Skip to main content

Use of Xenogeneic Cells

  • Living reference work entry
  • First Online:
Cell Engineering and Regeneration

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 267 Accesses

Abstract

Xenotransplantation of cells, tissues, and organs is a rapidly developing field. The pig is the favorite donor species for a number of reasons, including similarity with humans in the size and physiology of many organs, high fecundity, and the possibility of genetic modification. This chapter provides an overview of the immunological and physiological hurdles facing pig-to-primate cell and tissue xenotransplantation and strategies to overcome them, with particular emphasis on porcine pancreatic islets, as these have already been used clinically. We also describe the current state of the art in xenotransplantation of porcine cornea, neuronal cells, skin, hepatocytes, chondrocytes, red blood cells, Sertoli cells, and mesenchymal stem cells. Major progress has been made, particularly in the development of novel immunosuppressive regimens and genetically multimodified donor pigs. Xenotransplantation of porcine cells and tissues has the potential to become a clinically relevant option for the treatment of degenerative diseases and traumatic tissue defects. Ethical and regulatory frameworks for this new branch of medicine are currently being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aikin RA (2012) How to kill two birds with one transgenic pig. Diabetes 61(6):1348–1349. https://doi.org/10.2337/db12-0201

    Article  Google Scholar 

  • Albritton A, Leonard DA, Leto Barone A, Keegan J, Mallard C, Sachs DH, Kurtz JM, Cetrulo CL Jr (2014) Lack of cross-sensitization between alpha-1,3-galactosyltransferase knockout porcine and allogeneic skin grafts permits serial grafting. Transplantation 97(12):1209–1215. https://doi.org/10.1097/TP.0000000000000093

    Article  Google Scholar 

  • Al-Mohanna F, Saleh S, Parhar RS, Khabar K, Collison K (2005) Human neutrophil gene expression profiling following xenogeneic encounter with porcine aortic endothelial cells: the occult role of neutrophils in xenograft rejection revealed. J Leukoc Biol 78(1):51–61. https://doi.org/10.1189/jlb.0904494

    Article  Google Scholar 

  • Aron Badin R, Vadori M, Vanhove B, Nerriere-Daguin V, Naveilhan P, Neveu I, Jan C, Leveque X, Venturi E, Mermillod P, Van Camp N, Dolle F, Guillermier M, Denaro L, Manara R, Citton V, Simioni P, Zampieri P, D’Avella D, Rubello D, Fante F, Boldrin M, De Benedictis GM, Cavicchioli L, Sgarabotto D, Plebani M, Stefani AL, Brachet P, Blancho G, Soulillou JP, Hantraye P, Cozzi E (2016) Cell therapy for Parkinson’s disease: a translational approach to assess the role of local and systemic immunosuppression. Am J Transplant 16(7):2016–2029. https://doi.org/10.1111/ajt.13704

    Article  Google Scholar 

  • Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet (London, England) 383(9911):69–82. https://doi.org/10.1016/S0140-6736(13)60591-7

    Article  Google Scholar 

  • Bahr A, Kaser T, Kemter E, Gerner W, Kurome M, Baars W, Herbach N, Witter K, Wunsch A, Talker SC, Kessler B, Nagashima H, Saalmuller A, Schwinzer R, Wolf E, Klymiuk N (2016) Ubiquitous LEA29Y expression blocks T cell co-stimulation but permits sexual reproduction in genetically modified pigs. PLoS One 11(5):e0155676. https://doi.org/10.1371/journal.pone.0155676

    Article  Google Scholar 

  • Bakdash G, Sittig SP, van Dijk T, Figdor CG, de Vries IJ (2013) The nature of activatory and tolerogenic dendritic cell-derived signal II. Front Immunol 4:53. https://doi.org/10.3389/fimmu.2013.00053

    Article  Google Scholar 

  • Barkai U, Rotem A, de Vos P (2016) Survival of encapsulated islets: more than a membrane story. World J Transplant 6(1):69–90. https://doi.org/10.5500/wjt.v6.i1.69

    Article  Google Scholar 

  • Bartlett ST, Markmann JF, Johnson P, Korsgren O, Hering BJ, Scharp D, Kay TW, Bromberg J, Odorico JS, Weir GC, Bridges N, Kandaswamy R, Stock P, Friend P, Gotoh M, Cooper DK, Park CG, O’Connell P, Stabler C, Matsumoto S, Ludwig B, Choudhary P, Kovatchev B, Rickels MR, Sykes M, Wood K, Kraemer K, Hwa A, Stanley E, Ricordi C, Zimmerman M, Greenstein J, Montanya E, Otonkoski T (2016) Report from IPITA-TTS opinion leaders meeting on the future of beta-cell replacement. Transplantation 100(Suppl 2):S1–S44. https://doi.org/10.1097/tp.0000000000001055

    Article  Google Scholar 

  • Baumann BC, Stussi G, Huggel K, Rieben R, Seebach JD (2007) Reactivity of human natural antibodies to endothelial cells from Galalpha(1,3)Gal-deficient pigs. Transplantation 83(2):193–201. https://doi.org/10.1097/01.tp.0000250478.00567.e5

    Article  Google Scholar 

  • Bistoni G, Calvitti M, Mancuso F, Arato I, Falabella G, Cucchia R, Fallarino F, Becchetti A, Baroni T, Mazzitelli S, Nastruzzi C, Bodo M, Becchetti E, Cameron DF, Luca G, Calafiore R (2012) Prolongation of skin allograft survival in rats by the transplantation of microencapsulated xenogeneic neonatal porcine Sertoli cells. Biomaterials 33(21):5333–5340. https://doi.org/10.1016/j.biomaterials.2012.04.020

    Article  Google Scholar 

  • Bottino R, Wijkstrom M, van der Windt DJ, Hara H, Ezzelarab M, Murase N, Bertera S, He J, Phelps C, Ayares D, Cooper DK, Trucco M (2014) Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant 14(10):2275–2287. https://doi.org/10.1111/ajt.12868

    Article  Google Scholar 

  • Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ (2014) Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes 7:211–223. https://doi.org/10.2147/DMSO.S50789

    Article  Google Scholar 

  • Byrne GW, McGregor CG, Breimer ME (2015) Recent investigations into pig antigen and anti-pig antibody expression. Int J Surg (London, England) 23(Pt B):223–228. https://doi.org/10.1016/j.ijsu.2015.07.724

    Article  Google Scholar 

  • Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, Jiang W, Bello-Laborn H, Hacquoil B, Strobert E, Gangappa S, Weber CJ, Pearson TC, Rajotte RV, Larsen CP (2006) Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med 12(3):304–306. https://doi.org/10.1038/nm1375

    Article  Google Scholar 

  • Carson JL, Grossman BJ, Kleinman S, Tinmouth AT, Marques MB, Fung MK, Holcomb JB, Illoh O, Kaplan LJ, Katz LM, Rao SV, Roback JD, Shander A, Tobian AA, Weinstein R, Swinton McLaughlin LG, Djulbegovic B (2012) Red blood cell transfusion: a clinical practice guideline from the AABB*. Ann Intern Med 157(1):49–58. https://doi.org/10.7326/0003-4819-157-1-201206190-00429

    Article  Google Scholar 

  • Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242. https://doi.org/10.1038/nri3405

    Article  Google Scholar 

  • Chen X, Feng X, Xie J, Ruan S, Lin Y, Lin Z, Shen R, Zhang F (2013) Application of acellular dermal xenografts in full-thickness skin burns. Exp Ther Med 6(1):194–198. https://doi.org/10.3892/etm.2013.1114

    Article  Google Scholar 

  • Choi HJ, Lee JJ, Kim DH, Kim MK, Lee HJ, Ko AY, Kang HJ, Park C, Wee WR (2015) Blockade of CD40-CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation. Am J Transplant 15(3):628–641. https://doi.org/10.1111/ajt.13057

    Article  Google Scholar 

  • Choudhary P, Rickels MR, Senior PA, Vantyghem MC, Maffi P, Kay TW, Keymeulen B, Inagaki N, Saudek F, Lehmann R, Hering BJ (2015) Evidence-informed clinical practice recommendations for treatment of type 1 diabetes complicated by problematic hypoglycemia. Diabetes Care 38(6):1016–1029. https://doi.org/10.2337/dc15-0090

    Article  Google Scholar 

  • Cohen D, Miyagawa Y, Mehra R, Lee W, Isse K, Long C, Ayares DL, Cooper DK, Hara H (2014) Distribution of non-gal antigens in pig cornea: relevance to corneal xenotransplantation. Cornea 33(4):390–397. https://doi.org/10.1097/ICO.0000000000000069

    Article  Google Scholar 

  • Cooper DK, Hara H, Yazer M (2010) Genetically engineered pigs as a source for clinical red blood cell transfusion. Clin Lab Med 30(2):365–380. https://doi.org/10.1016/j.cll.2010.02.001

    Article  Google Scholar 

  • Cooper DK, Satyananda V, Ekser B, van der Windt DJ, Hara H, Ezzelarab MB, Schuurman HJ (2014) Progress in pig-to-non-human primate transplantation models (1998–2013): a comprehensive review of the literature. Xenotransplantation 21(5):397–419. https://doi.org/10.1111/xen.12127

    Article  Google Scholar 

  • Cooper DK, Matsumoto S, Abalovich A, Itoh T, Mourad NI, Gianello PR, Wolf E, Cozzi E (2016a) Progress in clinical encapsulated islet xenotransplantation. Transplantation 100(11):2301–2308

    Article  Google Scholar 

  • Cooper DK, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R (2016b) The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 23(2):83–105. https://doi.org/10.1111/xen.12219

    Article  Google Scholar 

  • Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D (2016c) The role of genetically engineered pigs in xenotransplantation research. J Pathol 238(2):288–299. https://doi.org/10.1002/path.4635

    Article  Google Scholar 

  • Cooper DK, Bottino R, Gianello P, Graham M, Hawthorne WJ, Kirk AD, Korsgren O, Park CG, Weber C (2016d) First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – chapter 4: pre-clinical efficacy and complication data required to justify a clinical trial. Xenotransplantation 23(1):46–52. https://doi.org/10.1111/xen.12226

    Article  Google Scholar 

  • Costa C, Brokaw JL, Wang Y, Fodor WL (2003) Delayed rejection of porcine cartilage is averted by transgenic expression of alpha1,2-fucosyltransferase. FASEB J 7(1):109–111. https://doi.org/10.1096/fj.02-0630fje

    Article  Google Scholar 

  • Cowan PJ, Robson SC (2015) Progress towards overcoming coagulopathy and hemostatic dysfunction associated with xenotransplantation. Int J Surg (London, England) 23(Pt B):296–300. https://doi.org/10.1016/j.ijsu.2015.07.682

    Article  Google Scholar 

  • Cowan PJ, Ayares D, Wolf E, Cooper DK (2016) First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – chapter 2b: genetically modified source pigs. Xenotransplantation 23(1):32–37. https://doi.org/10.1111/xen.12224

    Article  Google Scholar 

  • Cowley MJ, Weinberg A, Zammit NW, Walters SN, Hawthorne WJ, Loudovaris T, Thomas H, Kay T, Gunton JE, Alexander SI, Kaplan W, Chapman J, O’Connell PJ, Grey ST (2012) Human islets express a marked proinflammatory molecular signature prior to transplantation. Cell Transplant 21(9):2063–2078. https://doi.org/10.3727/096368911x627372

    Article  Google Scholar 

  • Cozzi E, Tonjes RR, Gianello P, Buhler LH, Rayat GR, Matsumoto S, Park CG, Kwon I, Wang W, O’Connell P, Jessamine S, Elliott RB, Kobayashi T, Hering BJ (2016) First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – chapter 1: update on national regulatory frameworks pertinent to clinical islet xenotransplantation. Xenotransplantation 23(1):14–24. https://doi.org/10.1111/xen.12222

    Article  Google Scholar 

  • de Groot M, Schuurs TA, van Schilfgaarde R (2004) Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res 121(1):141–150. https://doi.org/10.1016/j.jss.2004.02.018

    Article  Google Scholar 

  • Deng Z, Jin J, Zhao J, Xu H (2016) Cartilage defect treatments: with or without cells? Mesenchymal stem cells or chondrocytes? Traditional or matrix-assisted? A systematic review and meta-analyses. Stem Cells Int 2016:9201492. https://doi.org/10.1155/2016/9201492

    Article  Google Scholar 

  • Denner J, Mueller NJ (2015) Preventing transfer of infectious agents. Int J Surg (London, England) 23(Pt B):306–311. https://doi.org/10.1016/j.ijsu.2015.08.032

    Article  Google Scholar 

  • Denner J, Schuurman HJ, Patience C (2009) The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – chapter 5: strategies to prevent transmission of porcine endogenous retroviruses. Xenotransplantation 16(4):239–248. https://doi.org/10.1111/j.1399-3089.2009.00544.x

    Article  Google Scholar 

  • Denner J, Tonjes RR, Takeuchi Y, Fishman J, Scobie L (2016) First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – chapter 5: recipient monitoring and response plan for preventing disease transmission. Xenotransplantation 23(1):53–59. https://doi.org/10.1111/xen.12227

    Article  Google Scholar 

  • Dhawan A, Puppi J, Hughes RD, Mitry RR (2010) Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol 7(5):288–298. https://doi.org/10.1038/nrgastro.2010.44

    Article  Google Scholar 

  • Dufrane D, Gianello P (2012) Macro- or microencapsulation of pig islets to cure type 1 diabetes. World J Gastroenterol 18(47):6885–6893. https://doi.org/10.3748/wjg.v18.i47.6885

    Article  Google Scholar 

  • Dufrane D, Goebbels RM, Gianello P (2010) Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation 90(10):1054–1062. https://doi.org/10.1097/TP.0b013e3181f6e267

    Article  Google Scholar 

  • Dunn TB, Kirchner V, Bellin MD (2015) Beta-cell replacement therapy: current outcomes and future landscape. Curr Opin Organ Transplant 20(6):681–690. https://doi.org/10.1097/MOT.0000000000000245

    Article  Google Scholar 

  • EC (2001) Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC. http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32001L0018

  • EC (2007) REGULATION (EC) No 1394/2007 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. http://ec.europa.eu/health/files/eudralex/vol-1/reg_2007_1394/reg_2007_1394_en.pdf

  • Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DK (2012a) Clinical xenotransplantation: the next medical revolution? Lancet (London, England) 379(9816):672–683. https://doi.org/10.1016/S0140-6736(11)61091-X

    Article  Google Scholar 

  • Ekser B, Bianchi J, Ball S, Iwase H, Walters A, Ezzelarab M, Veroux M, Gridelli B, Wagner R, Ayares D, Cooper DK (2012b) Comparison of hematologic, biochemical, and coagulation parameters in alpha1,3-galactosyltransferase gene-knockout pigs, wild-type pigs, and four primate species. Xenotransplantation 19(6):342–354. https://doi.org/10.1111/xen.12007

    Article  Google Scholar 

  • Ekser B, Cooper DK, Tector AJ (2015a) The need for xenotransplantation as a source of organs and cells for clinical transplantation. Int J Surg (London, England) 23(Pt B):199–204. https://doi.org/10.1016/j.ijsu.2015.06.066

    Article  Google Scholar 

  • Ekser B, Markmann JF, Tector AJ (2015b) Current status of pig liver xenotransplantation. Int J Surg (London, England) 23(Pt B):240–246. https://doi.org/10.1016/j.ijsu.2015.06.083

    Article  Google Scholar 

  • Elliott RB, Escobar L, Tan PL, Garkavenko O, Calafiore R, Basta P, Vasconcellos AV, Emerich DF, Thanos C, Bambra C (2005) Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc 37(8):3505–3508. https://doi.org/10.1016/j.transproceed.2005.09.038

    Article  Google Scholar 

  • Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C (2007) Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14(2):157–161. https://doi.org/10.1111/j.1399-3089.2007.00384.x

    Article  Google Scholar 

  • Ellis C, Lyon JG, Korbutt GS (2016) Optimization and scale-up isolation and culture of neonatal porcine islets: potential for clinical application. Cell Transplant 25(3):539–547. https://doi.org/10.3727/096368915x689451

    Article  Google Scholar 

  • EMA (2009) Guideline on cell-based medicinal products. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/12/WC500016936.pdf

  • EMA (2012) Guideline on quality, non-clinical and clinical aspects of medicinal products containing genetically modified cells. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/05/WC500126836.pdf

  • Emamaullee JA, Rajotte RV, Liston P, Korneluk RG, Lakey JR, Shapiro AM, Elliott JF (2005) XIAP overexpression in human islets prevents early posttransplant apoptosis and reduces the islet mass needed to treat diabetes. Diabetes 54(9):2541–2548

    Article  Google Scholar 

  • Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, Butler JR, Sidner R, Tector M, Tector J (2015) Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation 22(3):194–202. https://doi.org/10.1111/xen.12161

    Article  Google Scholar 

  • Eventov-Friedman S, Tchorsh D, Katchman H, Shezen E, Aronovich A, Hecht G, Dekel B, Rechavi G, Blazar BR, Feine I, Tal O, Freud E, Reisner Y (2006) Embryonic pig pancreatic tissue transplantation for the treatment of diabetes. PLoS Med 3(7):e215. https://doi.org/10.1371/journal.pmed.0030215

    Article  Google Scholar 

  • Fallarino F, Luca G, Calvitti M, Mancuso F, Nastruzzi C, Fioretti MC, Grohmann U, Becchetti E, Burgevin A, Kratzer R, van Endert P, Boon L, Puccetti P, Calafiore R (2009) Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone. J Exp Med 206(11):2511–2526. https://doi.org/10.1084/jem.20090134

    Article  Google Scholar 

  • FDA (2016) Guidance for industry source animal, product, preclinical, and clinical issues concerning the use of xenotransplantation products in humans. https://www.fda.gov/downloads/biologicsbloodvaccines/guidancecomplianceregulatoryinformation/guidances/xenotransplantation/ucm533036.pdf

  • FDA (2015) Guidance for industry, regulation of genetically engineered animals containing heritable recombinant DNA constructs. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/ucm113903.pdf

  • FDA Cellular & Gene Therapy Products. http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/

  • Fink JS, Schumacher JM, Ellias SL, Palmer EP, Saint-Hilaire M, Shannon K, Penn R, Starr P, VanHorne C, Kott HS, Dempsey PK, Fischman AJ, Raineri R, Manhart C, Dinsmore J, Isacson O (2000) Porcine xenografts in Parkinson’s disease and Huntington’s disease patients: preliminary results. Cell Transplant 9(2):273–278

    Article  Google Scholar 

  • Fischer K, Kraner-Scheiber S, Petersen B, Rieblinger B, Buermann A, Flisikowska T, Flisikowski K, Christan S, Edlinger M, Baars W, Kurome M, Zakhartchenko V, Kessler B, Plotzki E, Szczerbal I, Switonski M, Denner J, Wolf E, Schwinzer R, Niemann H, Kind A, Schnieke A (2016) Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci Rep 6:29081. https://doi.org/10.1038/srep29081

    Article  Google Scholar 

  • Fotino N, Fotino C, Pileggi A (2015) Re-engineering islet cell transplantation. Pharmacol Res 98:76–85. https://doi.org/10.1016/j.phrs.2015.02.010

    Article  Google Scholar 

  • Freeman TB, Cicchetti F, Hauser RA, Deacon TW, Li XJ, Hersch SM, Nauert GM, Sanberg PR, Kordower JH, Saporta S, Isacson O (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci U S A 97(25):13877–13882. https://doi.org/10.1073/pnas.97.25.13877

    Article  Google Scholar 

  • Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, Thuret G (2016) Global survey of corneal transplantation and eye banking. JAMA Ophthalmol 134(2):167–173. https://doi.org/10.1001/jamaophthalmol.2015.4776

    Article  Google Scholar 

  • Gardoni F, Bellone C (2015) Modulation of the glutamatergic transmission by dopamine: a focus on Parkinson, Huntington and addiction diseases. Front Cell Neurosci 9:25. https://doi.org/10.3389/fncel.2015.00025

    Article  Google Scholar 

  • Gonzalez JG (2012) Ethical and regulatory issues for clinical trials in xenotransplantation. Methods Mol Biol 885:281–305. https://doi.org/10.1007/978-1-61779-845-0_18

    Article  Google Scholar 

  • Graham ML, Bellin MD, Papas KK, Hering BJ, Schuurman HJ (2011) Species incompatibilities in the pig-to-macaque islet xenotransplant model affect transplant outcome: a comparison with allotransplantation. Xenotransplantation 18(6):328–342. https://doi.org/10.1111/j.1399-3089.2011.00676.x

    Article  Google Scholar 

  • Griesemer A, Yamada K, Sykes M (2014) Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 258(1):241–258. https://doi.org/10.1111/imr.12152

    Article  Google Scholar 

  • Gustafson EK, Elgue G, Hughes RD, Mitry RR, Sanchez J, Haglund U, Meurling S, Dhawan A, Korsgren O, Nilsson B (2011) The instant blood-mediated inflammatory reaction characterized in hepatocyte transplantation. Transplantation 91(6):632–638. https://doi.org/10.1097/TP.0b013e31820ae459

    Article  Google Scholar 

  • Hague SM, Klaffke S, Bandmann O (2005) Neurodegenerative disorders: Parkinson’s disease and Huntington’s disease. J Neurol Neurosurg Psychiatry 76(8):1058–1063. https://doi.org/10.1136/jnnp.2004.060186

    Article  Google Scholar 

  • Ham DS, Song MS, Park HS, Rhee M, Yang HK, Lee SH, Kim JW, Jung ES, Yoon KH (2015) Successful xenotransplantation with re-aggregated and encapsulated neonatal pig liver cells for treatment of mice with acute liver failure. Xenotransplantation 22(4):249–259. https://doi.org/10.1111/xen.12177

    Article  Google Scholar 

  • Hammerman MR (2013) Xenotransplantation of embryonic pig pancreas for treatment of diabetes mellitus in non-human primates. J Biomed Sci Eng 6(5a). https://doi.org/10.4236/jbise.2013.65A002

    Article  Google Scholar 

  • Hara H, Cooper DK (2010) The immunology of corneal xenotransplantation: a review of the literature. Xenotransplantation 17(5):338–349. https://doi.org/10.1111/j.1399-3089.2010.00608.x

    Article  Google Scholar 

  • Hara H, Cooper DK (2011) Xenotransplantation – the future of corneal transplantation? Cornea 30(4):371–378. https://doi.org/10.1097/ICO.0b013e3181f237ef

    Article  Google Scholar 

  • Hara H, Witt W, Crossley T, Long C, Isse K, Fan L, Phelps CJ, Ayares D, Cooper DK, Dai Y, Starzl TE (2013) Human dominant-negative class II transactivator transgenic pigs – effect on the human anti-pig T-cell immune response and immune status. Immunology 140(1):39–46. https://doi.org/10.1111/imm.12107

    Article  Google Scholar 

  • Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108(29):12013–12017. https://doi.org/10.1073/pnas.1106422108

    Article  Google Scholar 

  • Hawthorne WJ, Salvaris EJ, Phillips P, Hawkes J, Liuwantara D, Burns H, Barlow H, Stewart AB, Peirce SB, Hu M, Lew AM, Robson SC, Nottle MB, D’Apice AJ, O’Connell PJ, Cowan PJ (2014) Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. Am J Transplant 14(6):1300–1309. https://doi.org/10.1111/ajt.12722

    Article  Google Scholar 

  • Hecht G, Eventov-Friedman S, Rosen C, Shezen E, Tchorsh D, Aronovich A, Freud E, Golan H, El-Hasid R, Katchman H, Hering BJ, Zung A, Kra-Oz Z, Shaked-Mishan P, Yusim A, Shtabsky A, Idelevitch P, Tobar A, Harmelin A, Bachar-Lustig E, Reisner Y (2009) Embryonic pig pancreatic tissue for the treatment of diabetes in a nonhuman primate model. Proc Natl Acad Sci U S A 106(21):8659–8664. https://doi.org/10.1073/pnas.0812253106

    Article  Google Scholar 

  • Hering BJ, O’Connell PJ (2016) First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – chapter 6: patient selection for pilot clinical trials of islet xenotransplantation. Xenotransplantation 23(1):60–76. https://doi.org/10.1111/xen.12228

    Article  Google Scholar 

  • Hering BJ, Wijkstrom M, Graham ML, Hardstedt M, Aasheim TC, Jie T, Ansite JD, Nakano M, Cheng J, Li W, Moran K, Christians U, Finnegan C, Mills CD, Sutherland DE, Bansal-Pakala P, Murtaugh MP, Kirchhof N, Schuurman HJ (2006) Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med 12(3):301–303. https://doi.org/10.1038/nm1369

    Article  Google Scholar 

  • Hermans MH (2011) Preservation methods of allografts and their (lack of) influence on clinical results in partial thickness burns. Burns 37(5):873–881. https://doi.org/10.1016/j.burns.2011.01.007

    Article  Google Scholar 

  • Hughes RD, Mitry RR, Dhawan A (2012) Current status of hepatocyte transplantation. Transplantation 93(4):342–347. https://doi.org/10.1097/TP.0b013e31823b72d6

    Article  Google Scholar 

  • Iwase H, Kobayashi T (2015) Current status of pig kidney xenotransplantation. Int J Surg (London, England) 23(Pt B):229–233. https://doi.org/10.1016/j.ijsu.2015.07.721

    Article  Google Scholar 

  • Iwase H, Ekser B, Hara H, Phelps C, Ayares D, Cooper DK, Ezzelarab MB (2014) Regulation of human platelet aggregation by genetically modified pig endothelial cells and thrombin inhibition. Xenotransplantation 21(1):72–83. https://doi.org/10.1111/xen.12073

    Article  Google Scholar 

  • Ji H, Li X, Yue S, Li J, Chen H, Zhang Z, Ma B, Wang J, Pu M, Zhou L, Feng C, Wang D, Duan J, Pan D, Tao K, Dou K (2015) Pig BMSCs transfected with human TFPI combat species incompatibility and regulate the human TF pathway in vitro and in a rodent model. Cell Physiol Biochem 36(1):233–249. https://doi.org/10.1159/000374067

    Article  Google Scholar 

  • Jimenez-Vera E, Davies S, Phillips P, O’Connell PJ, Hawthorne WJ (2015) Long-term cultured neonatal islet cell clusters demonstrate better outcomes for reversal of diabetes: in vivo and molecular profiles. Xenotransplantation 22(2):114–123. https://doi.org/10.1111/xen.12151

    Article  Google Scholar 

  • Jiong C, Jiake C, Chunmao H, Yingen P, Qiuhe W, Zhouxi F, Xiangsheng F (2010) Clinical application and long-term follow-up study of porcine acellular dermal matrix combined with autoskin grafting. J Burn Care Res 31(2):280–285. https://doi.org/10.1097/BCR.0b013e3181d0f42d

    Article  Google Scholar 

  • Jitraruch S, Dhawan A, Hughes RD, Filippi C, Soong D, Philippeos C, Lehec SC, Heaton ND, Longhi MS, Mitry RR (2014) Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One 9(12):e113609. https://doi.org/10.1371/journal.pone.0113609

    Article  Google Scholar 

  • Karlsson-Parra A, Ridderstad A, Wallgren AC, Moller E, Ljunggren HG, Korsgren O (1996) Xenograft rejection of porcine islet-like cell clusters in normal and natural killer cell-depleted mice. Transplantation 61(9):1313–1320

    Article  Google Scholar 

  • Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB (2000) Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 6(2):114. https://doi.org/10.1038/72162

    Article  Google Scholar 

  • Kemter E, Lieke T, Kessler B, Kurome M, Wuensch A, Summerfield A, Ayares D, Nagashima H, Baars W, Schwinzer R, Wolf E (2012) Human TNF-related apoptosis-inducing ligand-expressing dendritic cells from transgenic pigs attenuate human xenogeneic T cell responses. Xenotransplantation 19(1):40–51. https://doi.org/10.1111/j.1399-3089.2011.00688.x

    Article  Google Scholar 

  • Kim MK, Hara H (2015) Current status of corneal xenotransplantation. Int J Surg (London, England) 23(Pt B):255–260. https://doi.org/10.1016/j.ijsu.2015.07.685

    Article  Google Scholar 

  • Kim MK, Wee WR, Park CG, Kim SJ (2011) Xenocorneal transplantation. Curr Opin Organ Transplant 16(2):231–236. https://doi.org/10.1097/MOT.0b013e328344870c

    Article  Google Scholar 

  • Kim MK, Choi HJ, Kwon I, Pierson RN 3rd, Cooper DK, Soulillou JP, O’Connell PJ, Vabres B, Maeda N, Hara H, Scobie L, Gianello P, Takeuchi Y, Yamada K, Hwang ES, Kim SJ, Park CG, International Xenotransplantation A (2014) The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of xenocorneal transplantation. Xenotransplantation 21(5):420–430. https://doi.org/10.1111/xen.12129

    Article  Google Scholar 

  • Kleine M, Schrem H, Borlak J, Klempnauer J (2008) Clinical versatility of porcine hepatocytes in the light of interspecies differences in cytochrome P450 regulation and expression. Xenotransplantation 15(4):208–217. https://doi.org/10.1111/j.1399-3089.2008.00478.x

    Article  Google Scholar 

  • Klose R, Kemter E, Bedke T, Bittmann I, Kelsser B, Endres R, Pfeffer K, Schwinzer R, Wolf E (2005) Expression of biologically active human TRAIL in transgenic pigs. Transplantation 80(2):222–230

    Article  Google Scholar 

  • Klymiuk N, Aigner B, Brem G, Wolf E (2010) Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 77(3):209–221. https://doi.org/10.1002/mrd.21127

    Article  Google Scholar 

  • Klymiuk N, van Buerck L, Bahr A, Offers M, Kessler B, Wuensch A, Kurome M, Thormann M, Lochner K, Nagashima H, Herbach N, Wanke R, Seissler J, Wolf E (2012a) Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 61(6):1527–1532. https://doi.org/10.2337/db11-1325

    Article  Google Scholar 

  • Klymiuk N, Bocker W, Schonitzer V, Bahr A, Radic T, Frohlich T, Wunsch A, Kessler B, Kurome M, Schilling E, Herbach N, Wanke R, Nagashima H, Mutschler W, Arnold GJ, Schwinzer R, Schieker M, Wolf E (2012b) First inducible transgene expression in porcine large animal models. FASEB J 26(3):1086–1099. https://doi.org/10.1096/fj.11-185041

    Article  Google Scholar 

  • Klymiuk N, Seeliger F, Bohlooly YM, Blutke A, Rudmann DG, Wolf E (2015) Tailored pig models for preclinical efficacy and safety testing of targeted therapies. Toxicol Pathol 44(3):346–357. https://doi.org/10.1177/0192623315609688

    Article  Google Scholar 

  • Klymiuk N, Ludwig B, Seissler J, Reichart B, Wolf E (2016) Current concepts of using pigs as a source for beta-cell replacement therapy of type 1 diabetes. Curr Mol Bio Rep 2(2):73–82. https://doi.org/10.1007/s40610-016-0039-1

    Article  Google Scholar 

  • Kobayashi T, Taniguchi S, Ye Y, Niekrasz M, Nour B, Cooper DK (1998) Comparison of bile chemistry between humans, baboons, and pigs: implications for clinical and experimental liver xenotransplantation. Lab Anim Sci 48(2):197–200

    Google Scholar 

  • Korbutt GS (2008) What type of islets should be used? Xenotransplantation 15(2):81–82. https://doi.org/10.1111/j.1399-3089.2008.00455.x

    Article  Google Scholar 

  • Korbutt GS, Elliott JF, Ao Z, Smith DK, Warnock GL, Rajotte RV (1996) Large scale isolation, growth, and function of porcine neonatal islet cells. J Clin Invest 97(9):2119–2129. https://doi.org/10.1172/jci118649

    Article  Google Scholar 

  • Korsgren O, Jansson L, Eizirik D, Andersson A (1991) Functional and morphological differentiation of fetal porcine islet-like cell clusters after transplantation into nude mice. Diabetologia 34(6):379–386

    Article  Google Scholar 

  • Kourtzelis I, Magnusson PU, Kotlabova K, Lambris JD, Chavakis T (2015) Regulation of instant blood mediated inflammatory reaction (IBMIR) in pancreatic islet xeno-transplantation: points for therapeutic interventions. Adv Exp Med Biol 865:171–188. https://doi.org/10.1007/978-3-319-18603-0_11

    Article  Google Scholar 

  • Kwon DN, Lee K, Kang MJ, Choi YJ, Park C, Whyte JJ, Brown AN, Kim JH, Samuel M, Mao J, Park KW, Murphy CN, Prather RS, Kim JH (2013) Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci Rep 3:1981. https://doi.org/10.1038/srep01981

    Article  Google Scholar 

  • Lai Y, Schneider D, Kidszun A, Hauck-Schmalenberger I, Breier G, Brandhorst D, Brandhorst H, Iken M, Brendel MD, Bretzel RG, Linn T (2005) Vascular endothelial growth factor increases functional beta-cell mass by improvement of angiogenesis of isolated human and murine pancreatic islets. Transplantation 79(11):1530–1536

    Article  Google Scholar 

  • Laird C, Burdorf L, Pierson RN 3rd (2016) Lung xenotransplantation: a review. Curr Opin Organ Transplant 21(3):272–278. https://doi.org/10.1097/MOT.0000000000000311

    Article  Google Scholar 

  • Lamm V, Hara H, Mammen A, Dhaliwal D, Cooper DK (2014) Corneal blindness and xenotransplantation. Xenotransplantation 21(2):99–114. https://doi.org/10.1111/xen.12082

    Article  Google Scholar 

  • Lee I, Wang L, Wells AD, Ye Q, Han R, Dorf ME, Kuziel WA, Rollins BJ, Chen L, Hancock WW (2003) Blocking the monocyte chemoattractant protein-1/CCR2 chemokine pathway induces permanent survival of islet allografts through a programmed death-1 ligand-1-dependent mechanism. J Immunol 171(12):6929–6935

    Article  Google Scholar 

  • Li J, Ezzelarab MB, Ayares D, Cooper DK (2014) The potential role of genetically-modified pig mesenchymal stromal cells in xenotransplantation. Stem Cell Rev 10(1):79–85. https://doi.org/10.1007/s12015-013-9478-8

    Article  Google Scholar 

  • Lin CC, Ezzelarab M, Hara H, Long C, Lin CW, Dorling A, Cooper DK (2010) Atorvastatin or transgenic expression of TFPI inhibits coagulation initiated by anti-nonGal IgG binding to porcine aortic endothelial cells. J Thromb Haemost 8(9):2001–2010. https://doi.org/10.1111/j.1538-7836.2010.03950.x

    Article  Google Scholar 

  • Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD et al (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science (New York, NY) 247(4942):574–577

    Article  Google Scholar 

  • Luca G, Calvitti M, Mancuso F, Falabella G, Arato I, Bellucci C, List EO, Bellezza E, Angeli G, Lilli C, Bodo M, Becchetti E, Kopchick JJ, Cameron DF, Baroni T, Calafiore R (2013) Reversal of experimental Laron syndrome by xenotransplantation of microencapsulated porcine Sertoli cells. J Control Release 165(1):75–81. https://doi.org/10.1016/j.jconrel.2012.08.028

    Article  Google Scholar 

  • Luca G, Cameron DF, Arato I, Mancuso F, Linden EH, Calvitti M, Falabella G, Szekeres K, Bodo M, Ricci G, Hansen BC, Calafiore R (2014) Xenograft of microencapsulated Sertoli cells for the cell therapy of type 2 diabetes mellitus in spontaneously diabetic nonhuman primates: preliminary data. Transplant Proc 46(6):1999–2001. https://doi.org/10.1016/j.transproceed.2014.06.053

    Article  Google Scholar 

  • Luca G, Mancuso F, Calvitti M, Arato I, Falabella G, Bufalari A, De Monte V, Tresoldi E, Nastruzzi C, Basta G, Fallarino F, Lilli C, Bellucci C, Baroni T, Aglietti MC, Giovagnoli S, Cameron DF, Bodo M, Calafiore R (2015) Long-term stability, functional competence, and safety of microencapsulated specific pathogen-free neonatal porcine Sertoli cells: a potential product for cell transplant therapy. Xenotransplantation 22(4):273–283. https://doi.org/10.1111/xen.12175

    Article  Google Scholar 

  • Ludwig B, Ludwig S (2015) Transplantable bioartificial pancreas devices: current status and future prospects. Langenbeck’s Arch Surg 400(5):531–540. https://doi.org/10.1007/s00423-015-1314-y

    Article  Google Scholar 

  • Ludwig B, Rotem A, Schmid J, Weir GC, Colton CK, Brendel MD, Neufeld T, Block NL, Yavriyants K, Steffen A, Ludwig S, Chavakis T, Reichel A, Azarov D, Zimermann B, Maimon S, Balyura M, Rozenshtein T, Shabtay N, Vardi P, Bloch K, de Vos P, Schally AV, Bornstein SR, Barkai U (2012) Improvement of islet function in a bioartificial pancreas by enhanced oxygen supply and growth hormone releasing hormone agonist. Proc Natl Acad Sci U S A 109(13):5022–5027. https://doi.org/10.1073/pnas.1201868109

    Article  Google Scholar 

  • Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block NL, Colton CK, Ludwig S, Kersting S, Bonifacio E, Solimena M, Gendler Z, Rotem A, Barkai U, Bornstein SR (2013) Transplantation of human islets without immunosuppression. Proc Natl Acad Sci U S A 110(47):19054–19058. https://doi.org/10.1073/pnas.1317561110

    Article  Google Scholar 

  • Ludwig B, Ludwig S, Steffen A, Zimermann B, Schmid J, Schubert U, Heinke S, Knauf Y, Kaup F-J, Goldman T, Barkai U, Rotem A, Bornstein S (2015) Preclinical studies on porcine islet macroencapsulation in non-human primates. Xenotransplantation 22(Suppl 1):S19–S20

    Google Scholar 

  • Ludwig B, Ludwig S, Steffen A, Knauf Y, Zimerman B, Heinke S, Lehmann S, Schubert U, Schmid J, Bleyer M, Schönmann U, Colton CK, Bonifacio E, Solimena M, Reichel A, Schally AV, Rotem A, Barkai U, Grinberg-Rashi H, Kaup FJ, Avni Y, Jones P, Bornstein SR (2017) Favorable outcome of experimental islet xenotransplantation without immunosuppression in a nonhuman primate model of diabetes. Proc Natl Acad Sci U S A 114(44):11745–11750. https://doi.org/10.1073/pnas.1708420114

    Article  Google Scholar 

  • Lunney JK, Ho CS, Wysocki M, Smith DM (2009) Molecular genetics of the swine major histocompatibility complex, the SLA complex. Dev Comp Immunol 33(3):362–374. https://doi.org/10.1016/j.dci.2008.07.002

    Article  Google Scholar 

  • Lutz AJ, Li P, Estrada JL, Sidner RA, Chihara RK, Downey SM, Burlak C, Wang ZY, Reyes LM, Ivary B, Yin F, Blankenship RL, Paris LL, Tector AJ (2013) Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20(1):27–35. https://doi.org/10.1111/xen.12019

    Article  Google Scholar 

  • MacLeod TM, Sarathchandra P, Williams G, Sanders R, Green CJ (2004) Evaluation of a porcine origin acellular dermal matrix and small intestinal submucosa as dermal replacements in preventing secondary skin graft contraction. Burns 30(5):431–437. https://doi.org/10.1016/j.burns.2004.01.018

    Article  Google Scholar 

  • Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C (2016) Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 23(3):179–201. https://doi.org/10.1111/xen.12240

    Article  Google Scholar 

  • Martin BM, Samy KP, Lowe MC, Thompson PW, Cano J, Farris AB, Song M, Dove CR, Leopardi FV, Strobert EA, Jenkins JB, Collins BH, Larsen CP, Kirk AD (2015) Dual islet transplantation modeling of the instant blood-mediated inflammatory reaction. Am J Transplant 15(5):1241–1252. https://doi.org/10.1111/ajt.13098

    Article  Google Scholar 

  • Matsumoto S, Tomiya M, Sawamoto O (2016) Current status and future of clinical islet xenotransplantation. J Diabetes 8(4):483–493. https://doi.org/10.1111/1753-0407.12395

    Article  Google Scholar 

  • Meier RP, Navarro-Alvarez N, Morel P, Schuurman HJ, Strom S, Buhler LH (2015) Current status of hepatocyte xenotransplantation. Int J Surg (London, England) 23(Pt B):273–279. https://doi.org/10.1016/j.ijsu.2015.08.077

    Article  Google Scholar 

  • Mital P, Kaur G, Dufour JM (2010) Immunoprotective sertoli cells: making allogeneic and xenogeneic transplantation feasible. Reproduction (Cambridge, England) 139(3):495–504. https://doi.org/10.1530/rep-09-0384

    Article  Google Scholar 

  • Miyagawa S, Maeda A, Kawamura T, Ueno T, Usui N, Kondo S, Matsumoto S, Okitsu T, Goto M, Nagashima H (2014) A comparison of the main structures of N-glycans of porcine islets with those from humans. Glycobiology 24(2):125–138. https://doi.org/10.1093/glycob/cwt088

    Article  Google Scholar 

  • Moberg L, Johansson H, Lukinius A, Berne C, Foss A, Kallen R, Ostraat O, Salmela K, Tibell A, Tufveson G, Elgue G, Nilsson Ekdahl K, Korsgren O, Nilsson B (2002) Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet (London, England) 360(9350):2039–2045

    Article  Google Scholar 

  • Mohiuddin MM, Reichart B, Byrne GW, McGregor CG (2015) Current status of pig heart xenotransplantation. Int J Surg (London, England) 23(Pt B):234–239. https://doi.org/10.1016/j.ijsu.2015.08.038

    Article  Google Scholar 

  • Mohiuddin MM, Singh AK, Corcoran PC, Thomas ML 3rd, Clark T, Lewis BG, Hoyt RF, Eckhaus M, Pierson RN 3rd, Belli AJ, Wolf E, Klymiuk N, Phelps C, Reimann KA, Ayares D, Horvath KA (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7:11138. https://doi.org/10.1038/ncomms11138

    Article  Google Scholar 

  • Moll G, Jitschin R, von Bahr L, Rasmusson-Duprez I, Sundberg B, Lonnies L, Elgue G, Nilsson-Ekdahl K, Mougiakakos D, Lambris JD, Ringden O, Le Blanc K, Nilsson B (2011) Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses. PLoS One 6(7):e21703. https://doi.org/10.1371/journal.pone.0021703

    Article  Google Scholar 

  • Mollon B, Kandel R, Chahal J, Theodoropoulos J (2013) The clinical status of cartilage tissue regeneration in humans. Osteoarthr Cartil 21(12):1824–1833. https://doi.org/10.1016/j.joca.2013.08.024

    Article  Google Scholar 

  • Morozumi K, Kobayashi T, Usami T, Oikawa T, Ohtsuka Y, Kato M, Takeuchi O, Koyama K, Matsuda H, Yokoyama I, Takagi H (1999) Significance of histochemical expression of Hanganutziu-Deicher antigens in pig, baboon and human tissues. Transplant Proc 31(1–2):942–944

    Article  Google Scholar 

  • Mourad N, Xhema D, Perota A, Galli C, Gianello P (2015) Beta-cell-specific expression of glucagon-like peptide 1 (GLP-1) and activated muscarinic receptor (M3R) improves pig islet secretory function. Xenotransplantation 22(Suppl. 1):S176

    Google Scholar 

  • Mueller KR, Balamurugan AN, Cline GW, Pongratz RL, Hooper RL, Weegman BP, Kitzmann JP, Taylor MJ, Graham ML, Schuurman HJ, Papas KK (2013) Differences in glucose-stimulated insulin secretion in vitro of islets from human, nonhuman primate, and porcine origin. Xenotransplantation 20(2):75–81. https://doi.org/10.1111/xen.12022

    Article  Google Scholar 

  • Mulder A, Kardol MJ, Arn JS, Eijsink C, Franke ME, Schreuder GM, Haasnoot GW, Doxiadis II, Sachs DH, Smith DM, Claas FH (2010) Human monoclonal HLA antibodies reveal interspecies crossreactive swine MHC class I epitopes relevant for xenotransplantation. Mol Immunol 47(4):809–815. https://doi.org/10.1016/j.molimm.2009.10.004

    Article  Google Scholar 

  • Nagaraju S, Bottino R, Wijkstrom M, Trucco M, Cooper DK (2015) Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation 22(1):7–19. https://doi.org/10.1111/xen.12130

    Article  Google Scholar 

  • Nagata H, Nishitai R, Shirota C, Zhang JL, Koch CA, Cai J, Awwad M, Schuurman HJ, Christians U, Abe M, Baranowska-Kortylewicz J, Platt JL, Fox IJ (2007) Prolonged survival of porcine hepatocytes in cynomolgus monkeys. Gastroenterology 132(1):321–329. https://doi.org/10.1053/j.gastro.2006.10.013

    Article  Google Scholar 

  • Navarro-Alvarez N, Yang YG (2011) CD47: a new player in phagocytosis and xenograft rejection. Cell Mol Immunol 8(4):285–288. https://doi.org/10.1038/cmi.2010.83

    Article  Google Scholar 

  • Navarro-Alvarez N, Yang YG (2014) Lack of CD47 on donor hepatocytes promotes innate immune cell activation and graft loss: a potential barrier to hepatocyte xenotransplantation. Cell Transplant 23(3):345–354. https://doi.org/10.3727/096368913x663604

    Article  Google Scholar 

  • Neufeld T, Ludwig B, Barkai U, Weir GC, Colton CK, Evron Y, Balyura M, Yavriyants K, Zimermann B, Azarov D, Maimon S, Shabtay N, Rozenshtein T, Lorber D, Steffen A, Willenz U, Bloch K, Vardi P, Taube R, de Vos P, Lewis EC, Bornstein SR, Rotem A (2013) The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS One 8(8):e70150. https://doi.org/10.1371/journal.pone.0070150

    Article  Google Scholar 

  • Nilsson B, Ekdahl KN, Korsgren O (2011) Control of instant blood-mediated inflammatory reaction to improve islets of Langerhans engraftment. Curr Opin Organ Transplant 16(6):620–626. https://doi.org/10.1097/MOT.0b013e32834c2393

    Article  Google Scholar 

  • Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan Y, Shrock E, Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H, Zhou X, Wang S, Wei H, Güell M, Church GM, Yang L (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357(6357):1303–1307. https://doi.org/10.1126/science.aan4187

    Article  Google Scholar 

  • Oliva MS, Schottman T, Gulati M (2012) Turning the tide of corneal blindness. Indian J Ophthalmol 60(5):423–427. https://doi.org/10.4103/0301-4738.100540

    Article  Google Scholar 

  • Oropeza M, Petersen B, Carnwath JW, Lucas-Hahn A, Lemme E, Hassel P, Herrmann D, Barg-Kues B, Holler S, Queisser AL, Schwinzer R, Hinkel R, Kupatt C, Niemann H (2009) Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 16(6):522–534. https://doi.org/10.1111/j.1399-3089.2009.00556.x

    Article  Google Scholar 

  • Park CG, Bottino R, Hawthorne WJ (2015) Current status of islet xenotransplantation. Int J Surg (London, England) 23(Pt B):261–266. https://doi.org/10.1016/j.ijsu.2015.07.703

    Article  Google Scholar 

  • Pepper AR, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro AMJ (2015) A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotech 33(5):518–523. https://doi.org/10.1038/nbt.3211

    Article  Google Scholar 

  • Perkel JM (2016) Xenotransplantation makes a comeback. Nat Biotechnol 34(1):3–4. https://doi.org/10.1038/nbt0116-3

    Article  Google Scholar 

  • Petersen B, Ramackers W, Lucas-Hahn A, Lemme E, Hassel P, Queisser AL, Herrmann D, Barg-Kues B, Carnwath JW, Klose J, Tiede A, Friedrich L, Baars W, Schwinzer R, Winkler M, Niemann H (2011) Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation 18(6):355–368. https://doi.org/10.1111/j.1399-3089.2011.00674.x

    Article  Google Scholar 

  • Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, Jobst PM, Sharma SB, Lamborn AE, Garst AS, Moore M, Demetris AJ, Rudert WA, Bottino R, Bertera S, Trucco M, Starzl TE, Dai Y, Ayares DL (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science (New York, NY) 299(5605):411–414. https://doi.org/10.1126/science.1078942

    Article  Google Scholar 

  • Plege A, Borns K, Baars W, Schwinzer R (2009) Suppression of human T-cell activation and expansion of regulatory T cells by pig cells overexpressing PD-ligands. Transplantation 87(7):975–982. https://doi.org/10.1097/TP.0b013e31819c85e8

    Article  Google Scholar 

  • Plege-Fleck A, Lieke T, Romermann D, Duvel H, Hundrieser J, Buermann A, Kraus L, Klempnauer J, Schwinzer R (2014) Pig to rat cell transplantation: reduced cellular and antibody responses to xenografts overexpressing PD-L1. Xenotransplantation 21(6):533–542. https://doi.org/10.1111/xen.12121

    Article  Google Scholar 

  • Qi M (2014) Transplantation of encapsulated pancreatic islets as a treatment for patients with type 1 diabetes mellitus. Adv Med 2014:429710. https://doi.org/10.1155/2014/429710

    Article  Google Scholar 

  • Ramackers W, Klose J, Vondran FW, Schrem H, Kaltenborn A, Klempnauer J, Kleine M (2014) Species-specific regulation of fibrinogen synthesis with implications for porcine hepatocyte xenotransplantation. Xenotransplantation 21(5):444–453. https://doi.org/10.1111/xen.12110

    Article  Google Scholar 

  • Rayat GR, Rajotte RV, Hering BJ, Binette TM, Korbutt GS (2003) In vitro and in vivo expression of Galalpha-(1,3)Gal on porcine islet cells is age dependent. J Endocrinol 177(1):127–135

    Article  Google Scholar 

  • Rayat GR, Gazda LS, Hawthorne WJ, Hering BJ, Hosking P, Matsumoto S, Rajotte RV (2016) First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – chapter 3: porcine islet product manufacturing and release testing criteria. Xenotransplantation 23(1):38–45. https://doi.org/10.1111/xen.12225

    Article  Google Scholar 

  • Reichart B, Niemann H, Chavakis T, Denner J, Jaeckel E, Ludwig B, Marckmann G, Schnieke A, Schwinzer R, Seissler J, Tonjes RR, Klymiuk N, Wolf E, Bornstein SR (2015) Xenotransplantation of porcine islet cells as a potential option for the treatment of type 1 diabetes in the future. Horm Metab Res 47(1):31–35. https://doi.org/10.1055/s-0034-1395518

    Article  Google Scholar 

  • Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA, Paris LL, Blankenship RL, Ray CN, Miner AC, Tector M, Tector AJ (2014) Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol 193(11):5751–5757. https://doi.org/10.4049/jimmunol.1402059

    Article  Google Scholar 

  • Robles L, Storrs R, Lamb M, Alexander M, Lakey JR (2014) Current status of islet encapsulation. Cell Transplant 23(11):1321–1348. https://doi.org/10.3727/096368913X670949

    Article  Google Scholar 

  • Rogers SA, Chen F, Talcott MR, Faulkner C, Thomas JM, Thevis M, Hammerman MR (2007) Long-term engraftment following transplantation of pig pancreatic primordia into non-immunosuppressed diabetic rhesus macaques. Xenotransplantation 14(6):591–602. https://doi.org/10.1111/j.1399-3089.2007.00429.x

    Article  Google Scholar 

  • Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, Chan RK, Christy RJ, Chung KK (2015) Burn wound healing and treatment: review and advancements. Crit Care 19:243. https://doi.org/10.1186/s13054-015-0961-2

    Article  Google Scholar 

  • Saudou F, Humbert S (2016) The biology of Huntingtin. Neuron 89(5):910–926. https://doi.org/10.1016/j.neuron.2016.02.003

    Article  Google Scholar 

  • Schrem H, Kleine M, Borlak J, Klempnauer J (2006) Physiological incompatibilities of porcine hepatocytes for clinical liver support. Liver Transpl 12(12):1832–1840. https://doi.org/10.1002/lt.20918

    Article  Google Scholar 

  • Schuurman HJ (2015) Regulatory aspects of clinical xenotransplantation. Int J Surg (London, England) 23(Pt B):312–321. https://doi.org/10.1016/j.ijsu.2015.09.051

    Article  Google Scholar 

  • Seol JG, Kim SH, Jin D, Hong SP, Yoo JY, Choi KM, Park YC, Yun YJ, Park KW, Heo JY (2010) Production of transgenic cloned miniature pigs with membrane-bound human Fas ligand (FasL) by somatic cell nuclear transfer. Nature Precedings. https://precedings.nature.com/documents/4539/version/1

  • Shapiro AM (2012) Islet transplantation in type 1 diabetes: ongoing challenges, refined procedures, and long-term outcome. Rev Diabet Stud 9(4):385–406. https://doi.org/10.1900/rds.2012.9.385

    Article  Google Scholar 

  • Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, Secchi A, Brendel MD, Berney T, Brennan DC, Cagliero E, Alejandro R, Ryan EA, DiMercurio B, Morel P, Polonsky KS, Reems JA, Bretzel RG, Bertuzzi F, Froud T, Kandaswamy R, Sutherland DE, Eisenbarth G, Segal M, Preiksaitis J, Korbutt GS, Barton FB, Viviano L, Seyfert-Margolis V, Bluestone J, Lakey JR (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355(13):1318–1330. https://doi.org/10.1056/NEJMoa061267

    Article  Google Scholar 

  • Shin JS, Kim JM, Kim JS, Min BH, Kim YH, Kim HJ, Jang JY, Yoon IH, Kang HJ, Kim J, Hwang ES, Lim DG, Lee WW, Ha J, Jung KC, Park SH, Kim SJ, Park CG (2015) Long-term control of diabetes in immunosuppressed nonhuman primates (NHP) by the transplantation of adult porcine islets. Am J Transplant 15(11):2837–2850. https://doi.org/10.1111/ajt.13345

    Article  Google Scholar 

  • Sommaggio R, Manez R, Costa C (2009) TNF, pig CD86, and VCAM-1 identified as potential targets for intervention in xenotransplantation of pig chondrocytes. Cell Transplant 18(12):1381–1393. https://doi.org/10.3727/096368909x474249

    Article  Google Scholar 

  • Sommaggio R, Perez-Cruz M, Brokaw JL, Manez R, Costa C (2013) Inhibition of complement component C5 protects porcine chondrocytes from xenogeneic rejection. Osteoarthr Cartil 21(12):1958–1967. https://doi.org/10.1016/j.joca.2013.09.002

    Article  Google Scholar 

  • Soucek P, Zuber R, Anzenbacherova E, Anzenbacher P, Guengerich FP (2001) Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs. BMC Pharmacol 1:11

    Article  Google Scholar 

  • Speier S, Nyqvist D, Cabrera O, Yu J, Molano RD, Pileggi A, Moede T, Kohler M, Wilbertz J, Leibiger B, Ricordi C, Leibiger IB, Caicedo A, Berggren PO (2008a) Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med 14(5):574–578. https://doi.org/10.1038/nm1701

    Article  Google Scholar 

  • Speier S, Nyqvist D, Kohler M, Caicedo A, Leibiger IB, Berggren PO (2008b) Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye. Nat Protoc 3(8):1278–1286. https://doi.org/10.1038/nprot.2008.118

    Article  Google Scholar 

  • Spizzo T, Denner J, Gazda L, Martin M, Nathu D, Scobie L, Takeuchi Y (2016) First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – chapter 2a: source pigs – preventing xenozoonoses. Xenotransplantation 23(1):25–31. https://doi.org/10.1111/xen.12223

    Article  Google Scholar 

  • Stephenne X, Vosters O, Najimi M, Beuneu C, Dung KN, Wijns W, Goldman M, Sokal EM (2007) Tissue factor-dependent procoagulant activity of isolated human hepatocytes: relevance to liver cell transplantation. Liver Transpl 13(4):599–606. https://doi.org/10.1002/lt.21128

    Article  Google Scholar 

  • Stewart ZA, Wilinska ME, Hartnell S, Temple RC, Rayman G, Stanley KP, Simmons D, Law GR, Scott EM, Hovorka R, Murphy HR (2016) Closed-loop insulin delivery during pregnancy in women with type 1 diabetes. N Engl J Med 375(7):644–654. https://doi.org/10.1056/NEJMoa1602494

    Article  Google Scholar 

  • Stone KR, Walgenbach AW, Abrams JT, Nelson J, Gillett N, Galili U (1997) Porcine and bovine cartilage transplants in cynomolgus monkey: I. A model for chronic xenograft rejection. Transplantation 63(5):640–645

    Article  Google Scholar 

  • Tena AA, Sachs DH, Mallard C, Yang YG, Tasaki M, Farkash E, Rosales IA, Colvin RB, Leonard DA, Hawley RJ (2016) Prolonged survival of pig skin on baboons after administration of pig cells expressing human CD47. Transplantation. https://doi.org/10.1097/tp.0000000000001267

    Article  Google Scholar 

  • Thompson P, Badell IR, Lowe M, Cano J, Song M, Leopardi F, Avila J, Ruhil R, Strobert E, Korbutt G, Rayat G, Rajotte R, Iwakoshi N, Larsen CP, Kirk AD (2011) Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function. Am J Transplant 11(12):2593–2602. https://doi.org/10.1111/j.1600-6143.2011.03720.x

    Article  Google Scholar 

  • Thompson P, Badell IR, Lowe M, Turner A, Cano J, Avila J, Azimzadeh A, Cheng X, Pierson RN 3rd, Johnson B, Robertson J, Song M, Leopardi F, Strobert E, Korbutt G, Rayat G, Rajotte R, Larsen CP, Kirk AD (2012) Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival. Am J Transplant 12(7):1765–1775. https://doi.org/10.1111/j.1600-6143.2012.04031.x

    Article  Google Scholar 

  • Tomei AA, Manzoli V, Fraker CA, Giraldo J, Velluto D, Najjar M, Pileggi A, Molano RD, Ricordi C, Stabler CL, Hubbell JA (2014) Device design and materials optimization of conformal coating for islets of Langerhans. Proc Natl Acad Sci U S A 111(29):10514–10519. https://doi.org/10.1073/pnas.1402216111

    Article  Google Scholar 

  • Vabres B, Le Bas-Bernardet S, Riochet D, Cherel Y, Minault D, Hervouet J, Ducournau Y, Moreau A, Daguin V, Coulon F, Pallier A, Brouard S, Robson SC, Nottle MB, Cowan PJ, Venturi E, Mermillod P, Brachet P, Galli C, Lagutina I, Duchi R, Bach JM, Blancho G, Soulillou JP, Vanhove B (2014) hCTLA4-Ig transgene expression in keratocytes modulates rejection of corneal xenografts in a pig to non-human primate anterior lamellar keratoplasty model. Xenotransplantation 21(5):431–443. https://doi.org/10.1111/xen.12107

    Article  Google Scholar 

  • Vadori M, Cozzi E (2015) The immunological barriers to xenotransplantation. Tissue Antigens 86(4):239–253. https://doi.org/10.1111/tan.12669

    Article  Google Scholar 

  • Vadori M, Aron Badin R, Hantraye P, Cozzi E (2015) Current status of neuronal cell xenotransplantation. Int J Surg (London, England) 23(Pt B):267–272. https://doi.org/10.1016/j.ijsu.2015.09.052

    Article  Google Scholar 

  • Valdes-Gonzalez RA, Dorantes LM, Garibay GN, Bracho-Blanchet E, Mendez AJ, Davila-Perez R, Elliott RB, Teran L, White DJ (2005) Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur J Endocrinol 153(3):419–427. https://doi.org/10.1530/eje.1.01982

    Article  Google Scholar 

  • Valdes-Gonzalez RA, White DJ, Dorantes LM, Teran L, Garibay-Nieto GN, Bracho-Blanchet E, Davila-Perez R, Evia-Viscarra L, Ormsby CE, Ayala-Sumuano JT, Silva-Torres ML, Ramirez-Gonzalez B (2007) Three-yr follow-up of a type 1 diabetes mellitus patient with an islet xenotransplant. Clin Transpl 21(3):352–357. https://doi.org/10.1111/j.1399-0012.2007.00648.x

    Article  Google Scholar 

  • van der Windt DJ, Bottino R, Casu A, Campanile N, Cooper DK (2007) Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation 14(4):288–297. https://doi.org/10.1111/j.1399-3089.2007.00419.x

    Article  Google Scholar 

  • van der Windt DJ, Bottino R, Casu A, Campanile N, Smetanka C, He J, Murase N, Hara H, Ball S, Loveland BE, Ayares D, Lakkis FG, Cooper DK, Trucco M (2009) Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant 9(12):2716–2726. https://doi.org/10.1111/j.1600-6143.2009.02850.x

    Article  Google Scholar 

  • Vegas AJ, Veiseh O, Doloff JC, Ma M, Tam HH, Bratlie K, Li J, Bader AR, Langan E, Olejnik K, Fenton P, Kang JW, Hollister-Locke J, Bochenek MA, Chiu A, Siebert S, Tang K, Jhunjhunwala S, Aresta-Dasilva S, Dholakia N, Thakrar R, Vietti T, Chen M, Cohen J, Siniakowicz K, Qi M, McGarrigle J, Lyle S, Harlan DM, Greiner DL, Oberholzer J, Weir GC, Langer R, Anderson DG (2016a) Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol 34(3):345–352. https://doi.org/10.1038/nbt.3462

    Article  Google Scholar 

  • Vegas AJ, Veiseh O, Gurtler M, Millman JR, Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, Tam HH, Jhunjhunwala S, Langan E, Aresta-Dasilva S, Gandham S, McGarrigle JJ, Bochenek MA, Hollister-Lock J, Oberholzer J, Greiner DL, Weir GC, Melton DA, Langer R, Anderson DG (2016b) Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 22(3):306–111. https://doi.org/10.1038/nm.4030

    Article  Google Scholar 

  • Veriter S, Gianello P, Igarashi Y, Beaurin G, Ghyselinck A, Aouassar N, Jordan B, Gallez B, Dufrane D (2014) Improvement of subcutaneous bioartificial pancreas vascularization and function by coencapsulation of pig islets and mesenchymal stem cells in primates. Cell Transplant 23(11):1349–1364. https://doi.org/10.3727/096368913x663550

    Article  Google Scholar 

  • Wang X, Meloche M, Verchere CB, Ou D, Mui A, Warnock GL (2011) Improving islet engraftment by gene therapy. J Transplant 2011:594851. https://doi.org/10.1155/2011/594851

    Article  Google Scholar 

  • Wang ZY, Burlak C, Estrada JL, Li P, Tector MF, Tector AJ (2014) Erythrocytes from GGTA1/CMAH knockout pigs: implications for xenotransfusion and testing in non-human primates. Xenotransplantation 21(4):376–384. https://doi.org/10.1111/xen.12106

    Article  Google Scholar 

  • Wang Y, Yang HQ, Jiang W, Fan NN, Zhao BT, Ou-Yang Z, Liu ZM, Zhao Y, Yang DS, Zhou XY, Shang HT, Wang LL, Xiang PY, Ge LP, Wei H, Lai LX (2015) Transgenic expression of human cytoxic T-lymphocyte associated antigen4-immunoglobulin (hCTLA4Ig) by porcine skin for xenogeneic skin grafting. Transgenic Res 24(2):199–211. https://doi.org/10.1007/s11248-014-9833-9

    Article  Google Scholar 

  • Weiner J, Yamada K, Ishikawa Y, Moran S, Etter J, Shimizu A, Smith RN, Sachs DH (2010) Prolonged survival of GalT-KO swine skin on baboons. Xenotransplantation 17(2):147–152. https://doi.org/10.1111/j.1399-3089.2010.00576.x

    Article  Google Scholar 

  • Weiss EH, Lilienfeld BG, Muller S, Muller E, Herbach N, Kessler B, Wanke R, Schwinzer R, Seebach JD, Wolf E, Brem G (2009) HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation 87(1):35–43. https://doi.org/10.1097/TP.0b013e318191c784

    Article  Google Scholar 

  • Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ, Dwyer KM, Nottle MB, Harrison SJ, d’Apice AJ, Robson SC, Cowan PJ, Gumina RJ (2012) Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol 52(5):958–961. https://doi.org/10.1016/j.yjmcc.2012.01.002

    Article  Google Scholar 

  • WHO Xenotransplantation. http://www.who.int/transplantation/xeno/en/

  • Wilson JT, Chaikof EL (2008) Thrombosis and inflammation in intraportal islet transplantation: a review of pathophysiology and emerging therapeutics. J Diabetes Sci Technol 2(5):746–759

    Article  Google Scholar 

  • Wolf-van Buerck L, Schuster M, Baehr A, Mayr T, Guethoff S, Abicht J, Reichart B, Nam-Apostolopoulos YC, Klymiuk N, Wolf E, Seissler J (2015) Engraftment and reversal of diabetes after intramuscular transplantation of neonatal porcine islet-like clusters. Xenotransplantation 22(6):443–450. https://doi.org/10.1111/xen.12201

    Article  Google Scholar 

  • Wolf-van Buerck L, Schuster M, Oduncu FS, Baehr A, Mayr T, Guethoff S, Abicht J, Reichart B, Klymiuk N, Wolf E, Seissler J (2017) LEA29Y expression in transgenic neonatal porcine islet-like cluster promotes long-lasting xenograft survival in humanized mice without immunosuppressive therapy. Sci Rep 7(1):3572. https://doi.org/10.1038/s41598-017-03913-4

  • Wright K, Dziuk R, Mital P, Kaur G, Dufour JM (2016) Xenotransplanted pig Sertoli cells inhibit both the alternative and classical pathways of complement mediated cell lysis while pig islets are killed. Cell Transplant. https://doi.org/10.3727/096368916x692032

    Article  Google Scholar 

  • Wuensch A, Baehr A, Bongoni AK, Kemter E, Blutke A, Baars W, Haertle S, Zakhartchenko V, Kurome M, Kessler B, Faber C, Abicht JM, Reichart B, Wanke R, Schwinzer R, Nagashima H, Rieben R, Ayares D, Wolf E, Klymiuk N (2014) Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation 97(2):138–147. https://doi.org/10.1097/TP.0b013e3182a95cbc

    Article  Google Scholar 

  • Wynyard S, Nathu D, Garkavenko O, Denner J, Elliott R (2014) Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation 21(4):309–323. https://doi.org/10.1111/xen.12102

    Article  Google Scholar 

  • Yang YG, Sykes M (2007) Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol 7(7):519–531. https://doi.org/10.1038/nri2099

    Article  Google Scholar 

  • Yang HK, Yoon KH (2015) Current status of encapsulated islet transplantation. J Diabetes Complicat 29(5):737–743. https://doi.org/10.1016/j.jdiacomp.2015.03.017

    Article  Google Scholar 

  • Yang HK, Ham DS, Park HS, Rhee M, You YH, Kim MJ, Shin J, Kim OY, Khang G, Hong TH, Kim JW, Lee SH, Cho JH, Yoon KH (2015a) Long-term efficacy and biocompatibility of encapsulated islet transplantation with chitosan-coated alginate capsules in mice and canine models of diabetes. Transplantation 100(2):334–343. https://doi.org/10.1097/TP.0000000000000927

    Article  Google Scholar 

  • Yang L, Guell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock E, Xu W, Poci J, Cortazio R, Wilkinson RA, Fishman JA, Church G (2015b) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science (New York, NY) 350(6264):1101–1104. https://doi.org/10.1126/science.aad1191

    Article  Google Scholar 

  • Zarrinpar A, Busuttil RW (2013) Liver transplantation: past, present and future. Nat Rev Gastroenterol Hepatol 10(7):434–440. https://doi.org/10.1038/nrgastro.2013.88

    Article  Google Scholar 

  • Zhang N, Richter A, Suriawinata J, Harbaran S, Altomonte J, Cong L, Zhang H, Song K, Meseck M, Bromberg J, Dong H (2004) Elevated vascular endothelial growth factor production in islets improves islet graft vascularization. Diabetes 53(4):963–970

    Article  Google Scholar 

  • Zhang MC, Liu X, Jin Y, Jiang DL, Wei XS, Xie HT (2015) Lamellar keratoplasty treatment of fungal corneal ulcers with acellular porcine corneal stroma. Am J Transplant 15(4):1068–1075. https://doi.org/10.1111/ajt.13096

    Article  Google Scholar 

  • Zhou J, He W, Luo G, Wu J (2013) Fundamental immunology of skin transplantation and key strategies for tolerance induction. Arch Immunol Ther Exp (Warsz) 61(5):397–405. https://doi.org/10.1007/s00005-013-0233-2

    Article  Google Scholar 

  • Zhu HT, Lu L, Liu XY, Yu L, Lyu Y, Wang B (2015) Treatment of diabetes with encapsulated pig islets: an update on current developments. J Zhejiang Univ Sci B 16(5):329–343. https://doi.org/10.1631/jzus.B1400310

    Article  Google Scholar 

Download references

Acknowledgments

Our work on xenotransplantation is supported by the Deutsche Forschungsgemeinschaft (TRR127 “Biology of Xenogeneic Cell, Tissue and Organ Transplantation – from Bench to Bedside”) and by the German Center for Diabetes Research (DZD). The authors are members of EU COST Action BM1308 “Sharing Advances on Large Animal Models – SALAAM.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kemter, E., Kind, A., Reichart, B., Wolf, E. (2018). Use of Xenogeneic Cells. In: Gimble, J., Marolt, D., Oreffo, R., Redl, H., Wolbank, S. (eds) Cell Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-37076-7_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-37076-7_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-37076-7

  • Online ISBN: 978-3-319-37076-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics