Skip to main content

Gait Rehabilitation with Exoskeletons

  • Living reference work entry
  • First Online:
Handbook of Human Motion

Abstract

The exoskeleton is a robotics-assisted, powered device that enables paralyzed patients to stand up and walk. This chapter examines the state of art concerning the use of active, powered, and wearable lower limb exoskeletons for aiding and rehabilitating paraplegic patients’ gait disorders resulting from serious central nervous system lesions. A qualitative analysis of the literature review found that the rehabilitative use of an exoskeleton is safe and practical, not physically exhausting, and requires just a little cognitive effort. In addition, exoskeleton use is easy to learn, increases mobility and functional abilities, and decreases the risk of secondary injuries, restoring a gait pattern comparable to normal when walking over ground. Nevertheless, the rehabilitative use of an exoskeleton has some important limitations: the wearability criteria are too restrictive, the training to use it autonomously at home is very complex, and the device is still extremely expensive. A further limitation is the scarcity of experimental designs that demonstrate the effectiveness of the exoskeleton compared to other rehabilitative techniques and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aach M, Meindl R, Hayashi T, Lange I, Geßmann J, Sander A, Nicolas V, Schwenkreis P, Tegenthoff M, Sankai Y, Schildhauer TA (2013) Exoskeletal neuro-rehabilitation in chronic paraplegic patients – initial results. In: Pons JL, Torricelli D, Pajaro M (eds) Converging clinical and engineering research on neurorehabilitation. Springer, Berlin, pp 233–236. doi:10.1007/978-3-642-34546-3_99

    Chapter  Google Scholar 

  • Aach M, Cruciger O, Sczesny-Kaiser M, Hoffken O, Meindl RC, Tegenthoff M, Schwenkreis P, Sankai Y, Schildhauer TA (2014) Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J 14(12):2847–2853. doi:10.1016/J.Spinee.2014.03.042

    Article  Google Scholar 

  • Agrawal Y, Carey JP, Hoffman HJ, Sklare DA, Schubert MC (2011) The modified Romberg balance test: normative data in US adults. Otol Neurotol 32(8):1309–1311. doi:10.1097/MAO.0b013e31822e5bee

    Article  Google Scholar 

  • Andersson P, Franzen E (2015) Effects of weight-shift training on walking ability, ambulation, and weight distribution in individuals with chronic stroke: a pilot study. Top Stroke Rehabil [Epub ahead of print]. doi:10.1179/1074935715Z.00000000052

    Google Scholar 

  • Asselin P, Knezevic S, Kornfeld S, Cirnigliaro C, Agranova-Breyter I, Bauman WA, Spungen AM (2015) Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev 52(2):147–158. doi:10.1682/JRRD.2014.02.0060

    Article  Google Scholar 

  • Belforte G, Gastaldi L, Sorli M (2001) Pneumatic active gait orthosis. Mechatronics 11(3):301–323. doi:10.1016/S0957-4158(00)00017-9

    Article  Google Scholar 

  • Benson I, Hart K, Tussler D, van Middendorp JJ (2016) Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil 30(1):73–84. doi:10.1177/0269215515575166

    Article  Google Scholar 

  • Bishop L, Stein J, Wong CK (2012) Robot-aided gait training in an individual with chronic spinal cord injury: a case study. J Neurol Phys Ther 36(3):138–143. doi:10.1097/NPT.0b013e3182624c87

    Article  Google Scholar 

  • Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL (2015) The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J Neuroeng Rehabil 12:54. doi:10.1186/s12984-015-0048-y

    Article  Google Scholar 

  • Buxton RB (2013) The physics of functional magnetic resonance imaging (fMRI). Rep Prog Phys 76(9):096601. doi:10.1088/0034-4885/76/9/096601

    Article  Google Scholar 

  • Chaigneau D, Arsicault M, Gazeau JP, Zeghloul S (2008) LMS robotic hand grasp and manipulation planning (an isomorphic exoskeleton approach). Robotica 26(2):177–188. doi:10.1017/S0263574707003736

    Article  Google Scholar 

  • Cuesta-Vargas AI, Perez-Cruzado D (2014) Relationship between Barthel index with physical tests in adults with intellectual disabilities. SpringerPlus 3(543). doi:10.1186/2193-1801-3-543

    Google Scholar 

  • Dickstein R, Levy S, Shefi S, Holtzman S, Peleg S, Vatine J-J (2014) Motor imagery group practice for gait rehabilitation in individuals with post-stroke hemiparesis: a pilot study. NeuroRehabilitation 34(2):267–276. doi:10.3233/NRE-131035

    Google Scholar 

  • Ditunno JFJ, Ditunno PL, Scivoletto G, Patrick M, Dijkers M, Barbeau H, Burns AS, Marino RJ, Schmidt-Read M (2013) The walking index for spinal cord injury (WISCI/WISCI II): nature, metric properties, use and misuse. Spinal Cord 51(5):346–355. doi:10.1038/sc.2013.9

    Article  Google Scholar 

  • Downs S, Marquez J, Chiarelli P (2013) The berg balance scale has high intra- and inter-rater reliability but absolute reliability varies across the scale: a systematic review. J Physiother 59(2):93–99. doi:10.1016/S1836-9553(13)70161-9

    Article  Google Scholar 

  • Esquenazi A, Talaty M, Packel A, Saulino M (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91(11):911–921. doi:10.1097/PHM.0b013e318269d9a3

    Article  Google Scholar 

  • Farris RJ, Quintero HA, Goldfarb M (2011) Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng 19(6):652–659. doi:10.1109/TNSRE.2011.2163083

    Article  Google Scholar 

  • Farris RJ, Quintero HA, Goldfarb M (2012) Performance evaluation of a lower limb exoskeleton for stair ascent and descent with paraplegia. In: 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: EMBC 2012, San Diego, 28 Aug–1 Sep 2012. pp 1908–1911. doi:10.1109/EMBC.2012.6346326

    Google Scholar 

  • Farris RJ, Quintero HA, Murray SA, Ha KH, Hartigan C, Goldfarb M (2014) A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng 22(3):482–490. doi:10.1109/TNSRE.2013.2268320

    Article  Google Scholar 

  • Fondazione Santa Lucia (2015) Maratona di roma 2015, un esoscheletro hi-tech per tornare a correre. http://www.hsantalucia.it/modules.php?name=News&file=article&sid=989. Accessed 15 May 2015

  • Fung S, Byl N, Melnick M, Callahan P, Selinger A, Ishii K, Devins J, Fischer P, Torburn L, Andrade C-K (1997) Functional outcomes: the development of a new instrument to monitor the effectiveness of physical therapy. Eur J Phys Rehab Med 7(2):31–41

    Google Scholar 

  • Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, Etheridge S, Farris R (2015) Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil 21(2):93–99. doi:10.1310/sci2102-93

    Article  Google Scholar 

  • Hellstrom K, Lindmark B, Fugl-Meyer A (2002) The falls-efficacy scale, Swedish version: does it reflect clinically meaningful changes after stroke? Disabil Rehabil 24(9):471–481. doi:10.1080/09638280110105259

    Article  Google Scholar 

  • Herr H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. J Neuroeng Rehabil 6(1):1–9. doi:10.1186/1743-0003-6-21

    Article  Google Scholar 

  • Ikehara T, Nagamura K, Ushida T, Tanaka E, Saegusa S, Kojima S, Yuge L (2011) Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity. In: IEEE International Conference on Rehabilitation Robotics: ICORR 2011, Zurich, 29 Jun–1 Jul 2011. pp 1–7. doi:10.1109/ICORR.2011.5975449

    Google Scholar 

  • Kao P-C, Lewis CL, Ferris DP (2010) Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech 43(2):203–209. doi:10.1016/j.jbiomech.2009.09.030

    Article  Google Scholar 

  • Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi K, Sankai Y (2010) Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia. In: 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society: EMBC 2010, Buenos Aires, 31 Aug–4 Sep 2010. pp 462–466. doi:10.1109/IEMBS.2010.5626191

    Google Scholar 

  • Kolakowsky-Hayner SA, Crew J, Moran S, Shah A (2013) Safety and feasibility of using the EksoTM bionic exoskeleton to aid ambulation after spinal cord injury. J Spine S4(3):1–8. doi:10.4172/2165-7939.S4-003

    Google Scholar 

  • Lee HS, Song J, Min K, Choi Y-S, Kim S-M, Cho S-R, Kim M (2014) Short-term effects of erythropoietin on neurodevelopment in infants with cerebral palsy: a pilot study. Brain Dev 36(9):764–769. doi:10.1016/j.braindev.2013.11.002

    Article  Google Scholar 

  • Li L, Ding L, Chen N, Mao Y, Huang D, Li L (2015) Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke. Biomed Mater Eng 26:S329–S340. doi:10.3233/bme-151320

    Google Scholar 

  • McHorney CA, Ware JE, Raczek AE (1993) The MOS 36-item short-form health survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care 31(3):247–263

    Article  Google Scholar 

  • Mehrholz J, Wagner K, Rutte K, Meissner D, Pohl M (2007) Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch Phys Med Rehabil 88(10):1314–1319. doi:10.1016/j.apmr.2007.06.764

    Article  Google Scholar 

  • Mohseni Bandpei MA, Rahmani N, Majdoleslam B, Abdollahi I, Ali SS, Ahmad A (2014) Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review. J Manipulative Physiol Ther 37(7):510–521. doi:10.1016/j.jmpt.2014.05.006

    Article  Google Scholar 

  • Mooney LM, Rouse EJ, Herr HM (2014) Autonomous exoskeleton reduces metabolic cost of human walking. J Neuroeng Rehabil 11(151):2–5. doi:10.1186/1743-0003-11-151

    Google Scholar 

  • Moreno J, Ama A, Reyes-Guzmán A, Gil-Agudo Á, Ceres R, Pons J (2011) Neurorobotic and hybrid management of lower limb motor disorders: a review. Med Biol Eng Comput 49(10):1119–1130. doi:10.1007/s11517-011-0821-4

    Article  Google Scholar 

  • Mori Y, Takayama K, Zengo T, Nakamura T (2004) Development of straight style transfer equipment for lower limbs disabled “able”. J Robot Mechatron 16(5):456–463

    Article  Google Scholar 

  • Mori Y, Okada J, Takayama K (2006) Development of a standing style transfer system “able” for disabled lower limbs. IEEE/ASME Trans Mechatronics 11(4):372–380. doi:10.1109/TMECH.2006.878558

    Article  Google Scholar 

  • Nef T, Riener R (2012) Three-dimensional multi-degree-of-freedom arm therapy robot (ARMin). In: Dietz V, Nef T, Rymer WZ (eds) Neurorehabilitation technology. Springer, London, pp 141–157

    Chapter  Google Scholar 

  • Neuhaus PD, Noorden JH, Craig TJ, Torres T, Kirschbaum J, Pratt JE (2011) Design and evaluation of mina: a robotic orthosis for paraplegics. In: IEEE International Conference on Rehabilitation Robotics: ICORR 2011, Zurich, 29 Jun–1 Jul 2011. pp 1–8. doi:10.1109/ICORR.2011.5975468

    Google Scholar 

  • Nilsson A, Vreede KS, Haglund V, Kawamoto H, Sankai Y, Borg J (2014) Gait training early after stroke with a new exoskeleton – the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil 11(92):1–10. doi:10.1186/1743-0003-11-92

    Google Scholar 

  • Pandyan AD, Johnson GR, Price CI, Curless RH, Barnes MP, Rodgers H (1999) A review of the properties and limitations of the Ashworth and modified Ashworth scales as measures of spasticity. Clin Rehabil 13(5):373–383

    Article  Google Scholar 

  • Park EY, Choi YI (2014) Psychometric properties of the lower extremity subscale of the Fugl-Myer assessment for community-dwelling hemiplegic stroke patients. J Phys Ther Sci 26(11):1775–1777. doi:10.1589/jpts.26.1775

    Article  Google Scholar 

  • Peters DM, Middleton A, Donley JW, Blanck EL, Fritz SL (2014) Concurrent validity of walking speed values calculated via the GAITRite electronic walkway and 3 meter walk test in the chronic stroke population. Physiother Theory Pract 30(3):183–188. doi:10.3109/09593985.2013.845805

    Article  Google Scholar 

  • Podsiadlo D, Richardson S (1991) The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(2):142–148

    Article  Google Scholar 

  • Quintero HA, Farris RJ, Goldfarb M (2012) A method for the autonomous control of lower limb exoskeletons for persons with paraplegia. J Med Devices 6(4):1–6. doi:10.1115/1.4007181

    Article  Google Scholar 

  • Raab K, Krakow K, Tripp F, Jung M (2016) Effects of training with the ReWalk exoskeleton on quality of life in incomplete spinal cord injury: a single case study. Spinal Cord Ser Cases 1(1):15025. doi:10.1038/scsandc.2015.25

    Article  Google Scholar 

  • Rahman T, Sample W, Jayakumar S, King MM, Wee JY, Seliktar R, Alexander M, Scavina M, Clark A (2006) Passive exoskeletons for assisting limb movement. J Rehabil Res Dev 43(5):583–590. doi:10.1682/JRRD.2005.04.0070

    Article  Google Scholar 

  • Reed MD, Van Nostran W (2014) Assessing pain intensity with the visual analog scale: a plea for uniformity. J Clin Pharmacol 54(3):241–144. doi:10.1002/jcph.250

    Article  Google Scholar 

  • Reybrouck T (2003) Clinical usefulness and limitations of the 6-minute walk test in patients with cardiovascular or pulmonary disease. Chest 123(2):325–327. doi:10.1378/chest.123.2.325

    Article  Google Scholar 

  • Saji N, Kimura K, Ohsaka G, Higashi Y, Teramoto Y, Usui M, Kita Y (2015) Functional independence measure scores predict level of long-term care required by patients after stroke: a multicenter retrospective cohort study. Disabil Rehabil 37(4):331–337. doi:10.3109/09638288.2014.918195

    Article  Google Scholar 

  • Sanz-Merodio D, Cestari M, Arevalo JC, Garcia E (2012) A lower-limb exoskeleton for gait assistance in quadriplegia. In: IEEE International Conference on Robotics and Biomimetics: ROBIO 2012, Guangzhou, 11–14 Dec 2012. pp 122–127. doi:10.1109/ROBIO.2012.6490954

    Google Scholar 

  • Sczesny-Kaiser M, Höffken O, Lissek S, Lenz M, Schlaffke L, Nicolas V, Meindl R, Aach M, Sankai Y, Schildhauer TA, Tegenthoff M, Schwenkreis P (2013) Neurorehabilitation in chronic paraplegic patients with the HAL® exoskeleton – preliminary electrophysiological and fMRI data of a pilot study. In: Pons JL, Torricelli D, Pajaro M (eds) Converging clinical and engineering research on neurorehabilitation. Springer, Berlin, pp 611–615. doi:10.1007/978-3-642-34546-3_99

    Chapter  Google Scholar 

  • Shin JC, Yoo JH, Jung TH, Goo HR (2011) Comparison of lower extremity motor score parameters for patients with motor incomplete spinal cord injury using gait parameters. Spinal Cord 49(4):529–533. doi:10.1038/sc.2010.158

    Article  Google Scholar 

  • Spungen AM, Asselin P, Fineberg DB, Kornfeld SD, Harel NY (2013) Exoskeletal-assisted walking for persons with motor-complete paraplegia. In: STO Human Factors and Medicine Panel (HFM) Symposium, Milan, 15–17 Apr 2013

    Google Scholar 

  • Stein J, Bishop L, Stein DJ, Wong CK (2014) Gait training with a robotic leg brace after stroke: a randomized controlled pilot study. Am J Phys Med Rehabil 93(11):987–994. doi:10.1097/PHM.0000000000000119

    Article  Google Scholar 

  • Stookey AD, Katzel LI, Steinbrenner G, Shaughnessy M, Ivey FM (2014) The short physical performance battery as a predictor of functional capacity after stroke. J Stroke Cerebrovasc Dis 23(1):130–135. doi:10.1016/j.jstrokecerebrovasdis.2012.11.003

    Article  Google Scholar 

  • Strausser KA, Kazerooni H (2011) The development and testing of a human machine interface for a mobile medical exoskeleton. In: IEEE/RSJ International Conference on Intelligent Robots and Systems: IROS 2011, San Francisco, 25–30 Sep 2011. pp 4911–4916. doi:10.1109/IROS.2011.6095025

    Google Scholar 

  • Strausser KA, Swift TA, Zoss AB, Kazerooni H (2010) Prototype medical exoskeleton for paraplegic mobility: first experimental results. In: ASME 2010 Dynamic Systems and Control Conference: DSCC 2010, Cambridge, MA, 12–15 Sep 2010. ASME, pp 453–458. doi:10.1115/DSCC2010-4261

    Google Scholar 

  • Suzuki K, Kawamura Y, Hayashi T, Sakurai T, Hasegawa Y, Sankai Y (2005) Intention-based walking support for paraplegia patient. In: IEEE International Conference on Systems, Man and Cybernetics: SMC 2005, Waikoloa, 10–12 Oct 2005. pp 2707–2713 Vol. 2703. doi:10.1109/ICSMC.2005.1571559

    Google Scholar 

  • Sylos-Labini F, La Scaleia V, d’Avella A, Pisotta I, Tamburella F, Scivoletto G, Molinari M, Wang S, Wang L, van Asseldonk E, van der Kooij H, Hoellinger T, Cheron G, Thorsteinsson F, Ilzkovitz M, Gancet J, Hauffe R, Zanov F, Lacquaniti F, Ivanenko YP (2014) EMG patterns during assisted walking in the exoskeleton. Front Hum Neurosci 8(423):1–12. doi:10.3389/fnhum.2014.00423

    Google Scholar 

  • Talaty M, Esquenazi A, Briceño JE (2013) Differentiating ability in users of the ReWalk™ powered exoskeleton: an analysis of walking kinematics. In: IEEE International Conference on Rehabilitation Robotics: ICORR 2013 Seattle, 24–26 Jun 2013. pp 1–5. doi:10.1109/ICORR.2013.6650469

    Google Scholar 

  • Tinetti ME (1986) Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34(2):119–126. doi:10.1111/j.1532-5415.1986.tb05480.x

    Article  Google Scholar 

  • Tsukahara A, Hasegawa Y, Sankai Y (2009) Standing-up motion support for paraplegic patient with robot suit hal. In: IEEE International Conference on Rehabilitation Robotics: ICORR 2009, Kyoto, 23–26 Jun 2009. pp 211–217. doi:10.1109/ICORR.2009.5209567

    Google Scholar 

  • Tsukahara A, Kawanishi R, Hasegawa Y, Sankai Y (2010) Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL. Adv Robotics 24(11):1615–1638. doi:10.1163/016918610X512622

    Article  Google Scholar 

  • Watanabe H, Tanaka N, Inuta T, Saitou H, Yanagi H (2014) Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Arch Phys Med Rehabil 95(11):2006–2012. doi:10.1016/J.Apmr.2014.07.002

    Article  Google Scholar 

  • Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM (2005) Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the five-times-sit-to-stand test. Phys Ther 85(10):1034–1045

    Google Scholar 

  • Wolf SL, Catlin PA, Gage K, Gurucharri K, Robertson R, Stephen K (1999) Establishing the reliability and validity of measurements of walking time using the Emory functional ambulation profile. Phys Ther 79(12):1122–1133

    Google Scholar 

  • Yang N, Zhang B, Gao C (2014) The baseline NIHSS score in female and male patients and short-time outcome: a study in young ischemic stroke. J Thromb Thrombolysis 37(4):565–570. doi:10.1007/s11239-013-0986-9

    Article  Google Scholar 

  • Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A (2012) Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med 35(2):96–101. doi:10.1179/2045772312Y.0000000003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Federici .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Federici, S., Meloni, F., Bracalenti, M. (2016). Gait Rehabilitation with Exoskeletons. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_80-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_80-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics