Skip to main content

Connecting Planetary Composition with Formation

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

The rapid advances in observations of the different populations of exoplanets, the characterization of their host stars and the links to the properties of their planetary systems, the detailed studies of protoplanetary disks, and the experimental study of the interiors and composition of the massive planets in our solar system provide a firm basis for the next big question in planet formation theory. How do the elemental and chemical compositions of planets connect with their formation? The answer to this requires that the various pieces of planet formation theory be linked together in an end-to-end picture that is capable of addressing these large data sets. In this review, we discuss the critical elements of such a picture and how they affect the chemical and elemental makeup of forming planets. Important issues here include the initial state of forming and evolving disks, chemical and dust processes within them, the migration of planets and the importance of planet traps, the nature of angular momentum transport processes involving turbulence and/or MHD disk winds, planet formation theory, and advanced treatments of disk astrochemistry. All of these issues affect, and are affected by, the chemistry of disks which is driven by X-ray ionization of the host stars. We discuss how these processes lead to a coherent end-to-end model and how this may address the basic question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alessi M, Pudritz RE (2018) MNRAS, Formation of planetary populations I: Metallicity and envelope opacity effects, in press. (archive # 1804.01148)

    Google Scholar 

  • Agúndez M, Parmentier V, Venot O, Hersant F Selsis F (2014) Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b. A&A 564:A73

    Article  ADS  Google Scholar 

  • Alessi M, Pudritz RE, Cridland AJ (2017) On the formation and chemical composition of super Earths. MNRAS 464:428–452

    Article  ADS  Google Scholar 

  • Alibert Y (2017) Maximum mass of planetary embryos that formed in core-accretion models. A&A 606:A69

    Article  ADS  Google Scholar 

  • Alibert Y, Mordasini C, Benz W (2011) Extrasolar planet population synthesis. III. Formation of planets around stars of different masses. A&A 526:A63

    Article  Google Scholar 

  • ALMA Partnership, Brogan CL, Pérez LM et al (2015) The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. ApJ 808:L3

    Google Scholar 

  • Andrews SM, Williams JP (2007) High-resolution submillimeter constraints on circumstellar disk structure. ApJ 659:705–728

    Article  ADS  Google Scholar 

  • Andrews SM, Wilner DJ, Hughes AM, Qi C, Dullemond CP (2010) Protoplanetary disk structures in Ophiuchus. II. Extension to fainter sources. ApJ 723:1241–1254

    Article  ADS  Google Scholar 

  • Armitage PJ (2010) Astrophysics of planet formation. Cambridge University Press, Cambridge

    Google Scholar 

  • Bai XN (2014) Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk. ApJ 791:137

    Article  ADS  Google Scholar 

  • Bai XN (2016) Towards a global evolutionary model of protoplanetary disks. ApJ 821:80

    Article  ADS  Google Scholar 

  • Bai XN, Stone JM (2013) Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. ApJ 769:76

    Article  ADS  Google Scholar 

  • Bai XN, Stone JM (2017) Hall effect-mediated magnetic flux transport in protoplanetary disks. ApJ 836:46

    Article  ADS  Google Scholar 

  • Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution. ApJ 376:214–233

    Article  ADS  Google Scholar 

  • Banerjee R, Pudritz RE (2006) Outflows and jets from collapsing magnetized cloud cores. ApJ 641:949–960

    Article  ADS  Google Scholar 

  • Baraffe I, Chabrier G, Fortney J, Sotin C (2014) Planetary internal structures. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 763–786

    Google Scholar 

  • Batalha NM (2014) Exploring exoplanet populations with NASA’s Kepler mission. Proc Natl Acad Sci 111:12,647–12,654

    Article  ADS  Google Scholar 

  • Bate MR (2012) Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. MNRAS 419:3115–3146

    Article  ADS  Google Scholar 

  • Bate MR (2018) On the diversity and statistical properties of protostellar discs. MNRAS 475: 5618–5658

    Article  ADS  Google Scholar 

  • Benz W, Ida S, Alibert Y, Lin D, Mordasini C (2014) Planet population synthesis. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 691–713

    Google Scholar 

  • Bergin EA, Cleeves LI, Gorti U et al (2013) An old disk still capable of forming a planetary system. Nature 493:644–646

    Article  ADS  Google Scholar 

  • Bergin EA, Cleeves LI, Crockett N, Blake GA (2014) Exploring the origins of carbon in terrestrial worlds. Faraday Discuss 168:61–79

    Article  ADS  Google Scholar 

  • Bergin EA, Blake GA, Ciesla F, Hirschmann MM, Li J (2015) Tracing the ingredients for a habitable earth from interstellar space through planet formation. Proc Natl Acad Sci 112: 8965–8970

    Article  ADS  Google Scholar 

  • Bitsch B, Crida A, Morbidelli A, Kley W, Dobbs-Dixon I (2013) Stellar irradiated discs and implications on migration of embedded planets. I. Equilibrium discs. A&A 549:A124

    Article  ADS  Google Scholar 

  • Bitsch B, Lambrechts M, Johansen A (2015) The growth of planets by pebble accretion in evolving protoplanetary discs. A&A 582:A112

    Article  ADS  Google Scholar 

  • Blandford RD, Payne DG (1982) Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199:883–903

    Article  ADS  MATH  Google Scholar 

  • Bodenheimer P, Pollack JB (1986) Calculations of the accretion and evolution of giant planets. The effects of solid cores. Icarus 67:391–408

    Article  ADS  Google Scholar 

  • Bolton SJ, Lunine J, Stevenson D et al (2017) The Juno mission. Space Sci Rev 213:5–37

    Article  ADS  Google Scholar 

  • Bond JC, O’Brien DP, Lauretta DS (2010) The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. ApJ 715:1050–1070

    Article  ADS  Google Scholar 

  • Booth RA, Clarke CJ, Madhusudhan N, Ilee JD (2017) Chemical enrichment of giant planets and discs due to pebble drift. MNRAS 469:3994–4011

    Article  ADS  Google Scholar 

  • Bosman AD, Bruderer S, van Dishoeck EF (2017a) CO2 infrared emission as a diagnostic of planet-forming regions of disks. A&A 601:A36

    Article  ADS  Google Scholar 

  • Bosman AD, Tielens AGGM van Dishoeck EF (2017b) Efficiency of radial transport of ices in protoplanetary disks probed with infrared observations: the case of CO_2. ArXiv e-prints

    Google Scholar 

  • Bowler BP (2016) Imaging extrasolar Giant planets. PASP 128(10):102,001

    Article  ADS  Google Scholar 

  • Brewer JM, Fischer DA, Madhusudhan N (2017) C/O and O/H ratios suggest some hot Jupiters originate beyond the snow line. AJ 153:83

    Article  ADS  Google Scholar 

  • Brouwers MG, Vazan A, Ormel CW (2017) How cores grow by pebble accretion I. Direct core growth. ArXiv e-prints

    Google Scholar 

  • Butscher T, Duvernay F, Theule P et al (2015) Formation mechanism of glycolaldehyde and ethylene glycol in astrophysical ices from HCO and CH2OH recombination: an experimental study. MNRAS 453:1587–1596

    Article  ADS  Google Scholar 

  • Chabrier G (2005) The initial mass function: from Salpeter 1955 to 2005. In: Corbelli E, Palla F, Zinnecker H (eds) The initial mass function 50 years later. Astrophysics and space science library, vol 327, p 41. https://doi.org/10.1007/978-1-4020-3407-7_5

    Google Scholar 

  • Chabrier G, Baraffe I (2007) Heat transport in giant (exo)planets: a new perspective. ApJ 661: L81–L84

    Article  ADS  Google Scholar 

  • Chambers JE (2009) An analytic model for the evolution of a viscous, irradiated disk. ApJ 705:1206–1214

    Article  ADS  Google Scholar 

  • Chatterjee S, Ford EB (2015) Planetesimal interactions can explain the mysterious period ratios of small near-resonant planets. ApJ 803:33

    Article  ADS  Google Scholar 

  • Chatterjee S, Ford EB, Matsumura S, Rasio FA (2008) Dynamical outcomes of planet-planet scattering. ApJ 686:580-602

    Article  ADS  Google Scholar 

  • Chen J, Kipping D (2017) Probabilistic forecasting of the masses and radii of other worlds. ApJ 834:17

    Article  ADS  Google Scholar 

  • Chiang E, Laughlin G (2013) The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. MNRAS 431:3444–3455

    Article  ADS  Google Scholar 

  • Chiang EI, Goldreich P (1997) Spectral energy distributions of T Tauri stars with passive circumstellar disks. ApJ 490:368–376

    Article  ADS  Google Scholar 

  • Chuang KJ, Fedoseev G, Qasim D et al (2018) Reactive desorption of co hydrogenation products under cold pre-stellar core conditions. Astrophys J 853(2):102. http://stacks.iop.org/0004-637X/853/i=2/a=102

    Article  ADS  Google Scholar 

  • Cleeves LI, Adams FC, Bergin EA (2013) Exclusion of cosmic rays in protoplanetary disks: stellar and magnetic effects. ApJ 772:5

    Article  ADS  Google Scholar 

  • Cleeves LI, Bergin EA, Alexander CMO et al (2014) The ancient heritage of water ice in the solar system. Science 345:1590–1593

    Article  ADS  Google Scholar 

  • Coleman GAL, Nelson RP (2014) On the formation of planetary systems via oligarchic growth in thermally evolving viscous discs. MNRAS 445:479–499

    Article  ADS  Google Scholar 

  • Coleman GAL, Nelson RP (2016) Giant planet formation in radially structured protoplanetary discs. MNRAS 460:2779–2795

    Article  ADS  Google Scholar 

  • Cooper CS, Showman AP (2006) Dynamics and disequilibrium carbon chemistry in hot Jupiter atmospheres, with application to HD 209458b. ApJ 649:1048–1063

    Article  ADS  Google Scholar 

  • Crida A, Morbidelli A (2007) Cavity opening by a giant planet in a protoplanetary disk and effects on planetary migration. MNRAS 377:1324–1336

    Article  ADS  Google Scholar 

  • Cridland AJ, Pudritz RE, Alessi M (2016) Composition of early planetary atmospheres – I. Connecting disk astrochemistry to the formation of planetary atmospheres. MNRAS 461:3274–3295

    Article  ADS  Google Scholar 

  • Cridland AJ, Pudritz RE, Birnstiel T (2017a) Radial drift of dust in protoplanetary discs: the evolution of ice lines and dead zones. MNRAS 465:3865–3878

    Article  ADS  Google Scholar 

  • Cridland AJ, Pudritz RE, Birnstiel T, Cleeves LI, Bergin EA (2017b) Composition of early planetary atmospheres II: coupled dust and chemical evolution in protoplanetary disks. ArXiv e-prints

    Article  ADS  Google Scholar 

  • Cuzzi JN, Zahnle KJ (2004) Material enhancement in protoplanetary Nebulae by particle drift through evaporation fronts. ApJ 614:490–496

    Article  ADS  Google Scholar 

  • Dittkrist KM, Mordasini C, Klahr H, Alibert Y, Henning T (2014) Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation. A&A 567:A121

    Article  Google Scholar 

  • Duffell PC, Haiman Z, MacFadyen AI, D’Orazio DJ, Farris BD (2014) The migration of gap-opening planets is not locked to viscous disk evolution. ApJ 792:L10

    Article  ADS  Google Scholar 

  • Dutrey A, Guilloteau S, Simon M (1994) Images of the GG Tauri rotating ring. A&A 286:149–159

    Google Scholar 

  • Edgar RG (2008) Type II migration: varying planet mass and disc viscosity. ArXiv e-prints

    Google Scholar 

  • Eistrup C, Walsh C, van Dishoeck EF (2016) Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter? A&A 595:A83

    Google Scholar 

  • Elser S, Meyer MR, Moore B (2012) On the origin of elemental abundances in the terrestrial planets. Icarus 221:859–874

    Article  ADS  Google Scholar 

  • Fabrycky D, Tremaine S (2007) Shrinking binary and planetary orbits by Kozai cycles with tidal friction. ApJ 669:1298–1315

    Article  ADS  Google Scholar 

  • Fabrycky DC, Lissauer JJ, Ragozzine D et al (2014) Architecture of Kepler’s Multi-transiting Systems. II. New investigations with twice as many candidates. ApJ 790:146

    Article  ADS  Google Scholar 

  • Fang J, Margot JL (2012) Architecture of planetary systems based on Kepler data: number of planets and coplanarity. ApJ 761:92

    Article  ADS  Google Scholar 

  • Fedele D, Bruderer S, van Dishoeck EF et al (2013) Probing the radial temperature structure of protoplanetary disks with Herschel/HIFI. ApJ 776:L3

    Article  ADS  Google Scholar 

  • Fischer DA, Valenti J (2005) The planet-metallicity correlation. ApJ 622:1102–1117

    Article  ADS  Google Scholar 

  • Flock M, Henning T, Klahr H (2012) Turbulence in weakly ionized protoplanetary disks. ApJ 761:95

    Article  ADS  Google Scholar 

  • Fogel JKJ, Bethell TJ, Bergin EA, Calvet N, Semenov D (2011) Chemistry of a protoplanetary disk with grain settling and Lyα radiation. ApJ 726:29

    Article  ADS  Google Scholar 

  • Frank A, Ray TP, Cabrit S et al (2014) Jets and outflows from star to cloud: observations confront theory. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 451–474

    Google Scholar 

  • Gammie CF (1996) Linear theory of magnetized, viscous, self-gravitating gas disks. ApJ 462:725

    Article  ADS  Google Scholar 

  • Gillett FC, Forrest WJ (1973) Spectra of the Becklin-Neugebauer point source and the Kleinmann-Low nebula from 2.8 to 13.5 microns. ApJ 179:483–491

    Article  ADS  Google Scholar 

  • Goldreich P, Tremaine S (1979) The excitation of density waves at the Lindblad and corotation resonances by an external potential. ApJ 233:857–871

    Article  ADS  MathSciNet  Google Scholar 

  • González-Cataldo F, Wilson HF, Militzer B (2014) Ab initio free energy calculations of the solubility of silica in metallic hydrogen and application to Giant planet cores. ApJ 787:79

    Article  ADS  Google Scholar 

  • Gorti U, Liseau R, Sándor Z, Clarke C (2016) Disk dispersal: theoretical understanding and observational constraints. Space Sci Rev 205:125–152

    Article  ADS  Google Scholar 

  • Grasset O, Schneider J, Sotin C (2009) A study of the accuracy of mass-radius relationships for silicate-rich and ice-rich planets up to 100 earth masses. ApJ 693:722–733

    Article  ADS  Google Scholar 

  • Gressel O, Turner NJ, Nelson RP, McNally CP (2015) Global simulations of protoplanetary disks with Ohmic resistivity and ambipolar diffusion. ApJ 801:84

    Article  ADS  Google Scholar 

  • Haisch KE Jr, Lada EA, Lada CJ (2001) Disk frequencies and lifetimes in Young clusters. ApJ 553:L153–L156

    Article  ADS  Google Scholar 

  • Hansen BMS, Murray N (2013) Testing in situ assembly with the Kepler planet candidate sample. ApJ 775:53

    Article  ADS  Google Scholar 

  • Hartmann L (2008) Masses and mass distributions of protoplanetary disks. Physica Scripta Volume T 130(1):014012

    Article  ADS  Google Scholar 

  • Hartmann L, Kenyon SJ (1987) High spectral resolution infrared observations of V1057 Cygni. ApJ 322:393–398

    Article  ADS  Google Scholar 

  • Hasegawa Y (2016) Super-Earths as failed cores in orbital migration traps. ApJ 832:83

    Article  ADS  Google Scholar 

  • Hasegawa Y, Pudritz RE (2011) The origin of planetary system architectures – I. Multiple planet traps in gaseous discs. MNRAS 417:1236–1259

    Google Scholar 

  • Hasegawa Y, Pudritz RE (2013) Planetary populations in the mass-period diagram: a statistical treatment of exoplanet formation and the role of planet traps. ApJ 778:78

    Article  ADS  Google Scholar 

  • Hasegawa Y, Pudritz RE (2014) Planet traps and planetary cores: origins of the planet-metallicity correlation. ApJ 794:25

    Article  ADS  Google Scholar 

  • Helled R, Bodenheimer P, Podolak M et al (2014) Giant planet formation, evolution, and internal structure. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 643–665

    Google Scholar 

  • Helling C, Woitke P, Rimmer PB et al (2014) Disk evolution, element abundances and cloud properties of young gas giant planets. Life 4:142–173

    Article  ADS  Google Scholar 

  • Henning T, Semenov D (2013) Chemistry in protoplanetary disks. Chem Rev 113:9016–9042

    Article  Google Scholar 

  • Hernández J, Calvet N, Briceño C et al (2007) Spitzer observations of the orion OB1 association: disk census in the low-mass stars. ApJ 671:1784–1799

    Article  ADS  Google Scholar 

  • Howard AW, Sanchis-Ojeda R, Marcy GW et al (2013) A rocky composition for an Earth-sized exoplanet. Nature 503:381–384

    Article  ADS  Google Scholar 

  • Howard AW, Marcy GW, Johnson JA et al (2010) The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330:653

    Article  ADS  Google Scholar 

  • Howard AW, Marcy GW, Bryson ST et al (2012) Planet occurrence within 0.25 AU of solar-type stars from Kepler. ApJS 201:15

    Google Scholar 

  • Ida S, Lin DNC (2004a) Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. ApJ 604:388–413

    Google Scholar 

  • Ida S, Lin DNC (2004b) Toward a deterministic model of planetary formation. II. The formation and retention of gas giant planets around stars with a range of metallicities. ApJ 616:567–572

    Google Scholar 

  • Ida S, Lin DNC (2005) Toward a deterministic model of planetary formation. III. Mass distribution of short-period planets around stars of various masses. ApJ 626:1045–1060

    Google Scholar 

  • Ida S, Lin DNC (2008a) Toward a deterministic model of planetary formation. IV. Effects of type I migration. ApJ 673:487–501

    Google Scholar 

  • Ida S Lin DNC (2008b) Toward a deterministic model of planetary formation. V. Accumulation near the ice line and super-Earths. ApJ 685:584–595

    Google Scholar 

  • Ikoma M, Nakazawa K, Emori H (2000) Formation of giant planets: dependences on core accretion rate and grain opacity. ApJ 537:1013–1025

    Article  ADS  Google Scholar 

  • Javoy M (1995) The integral enstatite chondrite model of the Earth. Geophys Res Lett 22:2219–2222

    Article  ADS  Google Scholar 

  • Johansen A, Oishi JS, Mac Low MM et al (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature 448:1022–1025

    Article  ADS  Google Scholar 

  • Johnson JA, Aller KM, Howard AW, Crepp JR (2010) Giant planet occurrence in the stellar mass-metallicity plane. PASP 122:905

    Article  ADS  Google Scholar 

  • Jørgensen JK, van Dishoeck EF, Visser R et al (2009) PROSAC: a submillimeter array survey of low-mass protostars. II. The mass evolution of envelopes, disks, and stars from the Class 0 through I stages. A&A 507:861–879

    Article  ADS  Google Scholar 

  • Jørgensen JK, Favre C, Bisschop SE et al (2012) Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA. ApJ 757:L4

    Article  ADS  Google Scholar 

  • Jurić M, Tremaine S (2008) Dynamical origin of extrasolar planet eccentricity distribution. ApJ 686:603–620

    Article  ADS  Google Scholar 

  • Klassen M, Pudritz RE, Kuiper R, Peters T Banerjee R (2016) Simulating the formation of massive protostars. I. Radiative feedback and accretion disks. ApJ 823:28

    Article  ADS  Google Scholar 

  • Kley W, Nelson RP (2012) Planet-disk interaction and orbital evolution. ARA&A 50:211–249

    Article  ADS  Google Scholar 

  • Kokubo E, Ida S (2002) Formation of protoplanet systems and diversity of planetary systems. ApJ 581:666–680

    Article  ADS  Google Scholar 

  • Kratter KM, Matzner CD, Krumholz MR (2008) Global models for the evolution of embedded, accreting protostellar disks. ApJ 681:375–390

    Article  ADS  Google Scholar 

  • Krijt S, Ciesla FJ (2016) Dust diffusion and settling in the presence of collisions: trapping (sub)micron grains in the midplane. ApJ 822:111

    Article  ADS  Google Scholar 

  • Leconte J, Chabrier G (2012) A new vision of giant planet interiors: impact of double diffusive convection. A&A 540:A20

    Article  ADS  Google Scholar 

  • Leconte J, Chabrier G (2013) Layered convection as the origin of Saturn’s luminosity anomaly. Nat Geosci 6:347–350

    Article  ADS  Google Scholar 

  • Lesur G, Kunz MW, Fromang S (2014) Thanatology in protoplanetary discs. The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones. A&A 566:A56

    Article  ADS  Google Scholar 

  • Li ZY, Banerjee R, Pudritz RE et al (2014) The earliest stages of star and planet formation: core collapse, and the formation of disks and outflows. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 173–194

    Google Scholar 

  • Ligterink NFW, Coutens A, Kofman V et al (2017) The ALMA-PILS survey: detection of CH3NCO towards the low-mass protostar IRAS 16293-2422 and laboratory constraints on its formation. MNRAS 469:2219–2229

    Article  ADS  Google Scholar 

  • Lin DNC, Papaloizou J (1986) On the tidal interaction between protoplanets and the primordial solar nebula. II – self-consistent nonlinear interaction. ApJ 307:395–409

    Google Scholar 

  • Lin DNC, Papaloizou JCB (1993) On the tidal interaction between protostellar disks and companions. In: Levy EH, Lunine JI (eds) In: Beuther B (ed) Protostars and planets III. University of Arizona Press, Tucson, pp 749–835

    Google Scholar 

  • Lissauer JJ, Ragozzine D, Fabrycky DC et al (2011) Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. ApJS 197:8

    Article  ADS  Google Scholar 

  • Lozovsky M, Helled R, Rosenberg ED, Bodenheimer P (2017) Jupiter’s formation and its primordial internal structure. ApJ 836:227

    Article  ADS  Google Scholar 

  • Lynden-Bell D, Pringle JE (1974) The evolution of viscous discs and the origin of the nebular variables. MNRAS 168:603–637

    Article  ADS  Google Scholar 

  • Lyra W, Paardekooper SJ, Mac Low MM (2010) Orbital migration of low-mass planets in evolutionary radiative models: avoiding catastrophic infall. ApJ 715:L68–L73

    Article  ADS  Google Scholar 

  • Madhusudhan N, Amin MA, Kennedy GM (2014) Toward chemical constraints on hot Jupiter migration. ApJ 794:L12

    Article  ADS  Google Scholar 

  • Madhusudhan N, Bitsch B, Johansen A, Eriksson L (2017) Atmospheric signatures of giant exoplanet formation by pebble accretion. MNRAS 469:4102–4115

    Article  ADS  Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359

    Article  ADS  Google Scholar 

  • McClure MK, Bergin EA, Cleeves LI et al (2016) Mass measurements in protoplanetary disks from hydrogen deuteride. ApJ 831:167

    Article  ADS  Google Scholar 

  • McNally CP, Nelson RP, Paardekooper SJ, Gressel O, Lyra W (2017) Low mass planet migration in magnetically torqued dead zones – I. Static migration torque. MNRAS 472:1565–1575

    Google Scholar 

  • Militzer B, Hubbard WB (2013) Ab initio equation of state for hydrogen-helium mixtures with recalibration of the giant-planet mass-radius relation. ApJ 774:148

    Article  ADS  Google Scholar 

  • Miyake K, Nakagawa Y (1993) Effects of particle size distribution on opacity curves of protoplanetary disks around T Tauri stars. Icarus 106:20

    Article  ADS  Google Scholar 

  • Mizuno H, Nakazawa K, Hayashi C (1978) Instability of a gaseous envelope surrounding a planetary core and formation of giant planets. Prog Theor Phys 60:699–710

    Article  ADS  Google Scholar 

  • Mollière P, van Boekel R, Bouwman J et al (2017) Observing transiting planets with JWST. Prime targets and their synthetic spectral observations. A&A 600:A10

    Article  ADS  Google Scholar 

  • Mordasini C, Klahr H, Alibert Y, Miller N, Henning T (2014) Grain opacity and the bulk composition of extrasolar planets. I. Results from scaling the ISM opacity. A&A 566:A141

    Article  ADS  Google Scholar 

  • Mordasini C, van Boekel R, Mollière P, Henning T, Benneke B (2016) The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. ApJ 832:41

    Article  ADS  Google Scholar 

  • Moriarty J, Madhusudhan N, Fischer D (2014) Chemistry in an evolving protoplanetary disk: effects on terrestrial planet composition. ApJ 787:81

    Article  ADS  Google Scholar 

  • Öberg KI, Boogert ACA, Pontoppidan KM et al (2011a) The spitzer ice legacy: ice evolution from cores to protostars. ApJ 740:109

    Article  ADS  Google Scholar 

  • Öberg KI, Murray-Clay R, Bergin EA (2011b) The effects of snowlines on C/O in planetary atmospheres. ApJ 743:L16

    Article  ADS  Google Scholar 

  • Ormel CW, Paszun D, Dominik C, Tielens AGGM (2009) Dust coagulation and fragmentation in molecular clouds. I. How collisions between dust aggregates alter the dust size distribution. A&A 502:845–869

    Google Scholar 

  • Owen JE, Ercolano B, Clarke CJ (2011) Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation. MNRAS 412:13–25

    Article  ADS  Google Scholar 

  • Paardekooper SJ, Baruteau C, Crida A, Kley W (2010) A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag. MNRAS 401:1950–1964

    Google Scholar 

  • Papaloizou J, Lin DNC (1984) On the tidal interaction between protoplanets and the primordial solar nebula. I – Linear calculation of the role of angular momentum exchange. ApJ 285: 818–834

    Google Scholar 

  • Pascucci I, Sterzik M (2009) Evidence for disk photoevaporation driven by the central star. ApJ 702:724–732

    Article  ADS  Google Scholar 

  • Pasek MA, Milsom JA, Ciesla FJ et al (2005) Sulfur chemistry with time-varying oxygen abundance during solar system formation. Icarus 175:1–14

    Article  ADS  Google Scholar 

  • Pelletier G, Pudritz RE (1992) Hydromagnetic disk winds in young stellar objects and active galactic nuclei. ApJ 394:117–138

    Article  ADS  Google Scholar 

  • Pepe F, Mayor M, Queloz D et al (2004) The HARPS search for southern extra-solar planets. I. HD 330075 b: A new “hot Jupiter”. A&A 423:385–389

    Article  ADS  Google Scholar 

  • Pignatale FC, Maddison ST, Taquet V, Brooks G, Liffman K (2011) The effect of the regular solution model in the condensation of protoplanetary dust. MNRAS 414:2386–2405

    Article  ADS  Google Scholar 

  • Pinhas A, Madhusudhan N, Clarke C (2016) Efficiency of planetesimal ablation in giant planetary envelopes. MNRAS 463:4516–4532

    Article  ADS  Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85

    Article  ADS  Google Scholar 

  • Pontoppidan KM, Salyk C, Bergin EA et al (2014) Volatiles in protoplanetary disks. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 363–385

    Google Scholar 

  • Pudritz RE, Norman CA (1986) Bipolar hydromagnetic winds from disks around protostellar objects. ApJ 301:571–586

    Article  ADS  Google Scholar 

  • Pudritz RE, Ouyed R, Fendt C, Brandenburg A (2007) Disk winds, jets, and outflows: theoretical and computational foundations. In: Beuther B (ed) Protostars and Planets V. University of Arizona Press, Tucson, pp 277–294

    Google Scholar 

  • Qi C, Öberg KI, Wilner DJ et al (2013) Imaging of the CO snow line in a solar nebula analog. Science 341:630–632

    Article  ADS  Google Scholar 

  • Queloz D, Mayor M, Weber L et al (2000) The CORALIE survey for southern extra-solar planets. I. A planet orbiting the star Gliese 86. A&A 354:99–102

    ADS  Google Scholar 

  • Raettig N, Klahr H, Lyra W (2015) Particle trapping and streaming instability in vortices in protoplanetary disks. ApJ 804:35

    Article  ADS  Google Scholar 

  • Ray T, Dougados C, Bacciotti F, Eislöffel J, Chrysostomou A (2007) Toward resolving the outflow engine: an observational perspective. In: Beuther B (ed) Protostars and Planets V. University of Arizona Press, Tucson, pp 231–244

    Google Scholar 

  • Raymond SN, Kokubo E, Morbidelli A, Morishima R Walsh KJ (2014) Terrestrial Planet Formation at Home and Abroad. In: Beuther B (ed) Protostars and Planets VI. University of Arizona Press, Tucson, pp 595–618

    Google Scholar 

  • Rivilla VM, Beltrán MT, Cesaroni R et al (2017) Formation of ethylene glycol and other complex organic molecules in star-forming regions. A&A 598:A59

    Article  ADS  Google Scholar 

  • Rogers LA (2014) Glimpsing the compositions of sub-neptune-size exoplanets. In: Booth M, Matthews BC, Graham JR (eds) Exploring the formation and evolution of planetary systems. IAU symposium, vol 299, pp 247–251. https://doi.org/10.1017/S1743921313008491

    Article  Google Scholar 

  • Ros K, Johansen A (2013) Ice condensation as a planet formation mechanism. A&A 552:A137

    Article  ADS  Google Scholar 

  • Ruden SP (2004) Evolution of photoevaporating protoplanetary disks. ApJ 605:880–891

    Article  ADS  Google Scholar 

  • Salmeron R, Wardle M (2003) Magnetorotational instability in stratified, weakly ionized accretion discs. MNRAS 345:992–1008

    Article  ADS  Google Scholar 

  • Salyk C, Pontoppidan KM, Blake GA et al (2008) H2O and OH gas in the terrestrial planet-forming zones of protoplanetary disks. ApJ 676:L49

    Article  ADS  Google Scholar 

  • Schäfer U, Yang CC, Johansen A (2017) Initial mass function of planetesimals formed by the streaming instability. A&A 597:A69

    Article  ADS  Google Scholar 

  • Seifried D, Banerjee R, Pudritz RE, Klessen RS (2015) Accretion and magnetic field morphology around Class 0 stage protostellar discs. MNRAS 446:2776–2788

    Article  ADS  Google Scholar 

  • Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. A&A 24:337–355

    Google Scholar 

  • Showman AP, Guillot T (2002) Atmospheric circulation and tides of “51 Pegasus b-like” planets. A&A 385:166–180

    Article  ADS  Google Scholar 

  • Simon JB, Armitage PJ, Li R, Youdin AN (2016) The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. ApJ 822:55

    Article  ADS  Google Scholar 

  • Spezzano S, Caselli P, Bizzocchi L, Giuliano BM, Lattanzi V (2017) The observed chemical structure of L1544. A&A 606:A82

    Article  ADS  Google Scholar 

  • Stammler SM, Birnstiel T, Panić O, Dullemond CP, Dominik C (2017) Redistribution of CO at the location of the CO ice line in evolving gas and dust disks. A&A 600:A140

    Article  ADS  Google Scholar 

  • Stevenson DJ (1985) Cosmochemistry and structure of the giant planets and their satellites. Icarus 62:4–15

    Article  ADS  Google Scholar 

  • Stevenson DJ, Lunine JI (1988) Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula. Icarus 75:146–155

    Article  ADS  Google Scholar 

  • Tamayo D, Triaud AHMJ, Menou K, Rein H (2015) Dynamical stability of imaged planetary systems in formation: application to HL Tau. ApJ 805:100

    Article  ADS  Google Scholar 

  • Terquem C, Papaloizou JCB (1996) On the stability of an accretion disc containing a toroidal magnetic field. MNRAS 279:767–784

    Article  ADS  Google Scholar 

  • Testi L, Birnstiel T, Ricci L et al (2014) Dust evolution in protoplanetary disks. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 339–361

    Google Scholar 

  • Thiabaud A, Marboeuf U, Alibert Y, Leya I, Mezger K (2015) Gas composition of the main volatile elements in protoplanetary discs and its implication for planet formation. A&A 574:A138

    Article  ADS  Google Scholar 

  • Tobin JJ, Looney LW, Wilner DJ et al (2015) A sub-arcsecond survey toward Class 0 protostars in perseus: searching for signatures of protostellar disks. ApJ 805:125

    Article  ADS  Google Scholar 

  • Toppani A, Libourel G, Robert F, Ghanbaja J (2006) Laboratory condensation of refractory dust in protosolar and circumstellar conditions. Geochim Cosmochim Acta 70:5035–5060

    Article  ADS  Google Scholar 

  • Turner NJ, Fromang S, Gammie C et al (2014) Transport and accretion in planet-forming disks. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 411–432

    Google Scholar 

  • Udry S, Santos NC (2007) Statistical properties of exoplanets. ARA&A 45:397–439

    Article  ADS  Google Scholar 

  • Umebayashi T, Nakano T (2009) Effects of radionuclides on the ionization state of protoplanetary disks and dense cloud cores. ApJ 690:69–81

    Article  ADS  Google Scholar 

  • Valencia D, Sasselov DD, O’Connell RJ (2007) Detailed models of super-earths: how well can we infer bulk properties? ApJ 665:1413–1420

    Article  ADS  Google Scholar 

  • Vasyunin AI, Caselli P, Dulieu F, Jiménez-Serra I (2017) Formation of complex molecules in prestellar cores: a multilayer approach. ApJ 842:33

    Article  ADS  Google Scholar 

  • Wahl SM, Hubbard WB, Militzer B et al (2017) Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys Res Lett 44:4649–4659

    Article  ADS  Google Scholar 

  • Walsh C, Millar TJ, Nomura H et al (2014) Complex organic molecules in protoplanetary disks. A&A 563:A33

    Article  ADS  Google Scholar 

  • Walsh C, Nomura H, van Dishoeck E (2015) The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime. A&A 582:A88

    Article  ADS  Google Scholar 

  • Wang J, Fischer DA (2015) Revealing a universal planet-metallicity correlation for planets of different sizes around solar-type stars. AJ 149:14

    Article  ADS  Google Scholar 

  • Ward WR (1986) Density waves in the solar nebula – differential lindblad torque. Icarus 67: 164–180

    Article  ADS  Google Scholar 

  • Ward WR (1997) Protoplanet migration by nebula tides. Icarus 126:261–281

    Article  ADS  Google Scholar 

  • Weidenschilling SJ (1977) Aerodynamics of solid bodies in the solar nebula. MNRAS 180:57–70

    Article  ADS  Google Scholar 

  • Weiss LM, Marcy GW, Rowe JF et al (2013) The mass of KOI-94d and a relation for planet radius, mass, and incident flux. ApJ 768:14

    Article  ADS  Google Scholar 

  • Xu R, Bai XN, Öberg K (2017) Turbulent-diffusion mediated CO depletion in weakly turbulent protoplanetary disks. ApJ 835:162

    Article  ADS  Google Scholar 

  • Yan H, Lazarian A (2002) Scattering of cosmic rays by magnetohydrodynamic interstellar turbulence. Phys Rev Lett 89:281102

    Article  ADS  Google Scholar 

  • Youdin AN, Goodman J (2005) Streaming instabilities in protoplanetary disks. ApJ 620:459–469

    Article  ADS  Google Scholar 

  • Youdin AN, Shu FH (2002) Planetesimal formation by gravitational instability. ApJ 580:494–505

    Article  ADS  Google Scholar 

  • Yu L, Donati JF, Hébrard EM et al (2017) A hot Jupiter around the very active weak-line T Tauri star TAP 26. MNRAS 467:1342–1359

    ADS  Google Scholar 

  • Yu M, Willacy K, Dodson-Robinson SE, Turner NJ, Evans NJ II (2016) Probing planet forming zones with rare CO isotopologues. ApJ 822:53

    Article  ADS  Google Scholar 

  • Zapolsky HS, Salpeter EE (1969) The mass-radius relation for cold spheres of low mass. ApJ 158:809

    Article  ADS  Google Scholar 

  • Zhang K, Blake GA, Bergin EA (2015) Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. ApJ 806:L7

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Phil Armitage for his thoughtful referee report. We also thank Yasuhiro Hasegawa, Ted Bergin, Til Birnstiel, Christoph Mordasini, Thomas Henning, Dimitry Semenov, Nikku Madhusudhan, Richard Nelson, and Colin McNally for enlightening discussions during the course of this project. This research was supported by a Discovery Grant to REP from the Natural Sciences and Engineering Research Council of Canada (NSERC), as well as by NSERC postgraduate scholarships to AC and MA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph E. Pudritz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pudritz, R.E., Cridland, A.J., Alessi, M. (2018). Connecting Planetary Composition with Formation. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_144-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_144-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics