Skip to main content

Biomechanics of Hydrocephalus

  • Living reference work entry
  • First Online:
Pediatric Hydrocephalus
  • 269 Accesses

Abstract

In this chapter, a state of the art of the biomechanics of hydrocephalus is carried out. Firstly, the history of the mathematical modeling of the condition is presented, with the contribution from every researcher analyzed. With the first works on the field dating back from the 1970s, numerous approaches have been used, be it of thermodynamical, mechanical, or electrical nature. The improvements in computational power also have allowed to make extensive use of the numerical tool: this has led to more realistic geometries (notably with the help of developments in medical imaging) and much more accurate assessments of the relevant physiological parameters. Secondly, an in-depth investigation of the most popular models aims to reveal their strengths and insufficiencies. This part also shows how to build a rigorous model for ventricular dynamics, along with its coupling to surrounding compartments. The way hydrocephalus manifests itself in the mathematical equations is evidenced, and an application to pediatric hydrocephalus is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abercrombie J (1828) Pathological and practical researches on disease of the brain and spinal cord

    Google Scholar 

  • Adams RD et al (1965) Symptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure. N Engl J Med 273(3):117–126

    Article  CAS  PubMed  Google Scholar 

  • Agarwal GC et al (1969) A lumped parameter model of the cerebrospinal fluid system. IEEE Trans Biomed Eng 16:45–53

    Article  CAS  PubMed  Google Scholar 

  • Alperin N et al (1996) Hemodynamically independent analysis of cerebrospinal fluid and brain motion observed with dynamic phase contrast MRI. Magn Reson Med 35:741–754

    Article  CAS  PubMed  Google Scholar 

  • Ambarki K (2006) Modeling the dynamics of intracranial liquid compartments: from the ad hoc global approach to the physical description – study of the possible role of dynamical instabilities in the occurrence of hydrocephalus. PhD thesis, University Picardie J Verne

    Google Scholar 

  • Ambarki K et al (2007) A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers. IEEE Trans Biomed Eng 54(3):483–491

    Article  PubMed  Google Scholar 

  • Beggs J (2015) Can there be a physics of the brain? Phys Rev Lett 114(22):220001

    Article  CAS  PubMed  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  Google Scholar 

  • Bouzerar R et al (2005) Ventricular dilation as an instability of intracranial dynamics. Phys Rev E 72(5):051912

    Article  CAS  Google Scholar 

  • Bouzerar R et al (2012) Dynamics of hydrocephalus: a physical approach. J Biol Phys 38(2):251–266

    Article  PubMed  Google Scholar 

  • Burrows G (1848) On disorders of the cerebral circulation and on the connection between affections of the brain and diseases of the heart. Lea & Blanchard, Philadelphia

    Google Scholar 

  • Clarke MJ, Meyer FB (2007) The history of mathematical modeling in hydrocephalus. Neurosurg Focus 22(4):E3

    Article  PubMed  Google Scholar 

  • Cushing H (1926) The third circulation in studies in intracranial physiology and surgery. Oxford University Press, London

    Google Scholar 

  • De Beer MH, Scheltens P (2016) Cognitive decline in patients with chronic hydrocephalus and normal aging: ‘Growing into Deficits’. Dement Geriatr Cogn Dis Extra 6(3):500–507

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake JM et al (1994) Computer modeling of siphoning for CSF shunt design evaluation. Pediatr Neurosurg 21:6–15

    Article  CAS  PubMed  Google Scholar 

  • Enzmann DR, Pelc NJ (1992) Brain motion: measurement with phase-contrast MR imaging. Radiology 185:653–660

    Article  CAS  PubMed  Google Scholar 

  • Enzmann DR, Pelc NJ (1993) Cerebrospinal fluid flow measured by phase-contrast cine MR. Am J Neuroradiol 14:1301–1307

    PubMed  CAS  Google Scholar 

  • Esaki L (1958) New phenomenon in narrow germanium p-n junctions. Phys Rev 109(2):603–604

    Article  CAS  Google Scholar 

  • Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14(1):61–65

    Article  CAS  Google Scholar 

  • Greitz et al (1994) MR imaging of cerebrospinal fluid dynamics in health and disease. On the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Acta Radiol 35:204–211

    Article  Google Scholar 

  • Grévy V et al (1998) Le retour veineux cérébral. Ann Fr Anesth Réanim 17:144–148

    Article  PubMed  Google Scholar 

  • Guinane JE (1972) An equivalent circuit analysis of cerebrospinal fluid hydrodynamics. Am J Phys 223:425–430

    CAS  Google Scholar 

  • Gupta S et al (2010) Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. I. Computational model. J R Soc Interface 7:1195–1204

    Article  PubMed  PubMed Central  Google Scholar 

  • Hakim S, Hakim C (1984) A biomechanical model of hydrocephalus and its relationship to treatment. In: Shapiro K, Marmarou A, Portnoy HD (eds) Hydrocephalus. Raven, New York

    Google Scholar 

  • Hakim et al (1976) The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: mechanical interpretation and mathematical model. Surg Neurol 5:187–210

    PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Jost J (2002) Riemannian geometry and geometric analysis. Springer, Berlin

    Book  Google Scholar 

  • Kaczmarek M et al (1997) The hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometry. Bull Math Biol 59:295–323

    Article  CAS  PubMed  Google Scholar 

  • Kazui H (2008) Cognitive impairment in patients with idiopathic normal pressure hydrocephalus. Brain Nerve 60(3):225–231.

    PubMed  Google Scholar 

  • Kellie G (1824) An account with some reflections on the pathology of the brain. Edin Med Chir Soc Trans 1:84–169

    Google Scholar 

  • Khan AI et al (2011) Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl Phys Lett 99:113501

    Article  CAS  Google Scholar 

  • Laird AK (1964) Dynamics of tumour growth. Br J Cancer 18(3):490–502

    Article  PubMed Central  Google Scholar 

  • Linninger AA et al (2005) Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Trans Biomed Eng 52(4):557–565

    Article  PubMed  Google Scholar 

  • Linninger AA et al (2007) Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans Biomed Eng 54(2):291–302

    Article  PubMed  Google Scholar 

  • Lofgren J, Zwetnow NN (1973) Cranial and spinal components of the cerebrospinal fluid pressure-volume curve. Acta Neurol Scand 49:575–585

    Article  CAS  PubMed  Google Scholar 

  • Loth et al (2001) Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 123(1):71–79

    PubMed  CAS  Google Scholar 

  • Magendie F (1842) Recherches anatomique et physiologique sur le liquide céphalo-rachidien ou cérebro-spinal. Mequignon-Marvis, Paris

    Google Scholar 

  • Marmarou A et al (1975) Compartmental analysis of compliance and outflow resistance of cerebrospinal fluid system. J Neurosurg 43:523–534

    Article  CAS  PubMed  Google Scholar 

  • Mataro M et al (2001) Neuropsychological findings in congenital and acquired childhood hydrocephalus. Neuropsychol Rev 11(4):169–178

    Article  CAS  PubMed  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133

    Article  Google Scholar 

  • Milhorat T et al (1970) Structural, ultrastructural, and permeability changes in the ependyma and surrounding brain favoring equilibration in progressive hydrocephalus. Arch Neurol 22:397–407

    Article  CAS  PubMed  Google Scholar 

  • Monro A (1783) Observations of the structure and functions of the nervous system. Lond Med J 4(2): 113–135

    Google Scholar 

  • Nagashima T et al (1987) Biomechanics of hydrocephalus: a new theoretical model. Neurosurgery 21(6):898–904

    Article  CAS  PubMed  Google Scholar 

  • Peña A et al (1999) Effects of brain ventricular shape on periventricular biomechanics: a finite element analysis. Neurosurgery 45:107–118

    PubMed  Google Scholar 

  • Peng et al (2003) Dynamics of cerebrospinal fluid in the subarachnoid space within spinal cavity. ASME 2003 International Mechanical Engineering Congress and Exposition Advances in Bioengineering Washington, DC, USA, November 15–21

    Google Scholar 

  • Picascia M et al (2015) A review of cognitive impairment and differential diagnosis in idiopathic normal pressure hydrocephalus. Funct Neurol 30(4):217–228.

    PubMed  Google Scholar 

  • Rekate HL et al (1988) Ventricular volume regulation: a mathematical model and computer simulation. Pediatr Neurosci 14:77–84

    Article  CAS  PubMed  Google Scholar 

  • Salvatore GA et al (2012) Experimental confirmation of temperature dependent negative capacitance in ferroelectric field effect transistor. Appl Phys Lett 100:163504

    Article  CAS  Google Scholar 

  • Sivaloganathan S et al (2005a) A viscoelastic approach to the modeling of hydrocephalus. Appl Math Comput 163:1097–1107

    Google Scholar 

  • Sivaloganathan S et al (2005b) A viscoelastic model of the brain parenchyma with pulsatile ventricular pressure. Appl Math Comput 165(3):687–698

    Google Scholar 

  • Sklar FH, Elashvili I (1977) The pressure-volume function of brain elasticity. Physiological considerations and clinical applications. J Neurosurg 47:670–679

    Article  CAS  PubMed  Google Scholar 

  • Sweetman BJ (2011) Cerebrospinal fluid flow in normal and hydrocephalic brains. PhD thesis, University Illinois at Chicago

    Google Scholar 

  • Tada Y et al (1990) Mechanical modelling of the brain and simulation of the biomechanism of hydrocephalus. JSME International J 33(2):269–275

    Article  Google Scholar 

  • Takemae T et al (1987) A simulation study of intracranial pressure increment using an electrical circuit model of cerebral circulation. IEEE Trans Biomed Eng 12:958–962

    Article  Google Scholar 

  • Taylor Z, Miller K (2004) Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J Biomech 37:1263–1269

    Article  PubMed  Google Scholar 

  • Tekaya I (2010) Phase transitions in the brain. Paper presented at the international multi-conference on complexity, informatics and cybernetics, Orlando

    Google Scholar 

  • Tekaya I (2011) A physical model for brain ventricle dynamics. Comput Methods Biomech Biomed Eng 14(S1):129–131

    Article  Google Scholar 

  • Tekaya I (2012) A model of brain ventricle dynamics: contribution from CSF hydrodynamics. PhD thesis, University Picardie J Verne

    Google Scholar 

  • Tekaya I et al (2012) Dynamics of hydrocephalus – CSF hydrodynamics. Paper presented at the 13th annual meeting of the French Physical Society, Montpellier

    Google Scholar 

  • Tenti G et al (1999) Brain biomechanics: steady-state consolidation theory of hydrocephalus. Can Appl Math Q 7(1):111–124

    Google Scholar 

  • Tenti G et al (2000) Brain biomechanics: mathematical modeling of hydrocephalus. Neurol Res 22:19–24

    Article  CAS  PubMed  Google Scholar 

  • Tenti G et al (2008) Mathematical modeling of the brain: principles and challenges. Neurosurgery 62(5):1146–1157

    Article  PubMed  Google Scholar 

  • Tully HM, Dobyns WB (2014) Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur J Med Genet 57(8):359–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Ursino M (1988a) A mathematical study of human intracranial hydrodynamics. Part 1 – the cerebrospinal fluid pulse pressure. Ann Biomed Eng 16(4):379–401

    Article  CAS  PubMed  Google Scholar 

  • Ursino M (1988b) A mathematical study of human intracranial hydrodynamics. Part 2 – simulation of clinical tests. Ann Biomed Eng 16(4):403–416

    Article  CAS  PubMed  Google Scholar 

  • Ursino M, Lodi CA (1997) A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol 82(4):1256–1269

    Article  CAS  PubMed  Google Scholar 

  • Wirth B (2005) A Mathematical model for hydrocephalus. MS thesis, University Oxford

    Google Scholar 

  • Womersley (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issyan Tekaya .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tekaya, I., Bouzerar, R. (2018). Biomechanics of Hydrocephalus. In: Cinalli, G., Ozek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-31889-9_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31889-9_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31889-9

  • Online ISBN: 978-3-319-31889-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics