Skip to main content

Choroid Plexus: Source of Cerebrospinal Fluid and Regulator of Brain Development and Function

  • Living reference work entry
  • First Online:
Pediatric Hydrocephalus

Abstract

Thomas Willis in 1664 suggested that the cerebral ventricles contain fluid produced by the choroid plexus, but this was not established until the 19th century. Dandy and Blackfan produced experimental hydrocephalus and reported that choroid plexus (CP) ablation decreased its severity; this strongly implicated CP in generating CSF and ventricular pressure. Choroid plexuses produce most cerebrospinal fluid (CSF), proteins, and small molecules, regulate the entry of ions and vitamins into the central nervous system, and have immunological and endocrine regulatory functions. CP is the single most important brain-immune interface; the CSF is its channel of communication with the brain. Substantial loss of CP may harm CSF-brain biochemical interactions. Early attempts to control human hydrocephalus by CP ablation produced poor outcomes. Currently, however, combined choroid plexus coagulation (CPC) and endoscopic third ventriculostomy (ETV) are used for resolving infant hydrocephalus and protecting brain against elevated ICP. Still, does addition of CPC to ETV significantly improve long-term outcomes? How does the brain compensate, if it does, for loss of CP homeostatic mechanisms involving endocrine and immunologic phenomena? Clinical studies of CPC should examine possible effects on synaptic plasticity, neurogenesis, and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552

    Article  PubMed  CAS  Google Scholar 

  • Abbott NJ, Patabendige AA, Dolman DE et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  PubMed  CAS  Google Scholar 

  • Abraham CR, Mullen PC, Tucker-Zhou T et al (2016) Klotho is a neuroprotective and cognition-enhancing protein. Vitam Horm 101:215–238

    Article  PubMed  CAS  Google Scholar 

  • Akimoto T, Shiizaki K, Sugase T et al (2012) The relationship between the soluble Klotho protein and the residual renal function among peritoneal dialysis patients. Clin Exp Nephrol 16:442–447

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Fang HY et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–347

    Article  PubMed  CAS  Google Scholar 

  • Ariens Kappers J (1958) Structural and functional changes in the telencephalic choroid plexus during human ontogenesis. In: Wolstenholme GEW, O’Connor CM (eds) Ciba foundation symposium – the cerebrospinal fluid: production, circulation and absorption. Little Brown, Boston, pp 3–31

    Google Scholar 

  • Baruch K, Schwartz M (2013) CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun 34:11. pii: S0889-1591 (13) 00142-6

    Article  PubMed  CAS  Google Scholar 

  • Beby F, Lamonerie T (2013) The homeobox gene Otx2 in development and disease. Exp Eye Res 111:9–16

    Article  PubMed  CAS  Google Scholar 

  • Becker NH, Sutton CH (1963) Pathologic features of the choroid plexus. 1. Cytochemical effects of hypervitaminosis A. Am J Pathol 43:1017–1030

    PubMed  PubMed Central  CAS  Google Scholar 

  • Begcevic I, Brinc D, Drabovich AP et al (2016) Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the human protein atlas. Clin Proteomics 13:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Benarroch EE (2015) Brain-derived neurotrophic factor: regulation, effects, and potential clinical relevance. Neurology 84:1693–1704

    Article  PubMed  Google Scholar 

  • Benoit J, Ayoubb AE, Rakic P (2015) Transcriptomics of critical period of visual cortical plasticity in mice. Proc Natl Acad Sci U S A 112:8094–8099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bentivoglio M, Kristensson K (2014) Tryps and trips: cell trafficking across the 100-year-old blood-brain barrier. Trends Neurosci 37:325–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bering EA Jr (1955) Choroid plexus and arterial pulsation of cerebrospinal fluid; demonstration of the choroid plexuses as a cerebrospinal fluid pump. AMA Arch Neurol Psychiatry 73:165–172

    Article  PubMed  Google Scholar 

  • Bering EA Jr (1962) Circulation of the cerebrospinal fluid. Demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg 19:405–413

    Article  PubMed  Google Scholar 

  • Bernard C, Vincent C, Testa D et al (2016) A mouse model for conditional secretion of specific single-chain antibodies provides genetic evidence for regulation of cortical plasticity by a non-cell autonomous homeoprotein transcription factor. PLoS Genet 12:e1006035. https://doi.org/10.1371/journal.pgen.1006035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bjorefeldt A, Wasling P, Zetterberg H et al (2016) Neuromodulation of fast-spiking and non-fast-spiking hippocampal CA1 interneurons by human cerebrospinal fluid. J Physiol 594:937–952. https://doi.org/10.1113/JP271553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bogomyakova O, Stankevich Y, Mesropyan N et al (2016) Evaluation of the flow of cerebrospinal fluid as well as gender and age characteristics in patients with communicating hydrocephalus, using phase-contrast magnetic resonance imaging. Acta Neurol Belg 116(4):495–501

    Article  PubMed  Google Scholar 

  • Bradbury MW, Cole DF (1980) The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J Physiol 299:353–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brinker T, Stopa E, Morrison J et al (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10. https://doi.org/10.1186/2045-8118-11-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brouwer MC, McIntyre P, Prasad K et al (2015) Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev 12:CD004405

    Google Scholar 

  • Bueno D, Garcia-Fernàndez J (2016) Evolutionary development of embryonic cerebrospinal fluid composition and regulation: an open research field with implications for brain development and function. Fluids Barriers CNS 13:5. https://doi.org/10.1186/s12987-016-0029-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cains S, Shepherd A, Nabiuni M et al (2009) Addressing a folate imbalance in fetal cerebrospinal fluid can decrease the incidence of congenital hydrocephalus. J Neuropathol Exp Neurol 68:404–416

    Article  PubMed  Google Scholar 

  • Capel C, Makki M, Gondry-Jouet C et al (2014) Insights into cerebrospinal fluid and cerebral blood flows in infants and young children. J Child Neurol 29:1608–1615

    Article  PubMed  Google Scholar 

  • Chau KF, Springel MW, Broadbelt KG et al (2015) Progressive differentiation and instructive capacities of amniotic fluid and cerebrospinal fluid proteomes following neural tube closure. Dev Cell 35:789–802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Codazzi F, Pelizzoni I, Zacchetti D et al (2015) Iron entry in neurons and astrocytes: a link with synaptic activity. Front Mol Neurosci 8:18. https://doi.org/10.3389/fnmol.2015.00018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connor JR, Ponnuru P, Wang XS et al (2011) Profile of altered brain iron acquisition in restless legs syndrome. Brain 134(Pt 4):959–968

    Article  PubMed  PubMed Central  Google Scholar 

  • Cushing H (1914) Studies on the cerebro-spinal fluid. J Med Res 31:1–19

    PubMed  PubMed Central  CAS  Google Scholar 

  • Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93:1847–1892

    Article  PubMed  CAS  Google Scholar 

  • Dandy WE (1918) Extirpation of the choroid plexus of the lateral ventricles in communicating hydrocephalus. Ann Surg 68:569–579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dandy WE, Blackfan KD (1914) Internal hydrocephalus an experimental, clinical and pathological study. Am J Dis Child 8:406–482

    Article  Google Scholar 

  • Davson H (1962) The blood-cerebrospinal fluid and blood-brain barriers. Ergeb Physiol 52:20–73, 1963

    Article  Google Scholar 

  • de Graaf MT, Smitt PA, Luitwieler RL et al (2011) Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry B Clin Cytom 80(1):43–50

    Article  PubMed  Google Scholar 

  • De Spiegelaere W, Casteleyn C, Van den Broeck W et al (2008) Electron microscopic study of the porcine choroid plexus epithelium. Anat Histol Embryol 37:458–463

    Article  PubMed  Google Scholar 

  • Deczkowska A, Baruch K, Schwartz M (2016) Type I/II interferon balance in the regulation of brain physiology and pathology. Trends Immunol 37:181–192

    Article  PubMed  CAS  Google Scholar 

  • Del Bigio MR, Di Curzio D (2016) Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 13:3. https://doi.org/10.1186/s12987-016-0025-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demeestere D, Libert C, Roosmarijn E et al (2015) Therapeutic implications of the choroid plexus–cerebrospinal fluid interface in neuropsychiatric disorders. Brain Behav Immun 50:1–13. https://doi.org/10.1016/j.bbi.2015.06.010

    Article  PubMed  Google Scholar 

  • Dempsey EW (1968) Fine structure of the rat’s intercolumnar tubercle and its adjacent ependyma and choroid plexus, with especial reference to the appearance of its sinusoidal vessels in experimental argyria. Exp Neurol 22:568–589

    Article  PubMed  CAS  Google Scholar 

  • Dreha-Kulaczewski S, Joseph AA, Merboldt KD et al (2015) Inspiration is the major regulator of human CSF flow. J Neurosci 35:2485–2491

    Article  PubMed  CAS  Google Scholar 

  • Driggers RW, Ho CY, Korhonen EM et al (2016) Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N Engl J Med 374:2142–2151

    Article  PubMed  CAS  Google Scholar 

  • Dziegielewska KM, Ek J, Habgood MD et al (2001) Development of the choroid plexus. Microsc Res Tech 52:5–20

    Article  PubMed  CAS  Google Scholar 

  • Eboli P, Danielpour M (2011) Acute obstructive hydrocephalus due to a large posterior third ventricle choroid plexus cyst. Pediatr Neurosurg 47:292–294

    Article  PubMed  Google Scholar 

  • Egnor M, Zheng L, Rosiello A et al (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36:281–303

    Article  PubMed  Google Scholar 

  • Eisenberg HM, McComb JG, Lorenzo AV (1974) Cerebrospinal fluid overproduction and hydrocephalus associated with choroid plexus papilloma. J Neurosurg 40:381–385

    Article  PubMed  CAS  Google Scholar 

  • Ellis DZ, Nathanson JA, Sweadner KJ (2000) Carbachol inhibits Na(+)-K(+)-ATPase activity in choroid plexus via stimulation of the NO/cGMP pathway. Am J Physiol Cell Physiol 279:C1685–C1693

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B, Sorokin L (2009) The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511

    Article  PubMed  Google Scholar 

  • Faraci FM, Mayhan WG, Heistad DD (1990) Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V1)-receptors. Am J Phys 258:R94–R98

    CAS  Google Scholar 

  • Findlay JW (1899) The choroid plexuses of the lateral ventricles of the brain, their histology, normal and pathological, (in relation specially to insanity). Brain 22:11–25

    Article  Google Scholar 

  • Fong K, Chong K, Toi A et al (2011) Fetal ventriculomegaly secondary to isolated large choroid plexus cysts: prenatal findings and postnatal outcome. Prenat Diagn 31:395–400

    Article  PubMed  Google Scholar 

  • Fujimoto Y, Matsushita H, Plese JP et al (2004) Hydrocephalus due to diffuse villous hyperplasia of the choroid plexus. Case report and review of the literature. Pediatr Neurosurg 40:32–36

    Article  PubMed  Google Scholar 

  • Gan CW, Feng SS (2010) Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials 31:7748–7757

    Article  PubMed  CAS  Google Scholar 

  • Grapp M, Wrede A, Schweizer M et al (2013) Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun 4:2123. https://doi.org/10.1038/ncomms3123

    Article  PubMed  CAS  Google Scholar 

  • Guerra MM, Gonzalez C, Caprile T et al. (2015) Understanding how the subcommissural organ and other periventricular secretoary structures contribute via the cerebrospinal fluid to neurogenesis. Front Cell Neurosci 9:480. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689152/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hendrix S, Nitsch R (2007) The role of T helper cells in neuroprotection and regeneration. J Neuroimmunol 184:100–112

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  PubMed  CAS  Google Scholar 

  • Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11:26. https://doi.org/10.1186/2045-8118-11-26:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho NF, Hooker JM, Sahay A et al (2013) In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise. Mol Psychiatry 18:404–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horvath E, Kovacs K, Scheithauer BW (1999) Pituitary hyperplasia. Pituitary 1:169–179

    Article  PubMed  CAS  Google Scholar 

  • Huang CL (2010) Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney Int 77:855–860

    Article  PubMed  Google Scholar 

  • Huh MS, Todd MAM, Picketts DJ (2009) SCO-ping out the mechanisms underlying the etiology of hydrocephalus. Physiology 24:117–126

    Article  PubMed  CAS  Google Scholar 

  • Janssen SF, van der Spek SJ, Ten Brink JB et al (2013) Gene expression and functional annotation of the human and mouse choroid plexus epithelium. PLoS One 8:e83345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johanson CE, Johanson NLW (2016) Merging transport data for choroid plexus with blood-brain barrier to model CNS homeostasis and disease more effectively. CNS Neurol Dis- Drug Targets 15:1151–1180

    Article  CAS  Google Scholar 

  • Johanson CE, Donahue JE, Spangenberger A et al (2006) Atrial natriuretic peptide: its putative role in modulating the choroid plexus-CSF system for intracranial pressure regulation. Acta Neurochir Suppl 96:451–456

    Article  PubMed  CAS  Google Scholar 

  • Johanson CE, Duncan JA 3rd, Klinge PM et al (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johanson CE, Stopa EG, McMillan PN (2011) The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 686:101–131

    Article  PubMed  CAS  Google Scholar 

  • Kahle KT, Kulkarni AV, Limbrick DD Jr et al (2016) Hydrocephalus in children. Lancet 387:788–799

    Article  PubMed  Google Scholar 

  • Kanat A, Turkmenoglu O, Aydin MD et al (2013) Toward changing of the pathophysiologic basis of acute hydrocephalus after subarachnoid hemorrhage: a preliminary experimental study. World Neurosurg 80:390–395

    Article  PubMed  Google Scholar 

  • Kaur C, Rathnasamy G, Ling EA (2016) The choroid plexus in healthy and diseased brain. J Neuropathol Exp Neurol 75:198. pii: nlv030. [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  • Kelly EJ, Yamada S (2016) Cerebrospinal fluid flow studies and recent advancements. Semin Ultrasound CT MR 37:92–99

    Article  PubMed  Google Scholar 

  • Kim KS (2008) Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol 6:625–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kishimoto N, Sawatomo K (2012) Planar polarity of ependymal cilia. Differentiation 83:S86–S90

    Article  PubMed  CAS  Google Scholar 

  • Kiviniemi V, Wang X, Korhonen V et al (2016) Ultra-fast magnetic resonance encephalography of physiological brain activity – Glymphatic pulsation mechanisms? J Cereb Blood Flow Metab 36:1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Kivisakk P, Mahad DJ, Callahan MK et al (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 100:8389–8394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klosovski BN (1963) The development of the brain and its disturbance by harmful factors. Macmillan, New York

    Google Scholar 

  • Knuckey NW, Preston J, Palm D et al (1993) Hydrocephalus decreases chloride efflux from the choroid plexus epithelium. Brain Res 618:313–317

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni AV, Shams I, Cochrane DD et al (2010) Quality of life after endoscopic third ventriculostomy and cerebrospinal fluid shunting: an adjusted multivariable analysis in a large cohort. J Neurosurg Pediatr 6:11–16

    Article  PubMed  Google Scholar 

  • Kulkarni AV, Riva-Cambrin J, Browd SR et al (2014) Endoscopic third ventriculostomy and choroid plexus cauterization in infants with hydrocephalus: a retrospective hydrocephalus clinical research network study. J Neurosurg Pediatr 14:224–229

    Article  PubMed  Google Scholar 

  • Kunis G, Baruch K, Rosenzweig N et al (2013) IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136:3427–3440

    Article  PubMed  Google Scholar 

  • Kurts C, Panzer U, Anders H-J et al (2013) The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13:738–753

    Article  PubMed  CAS  Google Scholar 

  • Lach B, Haust MD (2011) Nodular lesions of choroid plexus in Hurler disease. Fetal Pediatr Pathol 33:189–198

    Article  Google Scholar 

  • Lagaraine C, Skipor J, Szczepkowska A et al (2011) Tight junction proteins vary in the choroid plexus of ewes according to photoperiod. Brain Res 1393:44–51

    Article  PubMed  CAS  Google Scholar 

  • Lehtinen MK, Zappaterra MW, Chen X et al (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69:893–905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levine S (1987) Choroid plexus: target for systemic disease and pathway to the brain. Lab Investig 56:231–233

    PubMed  CAS  Google Scholar 

  • Li X, Tsibouklis J, Weng T et al (2016) Nano carriers for drug transport across the blood–brain barrier. J Drug Target. https://doi.org/10.1080/1061186X.2016.1184272

  • Liddelow SA (2015) Development of the choroid plexus and blood-CSF barrier. Front Neurosci 9:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindvall M, Owman C (1981) Autonomic nerves in the mammalian choroid plexus and their influence on the formation of cerebrospinal fluid. J Cereb Blood Flow Metab 1:245–266

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Jin X, Prasad RM (2014) Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties. J Neurosci Res 92:1199–1204

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Robertson JD, Teesdale WJ et al (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  PubMed  CAS  Google Scholar 

  • Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci 16:445–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mabrouk OS, Falk T, Sherman SJ et al (2012) CNS penetration of the opioid glycopeptide MMP-2200: a microdialysis study. Neurosci Lett 531:99–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maher CO, Platt JH Jr (2015) Incidental findings on brain and spine imaging in children. Pediatrics 135:e1084–e1096. https://doi.org/10.1542/peds.2015-0071

    Article  PubMed  Google Scholar 

  • Mandell JG, Kulkarni AV, Warf BC (2015) Volumetric brain analysis in neurosurgery: part 2. Brain and CSF volumes discriminate neurocognitive outcomes in hydrocephalus. J Neurosurg Pediatr 15:125–132

    Article  PubMed  Google Scholar 

  • Marques F, Sousa JC (2015) The choroid plexus is modulated by various peripheral stimuli: implications to diseases of the central nervous system. Front Cell Neurosci 9:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marques F, Sousa JC, Coppola G et al (2009) The choroid plexus response to a repeated peripheral inflammatory stimulus. BMC Neurosci 10:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mashayekhi F, Draper CE, Bannister CM (2002) Deficient cortical development in the hydrocephalic Texas (H-Tx) rat: a role for CSF. Brain 125(Pt 8):1859–1874

    Article  PubMed  Google Scholar 

  • Matsumae M, Hirayama A, Atsumi H et al (2014) Velocity and pressure gradients of cerebrospinal fluid assessed with magnetic resonance imaging. J Neurosurg 120:218–227

    Article  PubMed  Google Scholar 

  • Milhorat TH (1974) Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet 139:505–508

    PubMed  CAS  Google Scholar 

  • Milhorat TH (1975) The third circulation revisited. J Neurosurg 42:628–645

    Article  PubMed  CAS  Google Scholar 

  • Milhorat TH, Hammock MK, Chien T et al (1976) Normal rate of cerebrospinal fluid formation five years after bilateral choroid plexus extirpation. Case report. J Neurosurg 44:735–739

    Article  PubMed  CAS  Google Scholar 

  • Millar ID, Bruce JI, Brown PD (2007) Ion channel diversity, channel expression and function in the choroid plexuses. Cerebrospinal Fluid Res 4:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyan JA, Nabiyouni M, Zendah M (2003) Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol 81:317–328

    Article  PubMed  CAS  Google Scholar 

  • Mogk S, Meiwes A, Boßelmann CM et al (2014) The lane to the brain: how African trypanosomes invade the CNS. Trends Parasitol 30:470–477

    Article  PubMed  CAS  Google Scholar 

  • Morishita H, Hensch TK (2008) Critical period revisited: impact on vision. Curr Opin Neurobiol 18:101–107

    Article  PubMed  CAS  Google Scholar 

  • Muller WA (2009) Mechanisms of transendothelial migration of leukocytes. Circ Res 105:223–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narita K, Takeda S (2015) Cilia in the choroid plexus: their roles in hydrocephalus and beyond. Front Cell Neurosci 9:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Netsky MG, Shuangshoti S (eds) (1975) The choroid plexus in health and disease. University Press of Virginia, Charlottesville

    Google Scholar 

  • Ousman SS, Kubes P (2012) Immune surveillance in the central nervous system. Nat Neurosci 15:1096–1101

    Article  PubMed  CAS  Google Scholar 

  • Owens T, Bechmann I, Engelhardt B (2008) Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol 67:1113–1121

    Article  PubMed  Google Scholar 

  • Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Philippidou P, Dasen JS (2013) Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80:12–34

    Article  PubMed  CAS  Google Scholar 

  • Pindrik J, Rocque BG, Arynchyna AA et al (2016) Radiographic markers of clinical outcomes after endoscopic third ventriculostomy with choroid plexus cauterization: cerebrospinal fluid turbulence and choroid plexus visualization. J Neurosurg Pediatr 18:287–295. [Epub ahead of print]

    Article  PubMed  PubMed Central  Google Scholar 

  • Popescu BO, Gherghiceanu M, Kostin S et al (2012) Telocytes in meninges and choroid plexus. Neurosci Lett 516:265–269

    Article  PubMed  CAS  Google Scholar 

  • Prasongchean W, Vernay B, Asgarian Z et al (2015) The neural milieu of the developing choroid plexus: neural stem cells, neurons and innervation. Front Neurosci 9:103. https://doi.org/10.3389/fnins.2015.00103

    Article  PubMed  PubMed Central  Google Scholar 

  • Prochiantz A, Di Nardo AA (2015) Homeoprotein signaling in the developing and adult nervous system. Neuron 85:911–925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prodinger C, Bunse J, Kruger M et al (2011) CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol 121:445–458

    Article  PubMed  CAS  Google Scholar 

  • Pruski M, Rajnicek A, Yang Z et al (2016) The ciliary GTPase Arl13b regulates cell migration and cell cycle progression. Cell Adhes Migr 10:1–13

    Article  CAS  Google Scholar 

  • Reeder JD, Kaude JV, Setzer ES (1982) Choroid plexus hemorrhage in premature neonates: recognition by sonography. AJNR Am J Neuroradiol 3:619–622

    PubMed  CAS  Google Scholar 

  • Rouault TM, Zhang D-l, Jeong SY (2009) Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis 24:673–684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandberg DI, Chamiraju P, Zoeller G et al (2012) Endoscopic choroid plexus coagulation in infants with hydranencephaly or hydrocephalus with a minimal cortical mantle. Pediatr Neurosurg 48:6–12

    Article  PubMed  Google Scholar 

  • Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400

    Article  PubMed  CAS  Google Scholar 

  • Saunders NR, Dziegielewska KM, Møllgård K et al (2015) Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study. Front Neurosci 9:123. https://doi.org/10.3389/fnins.2015.00123

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunders NR, Habgood MD, Møllgård K et al (2016) The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system. F1000Res 5. https://doi.org/10.12688/f1000research.7378. pii: F1000 Faculty Rev-313

  • Schwerk C, Tenenbaum T, Kim KS et al (2015) The choroid plexus- a multi-role player during infectious diseases of the CNS. Front Cell Neurosci 9:80. https://doi.org/10.3389/fncel.2015.00080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Semba RD, Moghekar AR, Hu J et al (2014) Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. Neurosci Lett 558:37–40

    Article  PubMed  CAS  Google Scholar 

  • Shuangshoti S, Netsky MG (1966) Neuroepithelial (colloid) cysts of the nervous system: further observations on pathogenesis, location, incidence, and histochemistry. Neurology 16:887–903

    Article  Google Scholar 

  • Silverberg GD, Heit G, Huhn S et al (2001) The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 57:1763–1766

    Article  PubMed  CAS  Google Scholar 

  • Silverberg GD, Huhn S, Jaffe RA et al (2002) Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg 97:1271–1275

    Article  PubMed  Google Scholar 

  • Sopjani M, Dërmaku-Sopjani M (2016) Klotho-dependent cellular transport regulation. Vitam Horm 101:59–84

    Article  PubMed  CAS  Google Scholar 

  • Spector R (2010) Nature and consequences of mammalian brain and CSF efflux transporters: four decades of progress. J Neurochem 112:13–23

    Article  PubMed  CAS  Google Scholar 

  • Spector R, Johanson CE (2014) The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain. Mol Brain 7:3. https://doi.org/10.1186/1756-6606-7-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spector R, Lorenzo AV (1975) Folate transport in the central nervous system. Am J Phys 229:777–782

    CAS  Google Scholar 

  • Spector R, Keep RF, Snodgrass SR et al (2015a) A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol 267:78–86

    Article  PubMed  Google Scholar 

  • Spector R, Snodgrass SR, Johanson CE (2015b) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57–68

    Article  PubMed  CAS  Google Scholar 

  • Steinfeld R, Grapp M, Kraetzner R (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85:354–363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389

    Article  PubMed  CAS  Google Scholar 

  • Stern L (1921) Le liquide céfalo-rachidien au point de vue de ses rapports avec la circulation sanguine et avec les éléments nerveux de l’axe cérébrospinal. Schweiz Arch Neurol Psychiatr 8:215–232

    Google Scholar 

  • Stranahan AM, Hao S, Dey A et al (2016) Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J Cereb Blood Flow Metab 36:2108–2121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tennyson VM, Pappas GD (1968) The fine structure of the choroid plexus adult and developmental stages. Prog Brain Res 29:63–85

    Article  PubMed  CAS  Google Scholar 

  • Tietz S, Engelhardt B (2015) Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209:493–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tirapelli DP, Lopes Lda S, Lachat JJ et al (2007) Ultrastructural study of the lateral ventricle choroid plexus in experimental hydrocephalus in Wistar rats. Arq Neuropsiquiatr 65:974–977

    Article  PubMed  Google Scholar 

  • Tomás J, Santos CR, Quintela T, Gonçalves I (2016) “Tasting” the cerebrospinal fluid: another function of the choroid plexus? Neuroscience 320:160–171

    Article  PubMed  CAS  Google Scholar 

  • Tu GF, Cole T, Southwell BR et al (1990) Expression of the genes for transthyretin, cystatin C and beta A4 amyloid precursor protein in sheep choroid plexus during development. Brain Res Dev Brain Res 55:203–208

    Article  PubMed  CAS  Google Scholar 

  • Vincent A, Forster N, Maynes JT et al (2014) OTX2 mutations cause autosomal dominant pattern dystrophy of the retinal pigment epithelium. J Med Genet 51:797–805

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Stoltenberg M, Jo SM et al (2004) Dynamic zinc pools in mouse choroid plexus. NeuroReport 15:1801–1804

    Article  PubMed  CAS  Google Scholar 

  • Warf BC (2005) Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg 103(Suppl 6):475–481

    PubMed  Google Scholar 

  • Warf BC, Ondoma S, Kulkarni A et al (2009) Neurocognitive outcome and ventricular volume in children with myelomeningocele treated for hydrocephalus in Uganda. J Neurosurg Pediatr 4:564–570

    Article  PubMed  Google Scholar 

  • Warf BC, Tracy S, Mugamba J (2012) Long-term outcome for endoscopic third ventriculostomy alone or in combination with choroid plexus cauterization for congenital aqueductal stenosis in African infants. J Neurosurg Pediatr 10:108–111

    Article  PubMed  Google Scholar 

  • Warren DT, Hendson G, Cochran DD (2009) Bilateral choroid plexus hyperplasia: a case report and management strategies. Childs Nerv Syst 25:1617–1622

    Article  PubMed  Google Scholar 

  • Watanabe M, Yamada H et al (2004) Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct 29:91–99

    Article  PubMed  Google Scholar 

  • Weaver CE, McMillan PN, Duncan JA et al (2004) Hydrocephalus disorders: their biophysical and neuroendocrine impact on the choroid plexus epithelium. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Advances in molecular and cell biology, vol 31. Elsevier Press, Amsterdam, pp 269–293

    Chapter  Google Scholar 

  • Weber JR, Tuomanen EI (2007) Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity. J Neuroimmunol 184:45–52

    Article  PubMed  CAS  Google Scholar 

  • Welch K, Strand R, Bresnan M et al (1983) Congenital hydrocephalus due to villous hypertrophy of the telencephalic choroid plexuses. Case report. J Neurosurg 59:172–175

    Article  PubMed  CAS  Google Scholar 

  • Whish S, Dziegielewska KM, Møllgård K et al (2015) The inner CSF-brain barrier: developmentally controlled access to the brain via intercellular junctions. Front Neurosci 9:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitehead MT, Oh C, Raju A, Choudhri AF (2015) Physiologic pineal region, choroid plexus, and dural calcifications in the first decade of life. Am J Neuroradiol 36:575–80

    Article  PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017

    Article  PubMed  CAS  Google Scholar 

  • Wilcox DR, Folmsbee SS, Muller WJ, Longnecker R (2016) The type I interferon response determines differences in choroid plexus susceptibility between newborns and adults in herpes simplex virus encephalitis. MBio 7(2):e00437–e00416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willis T (1664) Cerebri anatome, 2nd edn. Flesher J, London

    Google Scholar 

  • Wolburg H, Paulus W (2010) Choroid plexus: biology and pathology. Acta Neuropathol 119:75–88

    Article  PubMed  Google Scholar 

  • Wolf SA, Steinr B, Akpinarli A et al (2009) CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol 182:3979–3984

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Miyazaki M, Yamashita Y et al (2013) Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS 10:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamasaki M, Kanemura Y (2015) Molecular biology of pediatric hydrocephalus and hydrocephalus-related diseases. Neurol Med Chir (Tokyo) 55:640–646

    Article  Google Scholar 

  • Zappatera MV, Lehtinen MK (2013) The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci 69:2863–2878

    Article  CAS  Google Scholar 

  • Zhao R, Goldman ID (2013) The proton-coupled folate transporter: physiological and pharmacological roles. Curr Opin Pharmacol 13:875–880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou G, Hotta J, Lehtinen MK et al (2015) Enlargement of choroid plexus in complex regional pain syndrome. Sci Rep 5:14329. https://doi.org/10.1038/srep14329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu X, Di Rocco C (2013) Choroid plexus coagulation for hydrocephalus. Childs Nerv Syst 29:35–42

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Snodgrass .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Snodgrass, R., Johanson, C.E. (2018). Choroid Plexus: Source of Cerebrospinal Fluid and Regulator of Brain Development and Function. In: Cinalli, G., Ozek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-31889-9_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31889-9_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31889-9

  • Online ISBN: 978-3-319-31889-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics