu F, De Luca V (2014) 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis. Phytochemistry 101:23–31

    Article  CAS  Google Scholar 

  12. Salim V, Yu F, Altarejos J, De Luca V (2013) Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J 76:754–765

    Article  CAS  Google Scholar 

  13. Irmler S, Schroder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J et al (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804

    Article  CAS  Google Scholar 

  14. Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20:524–542

    Article  CAS  Google Scholar 

  15. Poulsen C, Bongaerts RJ, Verpoorte R (1993) Purification and characterization of anthranilate synthase from Catharanthus roseus. Eur J Biochem 212:431–440

    Article  CAS  Google Scholar 

  16. De Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cdna encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. Proc Natl Acad Sci U S A 86:2582–2586

    Article  Google Scholar 

  17. Noe W, Mollenschott C, Berlin J (1984) Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures: purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol 3:281–288

    Article  CAS  Google Scholar 

  18. Mcknight TD, Roessner CA, Devagupta R, Scott AI, Nessler CL (1990) Nucleotide-sequence of a cdna-encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res 18:4939

    Article  CAS  Google Scholar 

  19. Luijendijk TJC, Stevens LH, Verpoorte R (1998) Purification and characterisation of strictosidine beta-d-glucosidase from Catharanthus roseus cell suspension cultures. Plant Physiol Biochem 36:419–425

    Article  CAS  Google Scholar 

  20. O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23:532–547

    Article  CAS  Google Scholar 

  21. El-Sayed M, Choi YH, Frederich M, Roytrakul S, Verpoorte R (2004) Alkaloid accumulation in Catharanthus roseus cell suspension cultures fed with stemmadenine. Biotechnol Lett 26:793–798

    Article  CAS  Google Scholar 

  22. Levac D, Murata J, Kim WS, De Luca V (2008) Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-o-methyltransferase. Plant J 53:225–236

    Article  CAS  Google Scholar 

  23. Besseau S, Kellner F, Lanoue A, Thamm AM, Salim V, Schneider B et al (2013) A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiol 163:1792–1803

    Article  CAS  Google Scholar 

  24. Qu Y, Easson ML, Froese J, Simionescu R, Hudlicky T, De Luca V (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci U S A 112:6224–6229

    Article  CAS  Google Scholar 

  25. Liscombe DK, Usera AR, O’Connor SE (2010) Homolog of tocopherol c methyltransferases catalyzes n methylation in anticancer alkaloid biosynthesis. Proc Natl Acad Sci U S A 107:18793–18798

    Article  CAS  Google Scholar 

  26. Vazquez-Flota F, De Carolis E, Alarco AM, De Luca V (1997) Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (l.) g. Don. Plant Mol Biol 34:935–948

    Article  CAS  Google Scholar 

  27. Power R, Kurz WG, De Luca V (1990) Purification and characterization of acetylcoenzyme a: deacetylvindoline 4-o-acetyltransferase from Catharanthus roseus. Arch Biochem Biophys 279:370–376

    Article  CAS  Google Scholar 

  28. Rodriguez S, Compagnon V, Crouch NP, St-Pierre B, De Luca V (2003) Jasmonate-induced epoxidation of tabersonine by a cytochrome O450 in hairy root cultures of Catharanthus roseus. Phytochemistry 64:401–409

    Article  CAS  Google Scholar 

  29. Giddings LA, Liscombe DK, Hamilton JP, Childs KL, DellaPenna D, Buell CR et al (2011) A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus. J Biol Chem 286:16751–16757

    Article  CAS  Google Scholar 

  30. Laflamme P, St-Pierre B, De Luca V (2001) Molecular and biochemical analysis of a Madagascar periwinkle root-specific minovincinine-19-hydroxy-o-acetyltransferase. Plant Physiol 125:189–198

    Article  CAS  Google Scholar 

  31. Verma P, Mathur AK, Srivastava A, Mathur A (2012) Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. Protoplasma 249:255–268

    Article  CAS  Google Scholar 

  32. De Luca V, Cutler AJ (1987) Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 85:1099–1102

    Article  Google Scholar 

  33. Oudin A, Mahroug S, Courdavault V, Hervouet N, Zelwer C, Rodriguez-Concepcion M et al (2007) Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Mol Biol 65:13–30

    Article  CAS  Google Scholar 

  34. Courdavault V, Papon N, Clastre M, Giglioli-Guivarc’h N, St-Pierre B, Burlat V (2014) A look inside an alkaloid multisite plant: the Catharanthus logistics. Curr Opin Plant Biol 19:43–50

    Article  CAS  Google Scholar 

  35. Peebles CA, Hughes EH, Shanks JV, San KY (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of orca3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11:76–86

    Article  CAS  Google Scholar 

  36. Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI (2013) The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC Plant Biol 13:155

    Article  CAS  Google Scholar 

  37. Guirimand G, Courdavault V, Lanoue A, Mahroug S, Guihur A, Blanc N et al (2010) Strictosidine activation in apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol 10:182

    Google Scholar 

  38. Guirimand G, Guihur A, Poutrain P, Hericourt F, Mahroug S, St-Pierre B et al (2011) Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. J Plant Physiol 168:549–557

    Article  CAS  Google Scholar 

  39. Yu F, De Luca V (2013) Atp-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci U S A 110:15830–15835

    Article  CAS  Google Scholar 

  40. Magnotta M, Murata J, Chen J, De Luca V (2007) Expression of deacetylvindoline-4-o-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68:1922–1931

    Article  CAS  Google Scholar 

  41. Moreno-Valenzuela OA, Minero-Garcia Y, Brito-Argaez L, Carbajal-Mora E, Echeverria O, Vazquez-Nin G et al (2003) Immunocytolocalization of tryptophan decarboxylase in Catharanthus roseus hairy roots. Mol Biotechnol 23:11–18

    Article  CAS  Google Scholar 

  42. Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Creche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the mep/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med 71:572–574

    Article  CAS  Google Scholar 

  43. Chahed K (2000) 1-deoxy-d-xylulose 5-phosphate synthase from periwinkle: cdna identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol Biochem 38:559

    Article  CAS  Google Scholar 

  44. Courdavault V (2005) Characterisation of caax-prenyltransferases in Catharanthus roseus: relationships with the expression of genes involved in the early stages of monoterpenoid biosynthetic pathway. Plant Sci 168:1097

    Article  CAS  Google Scholar 

  45. Poutrain P, Mazars C, Thiersault M, Rideau M, Pichon O (2009) Two distinct intracellular ca2+-release components act in opposite ways in the regulation of the auxin-dependent mia biosynthesis in Catharanthus roseus cells. J Exp Bot 60:1387–1398

    Article  CAS  Google Scholar 

  46. Pan QF, Chen Y, Wang Q, Yuan F, Xing SH, Tian YS et al (2010) Effect of plant growth regulators on the biosynthesis of vinblastine, vindoline and catharanthine in Catharanthus roseus. Plant Growth Regul 60:133–141

    Article  CAS  Google Scholar 

  47. Zhou ML, Hou HL, Zhu XM, Shao JR, Wu YM, Tang YX (2011) Molecular regulation of terpenoid indole alkaloids pathway in the medicinal plant, Catharanthus roseus. J Med Plants Res 5:663–676

    CAS  Google Scholar 

  48. Peebles CA, Shanks JV, San KY (2009) The role of the octadecanoid pathway in the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots under normal and UV-B stress conditions. Biotechnol Bioeng 103:1248–1254

    Article  CAS  Google Scholar 

  49. Raina SK, Wankhede DP, Jaggi M, Singh P, Jalmi SK, Raghuram B et al (2012) CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids. BMC Plant Biol 12:134

    Article  CAS  Google Scholar 

  50. Menke FL, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene str interacts with a jasmonate- and elicitor-inducible ap2-domain transcription factor, ORCA2. EMBO J 18:4455–4463

    Article  CAS  Google Scholar 

  51. Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L (2007) Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochim Biophys Acta 1769:139–148

    Article  CAS  Google Scholar 

  52. Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G, Pre M et al (2011) The basic helix-loop-helix transcription factor crMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67:61–71

    Article  CAS  Google Scholar 

  53. De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359

    Article  CAS  Google Scholar 

  54. Chatel G, Montiel G, Pre M, Memelink J, Thiersault M, Saint-Pierre B et al (2003) CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the g-box element of the strictosidine synthase gene promoter. J Exp Bot 54:2587–2588

    Article  CAS  Google Scholar 

  55. Van Moerkercke A, Steensma P, Schweizer F, Pollier J, Gariboldi I, Payne R et al (2015) The bHLH transcription factor bis1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proc Natl Acad Sci U S A 112:8130–8135

    Article  CAS  Google Scholar 

  56. Pauw B, Hilliou FAO, Martin VS, Chatel G, de Wolf CJF, Champion A et al (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279:52940–52948

    Article  CAS  Google Scholar 

  57. Roberts SGE (2000) Mechanisms of action of transcription activation and repression domains. Cell Mol Life Sci 57:1149–1160

    Article  CAS  Google Scholar 

  58. Schluttenhofer C, Pattanaik S, Patra B, Yuan L (2014) Analyses of Catharanthus roseus and Arabidopsis thaliana wrky transcription factors reveal involvement in jasmonate signaling. BMC Genomics 15:502

    Article  CAS  Google Scholar 

  59. Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI (2015) CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes. Front Plant Sci 6:818

    Google Scholar 

  60. Siberil Y, Benhamron S, Memelink J, Giglioli-Guivarc’h N, Thiersault M, Boisson B et al (2001) Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol 45:477–488

    Article  CAS  Google Scholar 

  61. Hirata K, Asada M, Yatani E, Miyamoto K, Miura Y (1993) Effects of near-ultraviolet light on alkaloid production in Catharanthus roseus plants. Planta Med 59:46–50

    Article  CAS  Google Scholar 

  62. Ramani S, Chelliah J (2007) UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biol 7:61

    Article  CAS  Google Scholar 

  63. Binder BYK, Peebles CAM, Shanks JV, San KY (2009) The effects of uv-b stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnol Prog 25:861–865

    Article  CAS  Google Scholar 

  64. Sriram G, Fulton DB, Shanks JV (2007) Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by 13c labeling and comprehensive bondomer balancing. Phytochemistry 68:2243–2257

    Article  CAS  Google Scholar 

  65. Morgan JA, Shanks JV (2000) Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79:137–145

    Article  CAS  Google Scholar 

  66. Uesato S (1986) Mechanism for iridane skeleton formation in the biosynthesis of secologanin and indole alkaloids in lonicera tatarica, Catharanthus roseus and suspension cultures of rauwolfia serpentina. Phytochemistry 25:839

    Article  CAS  Google Scholar 

  67. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  Google Scholar 

  68. Costa MM, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M et al (2008) Molecular cloning and characterization of a vacuolar class iii peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417

    Article  CAS  Google Scholar 

  69. Geerlings A, Ibanez MM, Memelink J, van Der Heijden R, Verpoorte R (2000) Molecular cloning and analysis of strictosidine beta-d-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056

    Article  CAS  Google Scholar 

  70. Schroder G, Unterbusch E, Kaltenbach M, Schmidt J, Strack D, De Luca V et al (1999) Light-induced cytochrome p450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Lett 458:97–102

    Article  CAS  Google Scholar 

  71. Zhou ML (2010) Transcriptional response of the catharanthine biosynthesis pathway to methyl jasmonate/nitric oxide elicitation in Catharanthus roseus hairy root culture. Appl Microbiol Biotechnol 88:737

    Article  CAS  Google Scholar 

  72. Goklany S (2009) Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding. Biotechnol Prog 25:1289

    Article  CAS  Google Scholar 

  73. Kutchan TM, Hampp N, Lottspeich F, Beyreuther K, Zenk MH (1988) The cDNA clone for strictosidine synthase from rauvolfia serpentina. DNA sequence determination and expression in Escherichia coli. FEBS Lett 237:40–44

    Article  CAS  Google Scholar 

  74. St-Pierre B, Laflamme P, Alarco AM, De Luca V (1998) The terminal o-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme a-dependent acyl transfer. Plant J 14:703–713

    Article  CAS  Google Scholar 

  75. Asada K, Salim V, Masada-Atsumi S, Edmunds E, Nagatoshi M, Terasaka K et al (2013) A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle. Plant Cell 25:4123–4134

    Article  CAS  Google Scholar 

  76. O’Connor SE (2012) Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus. Method Enzymol 515:189–206

    Article  CAS  Google Scholar 

  77. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biology Rev 67:16–37

    Article  CAS  Google Scholar 

  78. Peebles CA, Sander GW, Li M, Shanks JV, San KY (2009) Five year maintenance of the inducible expression of anthranilate synthase in Catharanthus roseus hairy roots. Biotechnol Bioeng 102:1521–1525

    Article  CAS  Google Scholar 

  79. Zhou ML, Shao JR, Tang YX (2009) Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (Madagascar periwinkle). Biotechnol Appl Biochem 52:313–323

    Article  CAS  Google Scholar 

  80. Pasquali G, Porto DD, Fett-Neto AG (2006) Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to old dilemma. J Biosci Bioeng 101:287–296

    Article  CAS  Google Scholar 

  81. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409

    Article  CAS  Google Scholar 

  82. Taneja J, Jaggi M, Wankhede DP, Sinha AK (2010) Effect of loss of t-DNA genes on mia biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. Plant Cell Rep 29:1119–1129

    Article  CAS  Google Scholar 

  83. Hughes EH, Hong SB, Shanks JV, San KY, Gibson SI (2002) Characterization of an inducible promoter system in Catharanthus roseus hairy roots. Biotechnol Prog 18:1183–1186

    Article  CAS  Google Scholar 

  84. Peebles CA, Gibson SI, Shanks JV, San KY (2007) Characterization of an ethanol-inducible promoter system in Catharanthus roseus hairy roots. Biotechnol Prog 23:1258–1260

    Article  CAS  Google Scholar 

  85. Hong SB, Peebles CA, Shanks JV, San KY, Gibson SI (2006) Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J Biotechnol 122:28–38

    Article  CAS  Google Scholar 

  86. Peebles CA, Hong SB, Gibson SI, Shanks JV, San KY (2005) Transient effects of overexpressing anthranilate synthase alpha and beta subunits in Catharanthus roseus hairy roots. Biotechnol Prog 21:1572–1576

    Article  CAS  Google Scholar 

  87. Peebles CA, Hong SB, Gibson SI, Shanks JV, San KY (2006) Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase. Biotechnol Bioeng 93:534–540

    Article  CAS  Google Scholar 

  88. Hughes EH, Shanks JV (2002) Metabolic engineering of plants for alkaloid production. Metab Eng 4:41–48

    Article  CAS  Google Scholar 

  89. Peebles CA, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY (2011) The expression of 1-deoxy-d-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13:234–240

    Article  CAS  Google Scholar 

  90. Jaggi M, Kumar S, Sinha AK (2011) Overexpression of an apoplastic peroxidase gene crprx in transgenic hairy root lines of Catharanthus roseus. Appl Microbiol Biotechnol 90:1005–1016

    Article  CAS  Google Scholar 

  91. Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011) The transcription factor crWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157:2081–2093

    Article  CAS  Google Scholar 

  92. Wang CT, Liu H, Gao XS, Zhang HX (2010) Overexpression of g10h and orca3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29:887–894

    Article  CAS  Google Scholar 

  93. Sun J, Peebles CA. (2015) Engineering overexpression of orca3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production. Protoplasma

    Google Scholar 

  94. Gongora-Castillo E, Childs KL, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-Lundback M et al (2012) Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PLoS One 7, e52506

    Article  CAS  Google Scholar 

  95. Van Moerkercke A, Fabris M, Pollier J, Baart GJ, Rombauts S, Hasnain G et al (2013) Cathacyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. Plant Cell Physiol 54:673–685

    Article  CAS  Google Scholar 

  96. Xiao M, Zhang Y, Chen X, Lee EJ, Barber CJS, Chakrabarty R et al (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166:122–134

    Article  CAS  Google Scholar 

  97. Verma M, Ghangal R, Sharma R, Sinha AK, Jain M (2014) Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling. PLoS One 9, e103583

    Article  CAS  Google Scholar 

  98. Liu LY, Tseng HI, Lin CP, Lin YY, Huang YH, Huang CK et al (2014) High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches’-broom phytoplasma infection. Plant Cell Physiol 55:942–957

    Article  CAS  Google Scholar 

  99. Duge de Bernonville T, Foureau E, Parage C, Lanoue A, Clastre M, Londono MA et al (2015) Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics 16:619

    Article  CAS  Google Scholar 

  100. Duge de Bernonville T, Clastre M, Besseau S, Oudin A, Burlat V, Glevarec G et al (2015) Phytochemical genomics of the Madagascar periwinkle: unravelling the last twists of the alkaloid engine. Phytochemistry 113:9–23

    Article  CAS  Google Scholar 

  101. Kellner F, Kim J, Clavijo BJ, Hamilton JP, Childs KL, Vaillancourt B et al (2015) Genome-guided investigation of plant natural product biosynthesis. Plant J 82:680–692

    Article  CAS  Google Scholar 

  102. Wilson SA, Roberts SC (2014) Metabolic Engineering approaches for production of biochemicals in food and medicinal plants. Curr Opin Biotechnol 26:174–182

    Article  CAS  Google Scholar 

  103. Huang Y, Su CY, Kuo HJ, Chen YH, Huang PL, Lee KT (2013) A comparison of strategies for multiple-gene co-transformation via hairy root induction. Appl Microbiol Biotechnol 97:8637–8647

    Article  CAS  Google Scholar 

  104. Untergasser A, Bijl GJ, Liu W, Bisseling T, Schaart JG, Geurts R (2012) One-step agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system phuge. PLoS One 7, e47885

    Article  CAS  Google Scholar 

  105. Runguphan W, O’Connor SE (2009) Metabolic reprogramming of periwinkle plant culture. Nat Chem Biol 5:151–153

    Article  CAS  Google Scholar 

  106. Runguphan W, Maresh JJ, O’Connor SE (2009) Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture. Proc Natl Acad Sci U S A 106:13673–13678

    Article  CAS  Google Scholar 

  107. Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H et al (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci U S A 105:7393–7398

    Article  CAS  Google Scholar 

  108. Santos CN, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400

    Article  CAS  Google Scholar 

  109. Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret JP, Beaudoin GA et al (2014) Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat Comm 5:3283

    Article  CAS  Google Scholar 

  110. Brown S, Clastre M, Courdavault V, O’Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci U S A 112:3205–3210

    Article  CAS  Google Scholar 

  111. Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH et al (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One 7, e43038

    Article  CAS  Google Scholar 

  112. Owellen RJ, Hartke CA, Dickerson RM, Hains FO (1976) Inhibition of tubulin-microtubule polymerization by drugs of the Vinca alkaloid class. Cancer Res. 36(4):1499–1502

    Google Scholar 

  113. Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38:131–141

    Google Scholar 

  114. Guirimand G, Guihur A, Phillips MA, Oudin A, Glévarec G, Melin C, Papon N, Clastre M, St-Pierre B, Rodríguez-Concepción M, Burlat V, Courdavault V (2012) A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. Plant Mol Biol 79:443–459

    Google Scholar 

  115. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-reponsive transcriptional regulator of plant primary and secondary metabolism. Science 289(5477):295–297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiayi Sun or Christie A. M. Peebles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Sun, J., Peebles, C.A.M. (2017). The Elucidation and Metabolic Engineering of Terpenoid Indole Alkaloid Pathway in Catharanthus roseus Hairy Roots. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-28669-3_14

Download citation

Publish with us

Policies and ethics