Skip to main content

Adaptive Physics Refinement at the Microstructure Scale

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling
  • 444 Accesses

Abstract

A long-sought goal of computational materials science and engineering has been a simulation framework that spans all necessary length and time scales, potentially from electronic structure to structural engineering, providing the appropriate level of physics fidelity where needed and enabling the user to trade off accuracy and computational time in an optimal manner. Analogous to adaptive mesh refinement methods that dynamically (and automatically) coarsen and refine a computational mesh based on local requirements, adaptive physics refinement methods utilize higher-fidelity physics models as needed, e.g., replacing a phenomenological constitutive model with a direct polycrystal plasticity simulation. While there have been several demonstrations of similar concurrent multiscale methods over the past 20–30 years, only now is a more general capability becoming viable due to advances in algorithms and computer architectures and middleware. In this chapter, we briefly review this history, focusing on two methods in particular: the heterogeneous multiscale method and adaptive sampling. The computational workflow, data, and runtime requirements of these methods are used to identify key enabling technologies that have recently gained widespread adoption, including task-based programming models, heterogeneous computer architectures, database, and machine learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham FF, Broughton JQ, Bernstein N, Kaxiras E (1998) Spanning the length scales in dynamic simulation. Comput Phys 12(6):538–546

    Article  ADS  Google Scholar 

  • Aerospike, Inc (2017) Aerospike NoSQL database. http://aerospike.com

  • Alowayyed S, Groen D, Coveney PV, Hoekstra AG (2017) Multiscale computing in the exascale era. J Comput Sci 22:15–25

    Article  Google Scholar 

  • Andoni A, Indyk P (2008) Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun ACM 51(1):117–122

    Article  Google Scholar 

  • Arsenlis A, Barton N, Becker R, Rudd R (2006) Generalized in situ adaptive tabulation for constitutive model evaluation in plasticity. Comput Methods Appl Mech Eng 196(1–3):1–13

    Article  ADS  Google Scholar 

  • Barnes BC, Leiter KW, Becker R, Knap J, Brennan JK (2017a) LAMMPS integrated materials engine (LIME) for efficient automation of particle-based simulations: application to equation of state generation. Model Simul Mater Sci Eng 25(5):055006

    Article  ADS  Google Scholar 

  • Barnes BC, Spear CE, Leiter KW, Becker R, Knap J, Lisal M, Brennan JK (2017b) Hierarchical multiscale framework for materials modeling: equation of state implementation and application to a Taylor Anvil impact test of RDX. In: Chau R, Germann T, Oleynik I, Peiris S, Ravelo R, Sewell T (eds) Shock compression of condensed matter – 2015, Tampa. AIP conference proceedings, vol 1793

    Google Scholar 

  • Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104:136403

    Article  ADS  Google Scholar 

  • Barton NR, Knap J, Arsenlis A, Becker R, Hornung RD, Jefferson DR (2008) Embedded polycrystal plasticity and adaptive sampling. Int J Plast 24(2):242–266

    Article  Google Scholar 

  • Barton NR, Bernier JV, Knap J, Sunwoo AJ, Cerreta EK, Turner TJ (2011) A call to arms for task parallelism in multi-scale materials modeling. Int J Numer Methods Eng 86:744–764

    Article  Google Scholar 

  • Barton NR, Bernier JV, Lebensohn RA, Boyce DE (2015) The use of discrete harmonics in direct multi-scale embedding of polycrystal plasticity. Comput Methods App Mech Eng 283:224

    Article  ADS  Google Scholar 

  • Bernstein N, Kermode JR, Csányi G (2009) Hybrid atomistic simulation methods for materials systems. Rep Prog Phys 72(2):026501

    Article  ADS  Google Scholar 

  • Broughton JQ, Abraham FF, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales: methodology and application. Phys Rev B Condens Matter Mater Phys 60(4):2391–2403

    Article  ADS  Google Scholar 

  • ExMatEx (2015a) CoHMM: a co-design proxy application for the Heterogeneous Multiscale Method (HMM). https://github.com/exmatex/CoHMM

  • ExMatEx (2015b) CoMD: classical molecular dynamics proxy application. https://github.com/ECP-copa/CoMD

  • Glosli JN, Richards DF, Caspersen KJ, Rudd RE, Gunnels JA, Streitz FH (2007) Extending stability beyond CPU millennium: a micron-scale atomistic simulation of Kelvin-Helmholtz instability. In: SC ’07: Proceedings of the 2007 ACM/IEEE conference on supercomputing. ACM, New York, pp 1–11

    Google Scholar 

  • Henkelman G, Jónsson H (2001) Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J Chem Phys 115:9657

    Article  ADS  Google Scholar 

  • Karlin I, Bhatele A, Keasler J, Chamberlain BL, Cohen J, DeVito Z, Haque R, Laney D, Luke E, Wang F, Richards D, Schulz M, Still C (2013) Exploring traditional and emerging parallel programming models using a proxy application. In: 27th IEEE international parallel & distributed processing symposium (IEEE IPDPS 2013), Boston

    Google Scholar 

  • Knap J, Barton NR, Hornung RD, Arsenlis A, Becker R, Jefferson DR (2008) Adaptive sampling in hierarchical simulation. Int J Numer Methods Eng 76(4):572–600

    Article  MathSciNet  Google Scholar 

  • Knap J, Spear CE, Borodin O, Leiter KW (2015) Advancing a distributed multi-scale computing framework for large-scale high-throughput discovery in materials science. Nanotechnology 26(43):434004

    Article  ADS  Google Scholar 

  • Knap J, Spear C, Leiter K, Becker R, Powell D (2016) A computational framework for scale-bridging in multi-scale simulations. Int J Numer Methods Eng 108(13):1649–1666

    Article  MathSciNet  Google Scholar 

  • Kohlhoff S, Gumbsch P, Fischmeister HF (1991) Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos Mag A 64(4):851–878

    Article  ADS  Google Scholar 

  • Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using fast Fourier Transform. Acta Mater 49(14):2723–2737

    Article  Google Scholar 

  • Lebensohn RA, Tomé C (1993) A self-consistent approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metallurgica et Materialia 41:2611

    Article  Google Scholar 

  • Li Z, Kermode JR, De Vita A (2015) Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys Rev Lett 114:096405

    Article  ADS  Google Scholar 

  • Lu G, Kaxiras E (2005) Overview of multiscale simulations of materials. In: Rieth M, Schommers W (eds) Handbook of theoretical and computational technology. American Scientific Publishers, Stevenson Ranch, vol X, pp 1–33

    Google Scholar 

  • Miller R, Tadmor E (2002) The quasicontinuum method: overview, applications and current directions. J Compu-Aided Mater Des 9(3):203–239

    Article  ADS  Google Scholar 

  • Miller RE, Tadmor EB (2009) A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model Simul Mater Sci Eng 17(5):053001

    Article  ADS  Google Scholar 

  • Muja M, Lowe DG (2014) Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans Pattern Anal Mach Intell 36(11):2227–2240

    Article  Google Scholar 

  • Noble CR, Anderson AT, Barton NR, Bramwell JA, Capps A, Chang MH, Chou JJ, Dawson DM, Diana ER, Dunn TA, Faux DR, Fisher AC, Greene PT, Heinz I, Kanarska Y, Khairallah SA, Liu BT, Margraf JD, Nichols AL, Nourgaliev RN, Puso MA, Reus JF, Robinson PB, Shestakov AI, Solberg JM, Taller D, Tsuji PH, White CA, White JL (2017) ALE3D: an arbitrary Lagrangian-Eulerian multi-physics code. https://doi.org/10.2172/1361589

  • O’Hara S, Draper BA (2013) Are you using the right approximate nearest neighbor algorithm? In: 2013 IEEE workshop on applications of computer vision (WACV), Clearwater Beach, pp 9–14

    Google Scholar 

  • Ousterhout J, Agrawal P, Erickson D, Kozyrakis C, Leverich J, Mazières D, Mitra S, Narayanan A, Parulkar G, Rosenblum M, et al (2010) The case for RAMClouds: scalable high-performance storage entirely in DRAM. ACM SIGOPS Oper Syst Rev 43(4):92–105

    Article  Google Scholar 

  • Owhadi H, Scovel C, Sullivan TJ, McKerns M, Ortiz M (2013) Optimal uncertainty quantification. SIAM Rev 55(2):271–345

    Article  MathSciNet  Google Scholar 

  • Pavel RS, McPherson AL, Germann TC, Junghans C (2015) Database assisted distribution to improve fault tolerance for multiphysics applications. In: Proceedings of the 2nd international workshop on hardware-software co-design for high performance computing, Co-HPC ’15. ACM, New York, pp 4:1–4:8

    Google Scholar 

  • Plimpton S (1995) LAMMPS: large-scale atomic/molecular massively parallel simulator. http://lammps.sandia.gov

  • Redislabs (2018) Redis database. http://redis.io

  • Reeve ST, Strachan A (2017) Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification. J Comput Phys 334:207–220

    Article  ADS  MathSciNet  Google Scholar 

  • Roehm D, Pavel R, Barros K, Rouet-Leduc B, McPherson A, Germann T, Junghans C (2015) Distributed database kriging for adaptive sampling (D2KAS). Comput Phys Commun 192: 138–147

    Article  ADS  Google Scholar 

  • Rouet-Leduc B, Barros K, Cieren E, Elango V, Junghans C, Lookman T, Mohd-Yusof J, Pavel RS, Rivera AY, Roehm D, McPherson AL, Germann TC (2014) Spatial adaptive sampling in multiscale simulation. Comput Phys Commun 185(7):1857–1864

    Article  ADS  MathSciNet  Google Scholar 

  • Rudd RE, Broughton JQ (1998) Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys Rev B 58:R5893–R5896

    Article  ADS  Google Scholar 

  • Sadalage PJ, Fowler M (2012) NoSQL distilled: a brief guide to the emerging world of polyglot persistence, 1st edn. Addison-Wesley Professional, Boston

    Google Scholar 

  • Segurado J, Lebensohn RA, LLorca J, Tomé CN (2012) Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements. Int J Plast 28:124

    Article  Google Scholar 

  • Shakhnarovich G, Darrell T, Indyk P (2006) Nearest-neighbor methods in learning and vision: theory and practice (Neural Information Processing). The MIT Press, Cambridge

    Google Scholar 

  • Strachan A, Mahadevan S, Hombal V, Sun L (2013) Functional derivatives for uncertainty quantification and error estimation and reduction via optimal high-fidelity simulations. Model Simul Mater Sci Eng 21(6):065009

    Article  ADS  Google Scholar 

  • Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563

    Article  ADS  Google Scholar 

  • Trott CR, Hammond SD, Thompson AP (2014) SNAP: strong scaling high fidelity molecular dynamics simulations on leadership-class computing platforms. In: Proceedings of the 29th international conference on supercomputing, ISC 2014, vol 8488. Springer, New York, pp 19–34

    Google Scholar 

  • Trushin O, Karim A, Kara A, Rahman TS (2005) Self-learning kinetic Monte Carlo method: application to Cu(111). Phys Rev B 72:115401

    Article  ADS  Google Scholar 

  • Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227–249

    Article  Google Scholar 

  • Weinan E, Engquist B (2003a) The heterognous multiscale methods. Commun Math Sci 1(1): 87–132

    Article  MathSciNet  Google Scholar 

  • Weinan E, Engquist B (2003b) Multiscale modeling and computation. Not Am Math Soc 50(9):1062–1070

    MathSciNet  MATH  Google Scholar 

  • Weinan E, Engquist B, Huang Z (2003) Heterogeneous multiscale method: a general methodology for multiscale modeling. Phys Rev B 67(9):092101

    Article  ADS  Google Scholar 

  • Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2(3):367–450

    MathSciNet  MATH  Google Scholar 

  • Xu H, Osetsky YN, Stoller RE (2011) Simulating complex atomistic processes: on-the-fly kinetic Monte Carlo scheme with selective active volumes. Phys Rev B 84:132103

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Germann .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Germann, T.C. (2018). Adaptive Physics Refinement at the Microstructure Scale. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_83-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_83-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics