Skip to main content

Computational Modeling at the Cell and Tissue Level in Evo-Devo

  • Living reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

Computational models of development integrate empirical knowledge about the dynamics of development, including the interactions at the level of genes, cells, and tissues. These models are capable of predicting the relationship between genotype and phenotype for a specific organ or embryo part, that is, the association of specific genetic differences with specific phenotypic differences. Thus, they can provide insights into the evolution of specific lineages by predicting what phenotypic variation is present at each generation for selection to act on. In this chapter we explain how computational models of development are designed and describe several approaches using them in order to address specific and general questions in evolution. Models of development can be used to infer the range of possible phenotypes for a given organ or structure and predict the genetic and developmental bases of specific evolutionary transitions. By including realistic developmental dynamics in population-based models of evolution, one can assess the effect of a complex relationship between genotype and phenotype on the dynamics of adaptation in populations. Furthermore, when the structure of development is allowed to change by mutation in these models, general patterns in the evolution of the mechanisms of development can be inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Evans AR, Wilson GP, Fortelius M, Jernvall J (2007) High-level similarity of dentitions in carnivorans and rodents. Nature 445(7123):78–81. https://doi.org/10.1038/nature05433

    Article  PubMed  CAS  Google Scholar 

  • Harjunmaa E et al (2012) On the difficulty of increasing dental complexity. Nature 483(7389):324–327

    Article  CAS  PubMed  Google Scholar 

  • Harjunmaa E et al (2014) Replaying evolutionary transitions from the dental fossil record. Nature 512(7512):44–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogeweg P (2000) Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J Theor Biol 203(4):317–333. https://doi.org/10.1006/jtbi.2000.1087

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann S (1993) The origins of order. Oxford University Press, Oxford, UK

    Google Scholar 

  • Lande R, Arnold SJJ (1983) The measurement of selection on correlated characters. Evolution 37(6):1210–1226

    Article  Google Scholar 

  • Marin-Riera M et al (2016) Computational modeling of development by epithelia, mesenchyme and their interactions: a unified model. Bioinformatics (Oxford, England) 32(2):219–225

    CAS  Google Scholar 

  • Merks RMH et al (2008) Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput Biol 4(9):e1000163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustakas-Verho JE et al (2014) The origin and loss of periodic patterning in the turtle shell. Development 141(15):3033–3039

    Article  CAS  PubMed  Google Scholar 

  • Orgogozo V, Morizot B, Martin A (2015) The differential view of genotype–phenotype relationships. Front Genet 6:1–14

    Article  CAS  Google Scholar 

  • Prusinkiewicz P et al (2007) Evolution and development of inflorescence architectures. Science (New York, NY) 316(5830):1452–1456

    Article  CAS  Google Scholar 

  • Raspopovic J, Marcon L, Russo L, Sharpe J (2014) Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345:566–570

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Ciudad I (2006) Developmental constraints vs. variational properties: how pattern formation can help to understand evolution and development. J Exp Zool B Mol Dev Evol 306(2):107–125

    Article  PubMed  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2002) A gene network model accounting for development and evolution of mammalian teeth. PNAS 99(12):12

    Article  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2004) How different types of pattern formation mechanisms affect the evolution of form and development. Evol Dev 6(1):6–16

    Article  PubMed  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2005) Graduality and innovation in the evolution of complex phenotypes: insights from development. J Exp Zool B Mol Dev Evol 304(6):619–631

    Article  PubMed  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2010) A computational model of teeth and the developmental origins of morphological variation. Nature 464(7288):583–586

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Ciudad I, Marín-Riera M (2013) Adaptive dynamics under development-based genotype-phenotype maps. Nature 497(7449):361–364

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Ciudad I, Newman SA, Solé RV (2001) Phenotypic and dynamical transitions in model genetic networks I. Emergence of patterns and genotype-phenotype relationships. Evol Dev 3(2):84–94

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Ciudad I, Jernvall J, Newman SA (2003) Mechanisms of pattern formation in development and evolution. Development 130(10):2027–2037. https://doi.org/10.1242/dev.00425

    Article  PubMed  CAS  Google Scholar 

  • Sharpe J (2017) Computer modeling in developmental biology: growing today, essential tomorrow. Development 144(23):4214–4225. https://doi.org/10.1242/dev.151274

    Article  PubMed  CAS  Google Scholar 

  • Stadler PF (2006) Genotype–phenotype maps. Biol Ther 1(3):268–279

    Google Scholar 

  • Starruß J et al (2014) Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics (Oxford, England) 30(9):1331–1332

    Article  CAS  Google Scholar 

  • Swat MH et al (2012) Multi-scale modeling of tissues using CompuCell3D. Methods Cell Biol 110:325–366

    Article  PubMed  PubMed Central  Google Scholar 

  • ten Tusscher KH, Hogeweg P (2011) Evolution of networks for body plan patterning; interplay of modularity, robustness and evolvability. PLoS Comput Biol 7(10):e1002208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the sixth international congress on genetics, vol 1, pp 356–366

    Google Scholar 

  • Zhu J et al (2010) Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS ONE 5(5):e10892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Marin-Riera .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Marin-Riera, M., Salazar-Ciudad, I. (2018). Computational Modeling at the Cell and Tissue Level in Evo-Devo. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics