Skip to main content

Abstract

Aromatic sulfur heterocyclic (ASH) compounds are among the most toxic and recalcitrant contaminants of fossil fuels and may cause serious environmental (e.g., acid precipitation), industrial (e.g., catalyst poisoning), and health problems (e.g., cardiopulmonary diseases). Different biochemical pathways for ASH degradation have been described in a wide variety of microorganisms. These pathways, which are encoded either on plasmids or on the host chromosome, usually are not essential for growth but rather allow to exploit a specific environmental niche or condition. Dibenzothiophene (DBT) is widely use as model ASH compound. A sulfur-specific pathway for DBT biodesulfurization (dsz pathway or 4S pathway) has been extensively studied at the physiological, biochemical, and genetic levels. The distribution and conservation of the dsz genes in a wide variety of bacteria strongly suggest that these genes are commonly subjected to horizontal gene transfer in nature. Despite the fact that an efficient ASH biodesulfurization depends on the expression, activity, feedback inhibition, and substrate range of the dsz gene products, host cell contributions also play an essential role in achieving higher activities, which are pivotal from a biotechnological point of view to develop a commercially viable biodesulfurization process. Factors, such as the cell-reducing power, cytoplasmic oxygen levels, transmembrane trafficking of substrates and products, solvent tolerance, and the ability of the cells to access and uptake the aromatic compounds, may influence strongly the biodesulfurization efficiency. A large number of recombinant bacteria have been engineered to overcome the major bottlenecks of the biodesulfurization process. The increased use of high-throughput omic techniques, as well as systems biology and synthetic biology approaches, is contributing significantly to unravel the intricate regulatory and metabolic networks that govern the degradation of ASHs. These studies will pave the way for further metabolic flux modeling and for the rational design of synthetic metabolic pathways or bacterial consortia for upgrading large volumes of fossil fuels, one of the greatest challenges addressed by current biotechnology. Moreover, existing desulfurization biocatalysts can also potentially be used in a variety of applications, e.g., synthesis of higher-value oil-based chemicals that have barely begun to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abin-Fuentes A, Mohamed ME, Wang D, Prather K (2013) Exploring the mechanism of biocatalyst inhibition in microbial desulfurization. Appl Environ Microbiol 79:7807–7817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adak S, Begley TP (2016) Dibenzothiophene catabolism proceeds via a flavin-N5-oxide intermediate. J Am Chem Soc 138:6424–6426

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Karimi IA, Lee DY (2011a) Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies. Mol BioSyst 7:3122–3131

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Karimi IA, Lee DY (2011b) Flux-based analysis of sulfur metabolism in desulfurizing strains of Rhodococcus erythropolis. FEMS Microbiol Lett 315:115–121

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Karimi IA, Kilbane JJ II, Lee DY (2012) Roles of sulfite oxidoreductase and sulfite reductase in improving desulfurization by Rhodococcus erythropolis. Mol BioSyst 8:2724–2732

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Karimi IA, Ivan GR (2013) In silico modeling and evaluation of Gordonia alkanivorans for biodesulfurization. Mol BioSyst 9:2530–2540

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Chauhan AK, Javed S, Kumar A (2014) Desulfurization of thianthrene by a Gordonia sp. IITR100. Biotechnol Lett 36:2209–2214

    Article  CAS  PubMed  Google Scholar 

  • Akhtar N, Ghauri MA, Anwar MA, Akhtar K (2009) Analysis of the dibenzothiophene metabolic pathway in a newly isolated Rhodococcus spp. FEMS Microbiol Lett 301:95–102

    Article  CAS  PubMed  Google Scholar 

  • Akhtar N, Ghauri MA, Anwar MA, Heaphy S (2015) Phylogenetic characterization and novelty of organic sulphur metabolizing genes of Rhodococcus spp. (Eu-32). Biotechnol Lett 37:837–847

    Article  CAS  PubMed  Google Scholar 

  • Alves L, Paixão SM (2011) Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation. Bioresour Technol 102:9162–9166

    Article  CAS  PubMed  Google Scholar 

  • Alves L, Matos J, Tenreiro R, Gírio FM (2008) Evidence for the role of zinc on the performance of dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B. J Ind Microbiol Biotechnol 35:69–73

    Article  CAS  PubMed  Google Scholar 

  • Andreolli M, Lampis S, Zenaro E, Salkinoja-Salonen M, Vallini G (2011) Burkholderia fungorum DBT1: a promising bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiol Lett 319:11–18

    Article  CAS  PubMed  Google Scholar 

  • Arensdorf JJ, Loomis AK, DiGrazia PM, Monticello DJ, Pienkos PT (2002) Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants. Appl Environ Microbiol 68:691–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala M, Tinoco R, Hernandez V, Bremauntz P, Vazquez-Duhalt R (1998) Biocatalytic oxidation of fuel as an alternative to biodesulfurization. Fuel Process Technol 57:101–111

    Article  CAS  Google Scholar 

  • Benedetti I, de Lorenzo V, Nikel PI (2016) Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 33:109–118

    Article  CAS  PubMed  Google Scholar 

  • Bhatia S, Sharma DK (2010a) Mining of genomic databases to identify novel biodesulfurizing microorganisms. J Ind Microbiol Biotechnol 37:425–429

    Article  CAS  PubMed  Google Scholar 

  • Bhatia S, Sharma DK (2010b) Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem Eng J 50:104–109

    Article  CAS  Google Scholar 

  • Bhatia S, Sharma DK (2012) Thermophilic desulfurization of dibenzothiophene and different petroleum oils by Klebsiella sp. 13T. Environ Sci Pollut Res Int 19:3491–3497

    Article  CAS  PubMed  Google Scholar 

  • Boniek D, Figueiredo D, dos Santos AFB, de Resende Stoianoff MA (2015) Biodesulfurization: a mini review about the immediate search for the future technology. Clean Techn Environ Policy 17:29–37

    Article  Google Scholar 

  • Bordoloi NK, Bhagowati P, Chaudhuri MK, Mukherjee AK (2016) Proteomics and metabolomics analyses to elucidate the desulfurization pathway of Chelatococcus sp. PLoS One 11:e0153547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bressler DC, Fedorak PM (2000) Bacterial metabolism of fluorene, dibenzofuran, dibenzothiophene, and carbazole. Can J Microbiol 46:397–409

    Article  CAS  PubMed  Google Scholar 

  • Butler RR, Wang J, Stark BC, Pombert JF (2016) Complete genome sequences of two interactive moderate thermophiles, Paenibacillus naphtalenovorans 32O-Y and Paenibacillus sp. 32O-W. Genome Announc 4:e01717–e01715

    Article  PubMed  PubMed Central  Google Scholar 

  • Calzada J, Zamarro MT, Alcón A, Santos VE, Díaz E, García HL, García-Ochoa F (2009) Analysis of dibenzothiophene desulfurization in a recombinant Pseudomonas putida strain. Appl Environ Microbiol 75:875–877

    Article  CAS  PubMed  Google Scholar 

  • Carmona M, Prieto MA, Galán B, García JL, Díaz E (2008) Signaling networks and design of pollutant biosensors. In: Díaz E (ed) Microbial biodegradation. Genomics and molecular biology. Caister Academic Press, Norfolk, pp 97–143

    Google Scholar 

  • Chen H, Zhang WJ, Cai YB, Zhang Y, Li W (2008) Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2. Bioresour Technol 99:6928–6933

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Cai YB, Zhang WJ, Li W (2009) Methoxylation pathway in biodesulfurization of model organosulfur compounds with Mycobacterium sp. Bioresour Technol 100:2085–2087

    Article  CAS  PubMed  Google Scholar 

  • Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19:354–359

    Article  CAS  PubMed  Google Scholar 

  • Czechowska K, Reimmann C, van der Meer JR (2013) Characterization of a MexAB-OprM efflux system necessary for productive metabolism of Pseudomonas azelaica HBP1 on 2-hydroxybiphenyl. Front Microbiol 4:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denome SA, Olson ES, Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 59:2837–2843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denome SA, Oldfield C, Nash LJ, Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176:6707–6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Zhang L, Zhou D, Ji K, Ma T, Shui W, Li G, Li X (2013) Crystallization and preliminary structural analysis of dibenzothiophene monooxygenase (DszC) from Rhodococcus erythropolis. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:597–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte GF, Rosado AS, Seldin L, de Araujo W, van Elsas JD (2001) Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl Environ Microbiol 67:1052–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Said Mohamed M, García JL, Martínez I, Del Cerro C, Nogales J, Díaz E (2015a) Genome sequence of Pseudomonas azelaica strain Aramco J. Genome Announc 3 pii: e00037–15.

    Google Scholar 

  • El-Said Mohamed M, Al-Yacoub ZH, Vedakumar JV (2015b) Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria. Front Microbiol 6:112

    Google Scholar 

  • Frassinetti S, Setti L, Corti A, Farrinelli P, Montevecchi P, Vallini G (1998) Biodegradation of dibenzothiophene by a nodulating isolate of Rhizobium meliloti. Can J Microbiol 44:289–297

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Takahashi S, Ishii Y, Kino K, Kirimura K (2004) Cloning of a gene encoding flavin reductase coupling with dibenzothiophene monooxygenase through coexpression screening using indigo production as selective indication. Biochem Biophys Res Commun 313:570–575

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Takahashi S, Iwasaki Y, Ishii Y, Kino K, Kirimura K (2005) Gene cloning and characterization of Mycobacterium phlei flavin reductase involved in dibenzothiophene desulfurization. J Biosci Bioeng 99:577–585

    Article  CAS  PubMed  Google Scholar 

  • Galán B, Díaz E, García JL (2000) Enhancing desulfurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2:687–694

    Article  PubMed  Google Scholar 

  • Gallardo ME, Ferrández A, de Lorenzo V, García JL, Díaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179:7156–7160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A (1998) Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144:2545–2553

    Article  CAS  PubMed  Google Scholar 

  • Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709

    Article  CAS  PubMed  Google Scholar 

  • Gray KA, Mrachko GT, Squires CH (2003) Biodesulfurization of fossil fuels. Curr Opin Microbiol 6:229–235

    Article  CAS  PubMed  Google Scholar 

  • Guan LJ, Lee WC, Wang S, Ohshiro T, Izumi Y, Ohtsuka J, Tanokura M (2015) Crystal structures of apo-DszC and FMN-bound DszC from Rhodococcus erythropolis D-1. FEBS J 282:3126–3135

    Article  CAS  PubMed  Google Scholar 

  • Gunam IB, Yamamura K, Sujaya IN, Antara NS, Aryanta WR, Tanaka M, Tomita F, Sone T, Asano K (2013) Biodesulfurization of dibenzothiophene and its derivatives using resting and immobilized cells of Sphingomonas subarctica T7b. J Microbiol Biotechnol 23:473–478

    Article  CAS  PubMed  Google Scholar 

  • Guobin S, Jianmin X, Chen G, Huizhou L, Jiayong C (2005) Biodesulfurization using Pseudomonas delafieldii in magnetic polyvinyl alcohol beads. Lett Appl Microbiol 40:30–36

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Roychoudhury PK, Deb JK (2005) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366

    Article  CAS  PubMed  Google Scholar 

  • Hirano S, Kitauchi F, Haruki M, Imanaka T, Morikawa M, Kanaya S (2004) Isolation and characterization of Xanthobacter polyaromaticivorans sp. nov. 127W that degrades polycyclic and heterocyclic aromatic compounds under extremely low oxygen conditions. Biosci Biotechnol Biochem 68:557–564

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Konishi J, Suzuki M, Maruhashi K (2000) Cloning and expression of the gene encoding the thermophilic NAD(P)H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2. J Biosci Bioeng 90:591–599

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Kozaki S, Furuya T, Kino K, Kirimura K (2005) Thermophilic biodesulfurization of various heterocyclic sulfur compounds and crude straight-run light gas oil fraction by a newly isolated strain Mycobacterium phlei WU-0103. Curr Microbiol 50:63–70

    Article  CAS  PubMed  Google Scholar 

  • Kamali N, Tavallaie M, Bambai B, Karkhane AA, Miri M (2010) Site-directed mutagenesis enhances the activity of NADH-FMN oxidoreductase (DszD) activity of Rhodococcus erythropolis. Biotechnol Lett 32:921–927

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi H, Kobayashi H, Sato K (2012) Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures. J Biosci Bioeng 113:360–366

    Article  CAS  PubMed  Google Scholar 

  • Kayser KJ, Bielaga-Jones BA, Jackowski K, Odusan O, Kilbane JJ (1993) Utilization of organosulfur compounds by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8. J Gen Microbiol 139:3123–3129

    Article  CAS  Google Scholar 

  • Khairy H, Wübbeler JH, Steinbüchel A (2015) Biodegradation of the organic disulfide 4,4'-dithiobutyric acid by Rhodococcus spp. Appl Environ Microbiol 81:8294–8306

    Google Scholar 

  • Kilbane JJ II (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314

    Article  CAS  PubMed  Google Scholar 

  • Kilbane JJ II, Stark B (2016) Biodesulfurization: a model system for microbial physiology research. World J Microbiol Biotechnol 32:137

    Article  PubMed  CAS  Google Scholar 

  • Kim BH, Kim HY, Kim TS, Park DH (1995) Selectivity of desulfurization activity of Desulfovibrio desulfuricans M6 on different petroleum products. Fuel Process Technol 43:87–94

    Article  CAS  Google Scholar 

  • Kirimura K, Harada K, Iwasawa H, Tanaka T, Iwasaki Y, Furuya T, Ishii Y, Kino K (2004) Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria. Appl Microbiol Biotechnol 65:703–713

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood KM, Ebert S, Foght JM, Fedorak PM, Gray MR (2005) Bacterial biodegradation of aliphatic sulfides under aerobic carbon-or sulfur-limited growth conditions. J Appl Microbiol 99:1444–1454

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood KM, Foght JM, Gray MR (2007) Selectivity among organic sulfur compounds in one-and two-liquid-phase cultures of Rhodococcus sp. strain JVH1. Biodegradation 18:473–480

    Article  CAS  PubMed  Google Scholar 

  • Kodama K, Umehara K, Shimizu K, Nakatani S, Minoda Y, Yamada K (1973) Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric Biol Chem 37:45–50

    Article  CAS  Google Scholar 

  • Lee WC, Ohshiro T, Matsubara T, Izumi Y, Tanokura M (2006) Crystal structure and desulfurization mechanism of 2′-hydroxybiphenyl-2-sulfinic acid desulfinase. J Biol Chem 281:32534–32539

    Article  CAS  PubMed  Google Scholar 

  • Li ZM, Squires CH, Monticello DJ, Childs JD (1996) Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. J Bacteriol 178:6409–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li GQ, Li SS, Zhang ML, Wang J, Zhu L, Liang FL, Liu RL, Ma T (2008a) Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Appl Environ Microbiol 74:971–976

    Article  CAS  PubMed  Google Scholar 

  • Li GQ, Li SS, Qu SW, Liu QK, Ma T, Zhu L, Liang FL, Liu RL (2008b) Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp. Biotechnol Lett 30:1759–1764

    Article  CAS  PubMed  Google Scholar 

  • Li J, Feng J, Li Q, Ma C, Yu B, Gao C, Wu G, Xu P (2009) Both FMNH2 and FADH2 can be utilized by the dibenzothiophene monooxygenase from a desulfurizing bacterium Mycobacterium goodii X7B. Bioresour Technol 100:2594–2599

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Feng J, Gao C, Li F, Yu C, Meng L, Zhang Z, Ma C, Gu L, Wu G, Xu P (2012) Purification and characterization of a flavin reductase from the biodesulfurizing bacterium Mycobacterium goodii X7B. Process Biochem 47:1144–1149

    Article  CAS  Google Scholar 

  • Liu S, Zhang C, Su T, Wei T, Zhu D, Wang K, Huang Y, Dong Y, Yin K, Xu S, Xu P, Gu L (2014) Crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Proteins 82:1708–1720

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Li G, Li J, Liang F, Liu R (2006) Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes. Biotechnol Lett 28:1095–1100

    Article  CAS  PubMed  Google Scholar 

  • Martín AB, Alcón A, Santos VE, García-Ochoa F (2004) Production of a biocatalyst of Pseudomonas putida CECT5279 for dibenzothiophene (DBT) biodesulfurization for different media compositions. Energy Fuel 18:851–857

    Article  CAS  Google Scholar 

  • Martín AB, Alcón A, Santos VE, García-Ochoa F (2005) Production of a biocatalyst of Pseudomonas putida CECT5279 for DBT biodesulfurization: influence of the operational conditions. Energy Fuel 19:775–782

    Article  CAS  Google Scholar 

  • Martínez I, Santos VE, Alcón A, García-Ochoa F (2015) Enhancement of the biodesulfurization capacity of Pseudomonas putida CECT5279 by co-substrate addition. Process Biochem 50:119–124

    Article  CAS  Google Scholar 

  • Martínez I, Mohamed ME, Rozas D, García JL, Díaz E (2016) Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds. Metab Eng 35:46–54

    Article  PubMed  CAS  Google Scholar 

  • Mohebali G, Ball AS (2016) Biodesulfurization of diesel fuels – past, present and future perspectives. Int Biodeterior Biodegrad 110:163–180

    Article  CAS  Google Scholar 

  • Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546

    Article  CAS  PubMed  Google Scholar 

  • Noda K, Watanabe K, Maruhashi K (2002) Cloning of a rhodococcal promoter using a transposon for dibenzothiophene desulfurization. Biotechnol Lett 24:1875–1882

    Article  CAS  Google Scholar 

  • Noda K, Watanabe K, Maruhashi K (2003) Recombinant Pseudomonas putida carrying both the dsz and hcu genes can desulfurize dibenzothiophene in n-tetradecane. Biotechnol Lett 25:1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Nomura N, Takada M, Okada H, Shinohara Y, Nakajima-Kambe T, Nakahara T, Uchiyama H (2005) Identification and functional analysis of genes required for desulfurization of alkyl dibenzothiophenes of Mycobacterium sp. G3. J Biosci Bioeng 100:398–402

    Article  CAS  PubMed  Google Scholar 

  • Nuhu AA (2013) Bio-catalytic desulfurization of fossil fuels: a mini review. Rev Environ Sci Biotechnol 12:9–23

    Article  CAS  Google Scholar 

  • Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ohshiro T, Ishii Y, Matsubara T, Ueda K, Izumi Y, Kino K, Kirimura K (2005) Dibenzothiophene desulfurizing enzymes from moderately thermophilic bacterium Bacillus subtilis WU-S2B: purification, characterization and overexpression. J Biosci Bioeng 100:266–273

    Article  CAS  PubMed  Google Scholar 

  • Ohshiro T, Ohkita R, Takikawa T, Manabe M, Lee WC, Tanokura M, Izumi Y (2007) Improvement of 2′-hydroxybiphenyl-2-sulfinate desulfinase, an enzyme involved in the dibenzothiophene desulfurization pathway, from Rhodococcus erythropolis KA2-5-1 by site-directed mutagenesis. Biosci Biotechnol Biochem 71:2815–2821

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Wu F, Wang J, Yu L, Hassanzadeh K, Stark BC, Kilbane JJ (2013) Enhancement of desulfurization activity by enzymes of the Rhodococcus dsz operon through coexpression of a high sulfur peptide and directed evolution. Fuel 112:385–390

    Article  CAS  Google Scholar 

  • Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 61:468–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pokorna D, Zabranska J (2015) Sulfur-oxidizing bacteria in environmental technology. Biotechnol Adv 33:1246–1259

    Article  CAS  PubMed  Google Scholar 

  • Raheb J, Hajipour MJ (2011) The stable rhamnolipid biosurfactant production in genetically engineered Pseudomonas strain reduced energy consumption in biodesulfurization. Energy Sources A 33:2113–2121

    Article  CAS  Google Scholar 

  • Reichmuth DS, Hittle JL, Blanch HW, Keasling JD (2000) Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene. Biotechnol Bioeng 67:72–79

    Article  CAS  PubMed  Google Scholar 

  • Reichmuth DS, Blanch HW, Keasling JD (2004) Dibenzothiophene biodesulfurization pathway improvement using diagnostic GFP fusions. Biotechnol Bioeng 88:94–99

    Article  CAS  PubMed  Google Scholar 

  • Schreinier BP, Stevens SE Jr, Sing T (1988) Oxidation of thianthrene by the ligninase of Phanerochaete chysosporium. Appl Environ Microbiol 54:1858–1860

    Google Scholar 

  • Shavandi M, Sadeghizadeh M, Zomorodipour A, Khajeh K (2009) Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. Bioresour Technol 100:475–479

    Article  CAS  PubMed  Google Scholar 

  • Shavandi M, Sadeghizadeh M, Khajeh K, Mohebali G, Zomorodipour A (2010) Genomic structure and promoter analysis of the dsz operon for dibenzothiophene biodesulfurization from Gordonia alkanivorans RIPI90A. Appl Microbiol Biotechnol 87:1455–1461

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596

    Article  CAS  PubMed  Google Scholar 

  • Sousa SF, Sousa JFM, Barbosa ACC, Ferreira CE, Neves RPP, Rubeiro AJM, Fernandes PA, Ramos MJ (2016) Improving the biodesulfurization of crude oil and derivatives: a QM/MM investigation of the catalytic mechanism of NADH-FMN oxidoreductase (DszD). J Phys Chem 120:5300–5306

    Article  CAS  Google Scholar 

  • Takahashi S, Furuya T, Ishii Y, Kino K, Kirimura K (2009) Characterization of a flavin reductase from a thermophilic dibenzothiophene-desulfurizing bacterium, Bacillus subtilis WU-S2B. J Biosci Bioeng 107:38–41

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Yoshikawa O, Maruhashi K, Kurane R (2002) The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate. Arch Microbiol 178:351–357

    Article  CAS  PubMed  Google Scholar 

  • Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization in biphasic systems containing organic solvents. Appl Environ Microbiol 72:4604–4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao F, Zhao P, Li Q, Su F, Yu B, Ma C, Tang H, Tai C, Wu G, Xu P (2011a) Genome sequence of Rhodococcus erythropolis XP, a biodesulfurizing bacterium with industrial potential. J Bacteriol 193:6422–6423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao F, Tang H, Gai Z, Su F, Wang X, He X, Xu P (2011b) Genome sequence of Pseudomonas putida Idaho, a unique organic-solvent-tolerant bacterium. J Bacteriol 193:7011–7012

    Article  PubMed  PubMed Central  Google Scholar 

  • Torktaz I, Etemadifar Z, Derikvand P (2012) Comparative modeling of DszC, an enzyme in biodesulfurization, and performing in silico point mutations for increasing tendency to oil. Bioinformation 8:246–250

    Article  PubMed  PubMed Central  Google Scholar 

  • van Afferden M, Schacht S, Klein J, Trüper HG (1990) Degradation of dibenzothiophene by Brevibacterium sp. DO. Arch Microbiol 153:324–328

    Article  Google Scholar 

  • Wang Z, Wang D, Li Q, Li W, Tang H, Xing J (2011) Enhanced biodesulfurization by expression of dibenzothiophene uptake genes in Rhodococcus erythropolis. World J Microbiol Biotechnol 27:1965–1970

    Article  CAS  Google Scholar 

  • Wang W, Ma T, Lian K, Zhang Y, Tian H, Ji K, Li G (2013) Genetic analysis of benzothiophene biodesulfurization of Gordonia terrae strain C-6. PLoS One 8:e84386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Davaadelger B, Salazar JK, Butler RR, Pombert JF (2015) Isolation and characterization of an interactive culture of two Paenibacillus species with moderately thermophilic desulfurization ability. Biotechnol Lett 37:2201–2211

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Noda K, Maruhashi K (2003) Enhanced desulfurization in a transposon-mutant strain of Rhodococcus erythropolis. Biotechnol Lett 25:1299–1304

    Article  CAS  PubMed  Google Scholar 

  • Xiong X, Xing J, Li X, Bai X, Li W, Li Y, Liu H (2007) Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin. Appl Environ Microbiol 73:2394–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Yu B, Li F, Cai XF, Ma CQ (2006) Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends Microbiol 14:398–405

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Ma C, Zhou W, Zhu S, Wang Y, Qu J, Li F, Xu P (2006) Simultaneous biodetoxification of S, N, and O pollutants by engineering of a carbazole-degrading gene cassette in a recombinant biocatalyst. Appl Environ Microbiol 72:7373–7376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Duan X, Zhou D, Dong Z, Ji K, Meng W, Li G, Li X, Yang H, Ma T, Rao Z (2014) Structural insights into the stabilization of active, tetrameric DszC by its C-terminus. Proteins 82:2733–2743

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work was supported by the Ministry of Economy and Competitiveness of Spain Grants BIO2012-39501, BIO2012-39695-C02-01, BIO2015-66960-C3-3-R, and PCIN2014-113, European Union Grants FP7-KBBE 6-311815 and H2020-FET-OPEN 686585, and Fundación Ramón Areces XVII Concurso Nacional.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Martínez, I., García, J.L., Díaz, E. (2016). Genetic Engineering for Removal of Sulfur from Fuel Aromatic Heterocycles. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-31421-1_206-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31421-1_206-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31421-1

  • Online ISBN: 978-3-319-31421-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics