Skip to main content

Endocrine Functions of Bone

  • Reference work entry
  • First Online:
Principles of Endocrinology and Hormone Action

Part of the book series: Endocrinology ((ENDOCR))

  • 2545 Accesses

Abstract

Significant discoveries made within the past 15 years have revealed that bone, as an organ, is not only a target of several endocrine signals but by itself acts as an unpredicted but nevertheless important endocrine tissue. Indeed, bone cells are secreting at least two hormones, FGF23 and osteocalcin, which are implicated in the regulation of phosphate homeostasis and of energy metabolism, respectively. FGF23 is secreted specifically by the cells of the osteoblast-osteocyte lineage and inhibits phosphate reabsorption in the kidney proximal tubule mainly by reducing the expression of sodium-phosphate co-transporters. FGF23 also suppresses 1,25-dihydroxyvitamin D3 synthesis in the proximal tubule and thereby impacts calcium and phosphate absorption as well. Osteocalcin is expressed and secreted by differentiated osteoblasts in bone and acts as a blood glucose-lowering hormone by stimulating insulin secretion by β-cells and by favoring insulin sensitivity in muscle, liver, and white adipose tissue. As we shall see in this chapter, the discovery that bone, like many other organs, possesses endocrine functions has opened new and exciting areas of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • ADHRConsortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26(3):345–8.

    Article  Google Scholar 

  • Aonuma H, Miyakoshi N, Hongo M, Kasukawa Y, Shimada Y. Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. Tohoku J Exp Med. 2009;218(3):201–5.

    Article  CAS  PubMed  Google Scholar 

  • Basu R, Peterson J, Rizza R, Khosla S. Effects of physiological variations in circulating insulin levels on bone turnover in humans. J Clin Endocrinol Metab. 2011;96(5):1450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117(12):4003–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan-Speranza TC, Henneicke H, Gasparini SJ, Blankenstein KI, Heinevetter U, Cogger VC, et al. Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J Clin Invest. 2012;122(11):4172–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci U S A. 2008;105(9):3455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter TO, Imel EA, Ruppe MD, Weber TJ, Klausner MA, Wooddell MM, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124(4):1587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das SK, Sharma NK, Elbein SC. Analysis of osteocalcin as a candidate gene for type 2 diabetes (T2D) and intermediate traits in Caucasians and African Americans. Dis Markers. 2010;28(5):281–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowd TL, Rosen JF, Mints L, Gundberg CM. The effect of Pb(2+) on the structure and hydroxyapatite binding properties of osteocalcin. Biochim Biophys Acta. 2001;1535(2):153–63.

    Article  CAS  PubMed  Google Scholar 

  • Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382(6590):448–52.

    Article  CAS  PubMed  Google Scholar 

  • Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  • Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 2013;17(5):745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A. 2008;105(13):5266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142(2):296–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferron M, Boudiffa M, Arsenault M, Rached M, Pata M, Giroux S, et al. Inositol polyphosphate 4-phosphatase B as a regulator of bone mass in mice and humans. Cell Metab. 2011;14(4):466–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012;50(2):568–75.

    Article  CAS  PubMed  Google Scholar 

  • Ferron M, Lacombe J. Regulation of energy metabolism by the skeleton: Osteocalcin and beyond. Archives of biochemistry and biophysics. 2014 Nov 1;561C:137–46. PubMed PMID: 24893146.

    Google Scholar 

  • Ferron M, Lacombe J, Germain A, Oury F, Karsenty G. GGCX and VKORC1 inhibit osteocalcin endocrine functions. J Cell Biol. 2015;208(6):761–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey JL, Li Z, Ellis JM, Zhang Q, Farber CR, Aja S, et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol Cell Biol. 2015;35(11):1979–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142(2):309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16(7):2205–15.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauschka PV, Carr SA. Calcium-dependent alpha-helical structure in osteocalcin. Biochemistry. 1982;21(10):2538–47.

    Article  CAS  PubMed  Google Scholar 

  • Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, et al. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone. 2009;45(5):833–42.

    Article  CAS  PubMed  Google Scholar 

  • Hill HS, Grams J, Walton RG, Liu J, Moellering DR, Garvey WT. Carboxylated and uncarboxylated forms of osteocalcin directly modulate the glucose transport system and inflammation in adipocytes. Horm Metab Res = Horm Stoffwechselforschung = Horm Metab. 2014;46(5):341–7.

    Article  CAS  Google Scholar 

  • Hinoi E, Gao N, Jung DY, Yadav V, Yoshizawa T, Myers Jr MG, et al. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol. 2008;183(7):1235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang QQ, Sicheri F, Howard AJ, Yang DS. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature. 2003;425(6961):977–80.

    Article  CAS  PubMed  Google Scholar 

  • Hong SH, Koo JW, Hwang JK, Hwang YC, Jeong IK, Ahn KJ, et al. Changes in serum osteocalcin are not associated with changes in glucose or insulin for osteoporotic patients treated with bisphosphonate. J Bone Metab. 2013;20(1):37–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichikawa S, Guigonis V, Imel EA, Courouble M, Heissat S, Henley JD, et al. Novel GALNT3 mutations causing hyperostosis-hyperphosphatemia syndrome result in low intact fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab. 2007a;92(5):1943–7.

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007b;117(9):2684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh N, Ohta H, Konishi M. Endocrine FGFs: evolution, physiology, pathophysiology, and pharmacotherapy. Front Endocrinol (Lausanne). 2015;6:154.

    Google Scholar 

  • Iwamoto J, Takeda T, Sato Y. Effect of treatment with alendronate in osteogenesis imperfecta type I: a case report. Keio J Med. 2004;53(4):251–5.

    Article  PubMed  Google Scholar 

  • Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, et al. Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab. 2013;17(6):901–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato K, Jeanneau C, Tarp MA, Benet-Pages A, Lorenz-Depiereux B, Bennett EP, et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem. 2006;281(27):18370–7.

    Article  CAS  PubMed  Google Scholar 

  • Kemink SA, Hermus AR, Swinkels LM, Lutterman JA, Smals AG. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J Endocrinol Invest. 2000;23(5):295–303.

    Article  CAS  PubMed  Google Scholar 

  • Korostishevsky M, Malkin I, Trofimov S, Pei Y, Deng HW, Livshits G. Significant association between body composition phenotypes and the osteocalcin genomic region in normative human population. Bone. 2012;51(4):688–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunutsor SK, Apekey TA, Laukkanen JA. Association of serum total osteocalcin with type 2 diabetes and intermediate metabolic phenotypes: systematic review and meta-analysis of observational evidence. Eur J Epidemiol. 2015;30(8):599–614.

    Article  CAS  PubMed  Google Scholar 

  • Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.

    Article  CAS  PubMed  Google Scholar 

  • Lacombe J, Karsenty G, Ferron M. In vivo analysis of the contribution of bone resorption to the control of glucose metabolism in mice. Mol Metab. 2013;2(4):498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004;145(7):3087–94.

    Article  CAS  PubMed  Google Scholar 

  • Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legroux-Gerot I, Vignau J, Collier F, Cortet B. Bone loss associated with anorexia nervosa. Joint Bone Spine. 2005;72(6):489–95.

    Article  PubMed  Google Scholar 

  • Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006a;17(5):1305–15.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006b;291(1):E38–49.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Vierthaler L, Tang W, Zhou J, Quarles LD. FGFR3 and FGFR4 do not mediate renal effects of FGF23. J Am Soc Nephrol. 2008;19(12):2342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Wo J, Zhao Q, Wang Y, Wang B, Zhao W. Association between serum total osteocalcin level and type 2 diabetes mellitus: a systematic review and meta-analysis. Horm Metab Res. 2015a;47(11):813–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu DM, Guo XZ, Tong HJ, Tao B, Sun LH, Zhao HY, et al. Association between osteocalcin and glucose metabolism: a meta-analysis. Osteoporos Int. 2015b;26(12):2823–33.

    Article  CAS  PubMed  Google Scholar 

  • Luo YQ, Ma XJ, Hao YP, Pan XP, Xu YT, Xiong Q, et al. Inverse relationship between serum osteocalcin levels and nonalcoholic fatty liver disease in postmenopausal Chinese women with normal blood glucose levels. Acta Pharmacol Sin. 2015;36(12):1497–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Meng J, Jia M, Bi L, Zhou Y, Wang Y, et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats. J Bone Miner Res. 2013;28(7):1641–52.

    Article  CAS  PubMed  Google Scholar 

  • Malashkevich VN, Almo SC, Dowd TL. X-ray crystal structure of bovine 3 Glu-osteocalcin. Biochemistry. 2013;52(47):8387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer Jr RA. Humoral abnormalities in X-linked hypophosphatemic mice. Nephron. 1989;53(4):293–6.

    Article  PubMed  Google Scholar 

  • Misra M, Klibanski A. The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism. Neuroendocrinology. 2011;93(2):65–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizokami A, Yasutake Y, Gao J, Matsuda M, Takahashi I, Takeuchi H, et al. Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PLoS One. 2013;8(2):e57375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizokami A, Yasutake Y, Higashi S, Kawakubo-Yasukochi T, Chishaki S, Takahashi I, et al. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Bone. 2014;69:68–79.

    Article  CAS  PubMed  Google Scholar 

  • Mokuda S, Okuda Y, Onishi M, Sawada N, Matoba K, Yamada A, et al. Post-menopausal women with rheumatoid arthritis who are treated with raloxifene or alendronate or glucocorticoids have lower serum undercarboxylated osteocalcin levels. J Endocrinol Invest. 2012;35(7):661–4.

    CAS  PubMed  Google Scholar 

  • Murshed M, Schinke T, McKee MD, Karsenty G. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol. 2004;165(5):625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 2015;29(14):1463–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144(5):796–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J, et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest. 2013a;123(6):2421–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oury F, Khrimian L, Denny CA, Gardin A, Chamouni A, Goeden N, et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell. 2013b;155(1):228–41.

    Article  CAS  PubMed  Google Scholar 

  • Pi M, Chen L, Huang MZ, Zhu W, Ringhofer B, Luo J, et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One. 2008;3(12):e3858.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pi M, Wu Y, Quarles LD. GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J Bone Miner Res. 2011;26(7):1680–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi M, Kapoor K, Ye R, Kenneth Nishimoto S, Smith JC, Baudry J, et al. Evidence for osteocalcin binding and activation of GPRC6A in beta-cells. Endocrinology. 2016;157:1866–80. en20152010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prader A, Illig R, Uehlinger E, Stalder G. Rickets following bone tumor. Helv Paediatr Acta. 1959;14:554–65.

    CAS  PubMed  Google Scholar 

  • Puig J, Blasco G, Daunis-i-Estadella J, Moreno M, Molina X, Alberich-Bayarri A, et al. Lower serum osteocalcin concentrations are associated with brain microstructural changes and worse cognitive performance. Clin Endocrinol (Oxf). 2016 May;84(5):756–63. PubMed PMID: 26406918.

    Google Scholar 

  • Quarles LD. Endocrine functions of bone in mineral metabolism regulation. J Clin Invest. 2008;118(12):3820–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD, et al. Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J Bone Miner Res. 1999;14(9):1622–7.

    Article  CAS  PubMed  Google Scholar 

  • Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J. 2006;20(6):720–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riddle RC, Frey JL, Tomlinson RE, Ferron M, Li Y, DiGirolamo DJ, et al. Tsc2 is a molecular checkpoint controlling osteoblast development and glucose homeostasis. Mol Cell Biol. 2014;34(10):1850–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer AL, Sellmeyer DE, Schwartz AV, Rosen CJ, Vittinghoff E, Palermo L, et al. Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1–84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH study). J Clin Endocrinol Metab. 2011;96(12):E1982–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz AV, Schafer AL, Grey A, Vittinghoff E, Palermo L, Lui LY, et al. Effects of antiresorptive therapies on glucose metabolism: results from the FIT, HORIZON-PFT, and FREEDOM trials. J Bone Miner Res. 2013;28(6):1348–54.

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinn DH, Gwak GY, Rhee SY, Cho J, Son HJ, Paik YH, et al. Association between serum osteocalcin levels and non-alcoholic fatty liver disease in women. Digestion. 2015;91(2):150–7.

    Article  CAS  PubMed  Google Scholar 

  • Sumara G, Sumara O, Kim JK, Karsenty G. Gut-derived serotonin is a multifunctional determinant to fasting adaptation. Cell Metab. 2012;16(5):588–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A. 2014;111(15):5520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thrailkill KM, Jo CH, Cockrell GE, Moreau CS, Lumpkin Jr CK, Fowlkes JL. Determinants of undercarboxylated and carboxylated osteocalcin concentrations in type 1 diabetes. Osteoporos Int. 2012;23(6):1799–806.

    Article  CAS  PubMed  Google Scholar 

  • Tremollieres FA, Pouilles JM, Ribot C. Vertebral postmenopausal bone loss is reduced in overweight women: a longitudinal study in 155 early postmenopausal women. J Clin Endocrinol Metab. 1993;77(3):683–6.

    CAS  PubMed  Google Scholar 

  • Tsuka S, Aonuma F, Higashi S, Ohsumi T, Nagano K, Mizokami A, et al. Promotion of insulin-induced glucose uptake in C2C12 myotubes by osteocalcin. Biochem Biophys Res Commun. 2015;459(3):437–42.

    Article  CAS  PubMed  Google Scholar 

  • Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Hanna T, Suda N, Karsenty G, Ducy P. Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes. 2014;63(3):1021–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J, Shimazu J, Makinistoglu MP, Maurizi A, Kajimura D, Zong H, et al. Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell. 2015;161(7):1576–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M, et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab. 2001;86(2):497–500.

    Article  CAS  PubMed  Google Scholar 

  • Winhofer Y, Kiefer FW, Handisurya A, Tura A, Klein K, Schneider B, et al. CTX (crosslaps) rather than osteopontin is associated with disturbed glucose metabolism in gestational diabetes. PLoS One. 2012;7(7):e40947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138(5):976–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Ferron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ferron, M. (2018). Endocrine Functions of Bone. In: Belfiore, A., LeRoith, D. (eds) Principles of Endocrinology and Hormone Action. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-44675-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44675-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44674-5

  • Online ISBN: 978-3-319-44675-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics