Skip to main content

Alkali and Alkaline Earth Metals

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Introduction

The alkali and alkaline earth metals comprise the first two columns of the periodic table, traditionally referred to as Groups IA and IIA, respectively (Figure 1). Although H is technically considered a member of Group IA, it is not an alkali metal like the rest of the elements in this column; rather, H is a highly volatile non-metal and the smallest and lightest atom of them all. From lithium (Li) through francium (Fr) in Group IA, and beryllium (Be) through radium (Ra) in Group IIA, the rest of the alkali and alkaline earth metals share a number of physical characteristics, such as: malleability, ductility, electrical/thermal conductivity, and reactivity at standard temperature and pressure. Although often associated with biological systems and dietary supplements, alkali and alkaline earth metals represent an extraordinarily important and versatile suite of elements that can be applied as geochemical tracers for a multitude of planetary processes. Moreover, many of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bath, G. E., Thorrold, S. R., Jones, C. M., Campana, S. E., McLaren, J. W., and Lam, J. W. H., 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta, 64, 1705–1714.

    Article  Google Scholar 

  • Chan, L. H., Edmond, J. M., Thompson, G., and Gillis, K., 1992. Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans. Earth and Planetary Science Letters, 108, 151–160.

    Article  Google Scholar 

  • Corgne, A., Keshav, S., Fei, Y. W., and McDonough, W. F., 2007. How much potassium is in the Earth’s core? New insights from partitioning experiments. Earth and Planetary Science Letters, 256, 567–576.

    Article  Google Scholar 

  • CRC, 2001. Handbook of Chemistry and Physics, 82nd edn. Boca Raton: CRC Press.

    Google Scholar 

  • Gagan, M. K., Ayliffe, L. K., Hopley, D., Cali, J. A., Mortimer, G. E., Chappell, J., McCulloch, M. T., and Head, M. J., 1998. Temperature and surface-ocean water balance of the Mid-Holocene Tropical Western Pacific. Science, 279, 1014–1018.

    Article  Google Scholar 

  • Hofmann, A. W., 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90, 297–314.

    Article  Google Scholar 

  • Huss, G. R., Meyer, B. S., Srinivasan, G., Goswami, J. N., and Sahijpal, S., 2009. Stellar sources of the short-lived radionuclides in the early solar system. Geochimica et Cosmochimica Acta, 73, 4922–4945.

    Article  Google Scholar 

  • Kısakűrek, B., James, R. H., and Harris, N. B. W., 2005. Li and δ7Li in Himalayan rivers: proxies for silicate weathering? Earth and Planetary Science Letters, 237, 387–401.

    Article  Google Scholar 

  • Lea, D. W., Mashiotta, T. A., and Spero, H. J., 1999. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica et Cosmochimica Acta, 63, 2369–2379.

    Article  Google Scholar 

  • Lodders, K., 2003. Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 1220–1247.

    Article  Google Scholar 

  • Marhas, K. K., Goswami, J. N., and Davis, A. M., 2002. Short-lived nuclides in Hibonite grains from Murchison: evidence for solar system evolution. Science, 298, 2182–2185.

    Article  Google Scholar 

  • McDonough, W. F., 2003. Compositional model for the Earth’s core. In Carlson, R. W. (ed.), Treatise on Geochemistry. Oxford: Elsevier-Pergamon, pp. 547–568.

    Chapter  Google Scholar 

  • McDonough, W. F., and Sun, S., 1995. The composition of the Earth. Chemical Geology, 120, 223–253.

    Article  Google Scholar 

  • McKeegan, K. D., Chaussidon, M., and Robert, F., 2000. Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science, 289, 1334–1337.

    Article  Google Scholar 

  • Misra, S., and Froelich, P. N., 2012. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science, 335, 818–823.

    Article  Google Scholar 

  • Murthy, V. R., van Westrenen, W., and Fei, Y., 2003. Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature, 423, 163–165.

    Article  Google Scholar 

  • Pennington, W., Tutin, T. G., Cambray, R. S., and Fisher, E. M., 1973. Observations on lake sediments using fallout 137Cs as a tracer. Nature, 242, 324–326.

    Article  Google Scholar 

  • Peplowski, P. N., Evans, L. G., Hauck, S. A., McCoy, T. J., Boynton, W. V., Gillis-Davis, J. J., Ebel, D. S., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L., Nittler, L. R., Solomon, S. C., Rhodes, E. A., Sprague, A. L., Starr, R. D., and Stockstill-Cahill, K. R., 2011. Radioactive elements on mercury’s surface from MESSENGER: implications for the planet’s formation and evolution. Science, 333, 1850–1852.

    Article  Google Scholar 

  • Pistiner, J. S., and Henderson, G. M., 2003. Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 214, 327–339.

    Article  Google Scholar 

  • Prettyman, T. H., Hagerty, J. J., Elphic, R. C., Feldman, W. C., Lawrence, D. J., McKinney, G. W., and Vaniman, D. T., 2006. Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of Geophysical Research: Planets, 111.

    Google Scholar 

  • Prettyman, T. H., Yamashita, N., Reedy, R. C., McSween, H. Y., Jr., Mittlefehldt, D. W., Hendricks, J. S., and Toplis, M. J., 2015. Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 259, 39–52.

    Article  Google Scholar 

  • Rogowski, A. S., and Tamura, T., 1965. Movement of 137Cs by runoff, erosion and infiltration on the alluvial Captina silt loam. Health Physics, 11, 1333–1340.

    Article  Google Scholar 

  • Rudnick, R. L., and Gao, S., 2003. Composition of the continental crust. In Rudnick, R. L. (ed.), The Crust. Oxford: Elsevier-Pergamon, pp. 1–64.

    Google Scholar 

  • Sahijpal, S., Goswami, J. N., Davis, A. M., Grossman, L., and Lewis, R. S., 1998. A stellar origin for the short-lived nuclides in the early solar system. Nature, 391, 559–561.

    Article  Google Scholar 

  • Srinivasan, G., Sahijpal, S., Ulyanov, A. A., and Goswami, J. N., 1996. Ion microprobe studies of Efremovka CAIs: II. Potassium isotope composition and 41Ca in the early solar system. Geochimica et Cosmochimica Acta, 60, 1823–1835.

    Article  Google Scholar 

  • Taylor, S. R., and McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell.

    Google Scholar 

  • Taylor, G. J., Boynton, W., Brückner, J., Wänke, H., Dreibus, G., Kerry, K., Keller, J., Reedy, R., Evans, L., Starr, R., Squyres, S., Karunatillake, S., Gasnault, O., Maurice, S., d’Uston, C., Englert, P., Dohm, J., Baker, V., Hamara, D., Janes, D., Sprague, A., Kim, K., and Drake, D., 2006. Bulk composition and early differentiation of Mars. Journal of Geophysical Research: Planets, 111.

    Google Scholar 

  • Teng, F. Z., McDonough, W. F., Rudnick, R. L., Dalpé, C., Tomascak, P. B., Chappell, B. W., and Gao, S., 2004. Lithium isotopic composition and concentration of the upper continental crust. Geochimica et Cosmochimica Acta, 68, 4167–4178.

    Article  Google Scholar 

  • Teng, F.-Z., Li, W.-Y., Ke, S., Marty, B., Dauphas, N., Huang, S., Wu, F.-Y., and Pourmand, A., 2010. Magnesium isotopic composition of the Earth and chondrites. Geochimica et Cosmochimica Acta, 74, 4150–4166.

    Article  Google Scholar 

  • Vinogradov, A. P., Surkov, Y. A., and Kirnozov, F. F., 1973. The content of uranium, thorium, and potassium in the rocks of Venus as measured by Venera 8. Icarus, 20, 253–259.

    Article  Google Scholar 

  • Walling, D. E., He, Q., and Blake, W., 1999. Use of 7Be and 137Cs measurements to document short- and medium-term rates of water-induced soil erosion on agricultural land. Water Resources Research, 35, 3865–3874.

    Article  Google Scholar 

  • Wood, B. J., and Blundy, J. D., 2003. Trace element partitioning under crustal and uppermost mantle conditions: the influences of ionic radius, cation charge, pressure, and temperature. In Carlson, R. W. (ed.), The Mantle and Core. Oxford: Elsevier-Pergamon, pp. 395–424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Arevalo Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the USA)

About this entry

Cite this entry

Arevalo, R. (2016). Alkali and Alkaline Earth Metals. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_211-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_211-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics