Skip to main content

Cellular Therapy for Melanoma

  • Living reference work entry
  • First Online:
Cutaneous Melanoma

Abstract

Melanoma was one of the first tumor types that responded to modern immunotherapy with the cytokines interferon alpha and interleukin 2. Indeed, since T cells can be identified before an invasive melanoma arises, the disease could be considered one of both melanocytes and T cells. We now know that the high mutational frequency, potential neoepitope abundance, remarkable 85% surgical cure rate for primary lesions, and predominant T-cell infiltrate found in cutaneous melanomas drove early immunotherapy (and likely surgical) successes. Demonstrating that the T cells were important for resistance to the tumor is most facilely demonstrated with adoptive transfer of tumor-specific T cells. Adoptive transfer of tumor infiltrating lymphocytes (TIL) is unusually successful in patients with melanoma. Prior to the development of checkpoint inhibitors, TIL transfer could generate objective responses in a majority of patients. The complete responses in TIL-treated patients are remarkably durable with most patients never recurring even when followed out for several years. The current era has allowed another important observation that uveal melanoma, a low mutational load tumor with few neoepitope targets, can respond to adoptive transfer of TIL. Future approaches will enable the use of T cells with new properties that can overcome the highly evolved, immunosuppressive environment of the melanoma. These include the abrogation and manipulation of nominal checkpoints, expression of common T-cell receptors in transfected autologous T cells, the development of allogeneic off-the-shelf reagents, and delivery of immunologic cytokines and signaling molecules that can sustain a durable long-term response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, Earl HM, Poole CJ, Hiller L, Dunn JA, Bowden SJ, Twelves C, Bartlett JM, Mahmoud SM, Rakha E, Ellis IO, Liu S, Gao D, Nielsen TO, Pharoah PD, Caldas C (2014) Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol 25:1536–1543

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Downing MM, Inchauste SM, Dudley ME, White DE, Wunderlich JR, Rosenberg SA, Kammula US (2012) Minimally invasive liver resection to obtain tumor-infiltrating lymphocytes for adoptive cell therapy in patients with metastatic melanoma. World J Surg Oncol 10:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen RS, Thrue CA, Junker N, Lyngaa R, Donia M, Ellebaek E, Svane IM, Schumacher TN, Thor Straten P, Hadrup SR (2012) Dissection of T-cell antigen specificity in human melanoma. Cancer Res 72:1642–1650

    Article  CAS  PubMed  Google Scholar 

  • Andersen R, Donia M, Ellebaek E, Borch TH, Kongsted P, Iversen TZ, Holmich LR, Hendel HW, Met O, Andersen MH, Thor Straten P, Svane IM (2016) Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin Cancer Res 22:3734–3745

    Article  CAS  PubMed  Google Scholar 

  • Andrews LP, Marciscano AE, Drake CG, Vignali DA (2017) LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev 276:80–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anichini A, Mortarini R, Maccalli C, Squarcina P, Fleischhauer K, Mascheroni L, Parmiani G (1996) Cytotoxic T cells directed to tumor antigens not expressed on normal melanocytes dominate HLA-A2.1-restricted immune repertoire to melanoma. J Immunol 156:208–217

    CAS  PubMed  Google Scholar 

  • Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174:2591–2601

    Article  CAS  PubMed  Google Scholar 

  • Argentati K, Re F, Serresi S, Tucci MG, Bartozzi B, Bernardini G, Provinciali M (2003) Reduced number and impaired function of circulating gamma delta T cells in patients with cutaneous primary melanoma. J Invest Dermatol 120:829–834

    Article  CAS  PubMed  Google Scholar 

  • Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, Ritz J, Sandler AB, Edington HD, Garzone PD, Mier JW, Canning CM, Battiato L, Tahara H, Sherman ML (1997) Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 3:409–417

    CAS  PubMed  Google Scholar 

  • Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, Abrams J, Sznol M, Parkinson D, Hawkins M, Paradise C, Kunkel L, Rosenberg SA (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116

    Article  CAS  PubMed  Google Scholar 

  • Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, Kohlmeyer J, Riesenberg S, van den Boorn-Konijnenberg D, Homig-Holzel C, Reuten R, Schadow B, Weighardt H, Wenzel D, Helfrich I, Schadendorf D, Bloch W, Bianchi ME, Lugassy C, Barnhill RL, Koch M, Fleischmann BK, Forster I, Kastenmuller W, Kolanus W, Holzel M, Gaffal E, Tuting T (2014) Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507:109–113

    Article  CAS  PubMed  Google Scholar 

  • Balermpas P, Michel Y, Wagenblast J, Seitz O, Weiss C, Rodel F, Rodel C, Fokas E (2014) Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. Br J Cancer 110:501–509

    Article  CAS  PubMed  Google Scholar 

  • Bartlett EK, Kammula US (2014) Location, location, location: the relationship of anatomic site, antigen expression, and T-cell infiltration in human melanoma metastases. Oncoimmunology 3:e28963

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartlett EK, Fetsch PA, Filie AC, Abati A, Steinberg SM, Wunderlich JR, White DE, Stephens DJ, Marincola FM, Rosenberg SA, Kammula US (2014) Human melanoma metastases demonstrate nonstochastic site-specific antigen heterogeneity that correlates with T-cell infiltration. Clin Cancer Res 20:2607–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassani-Sternberg M, Braunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, Straub M, Weber J, Slotta-Huspenina J, Specht K, Martignoni ME, Werner A, Hein R, Busch DH, Peschel C, Rad R, Cox J, Mann M, Krackhardt AM (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 7:13404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beatty GL, O’Hara MH, Lacey SF, Torigian DA, Nazimuddin F, Chen F, Kulikovskaya IM, Soulen MC, McGarvey M, Nelson AM, Gladney WL, Levine BL, Melenhorst JJ, Plesa G, June CH (2018) Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155:29–32

    Article  CAS  PubMed  Google Scholar 

  • Benlalam H, Labarriere N, Linard B, Derre L, Diez E, Pandolfino MC, Bonneville M, Jotereau F (2001) Comprehensive analysis of the frequency of recognition of melanoma-associated antigen (MAA) by CD8 melanoma infiltrating lymphocytes (TIL): implications for immunotherapy. Eur J Immunol 31:2007–2015

    Article  CAS  PubMed  Google Scholar 

  • Berendt MJ, North RJ (1980) T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med 151: 69–80

    Article  CAS  PubMed  Google Scholar 

  • Berendt MJ, North RJ, Kirstein DP (1978) The immunological basis of endotoxin-induced tumor regression. Requirement for T-cell-mediated immunity. J Exp Med 148:1550–1559

    Article  CAS  PubMed  Google Scholar 

  • Besser MJ, Shapira-Frommer R, Itzhaki O, Treves AJ, Zippel DB, Levy D, Kubi A, Shoshani N, Zikich D, Ohayon Y, Ohayon D, Shalmon B, Markel G, Yerushalmi R, Apter S, Ben-Nun A, Ben-Ami E, Shimoni A, Nagler A, Schachter J (2013) Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res 19:4792–4800

    Article  CAS  PubMed  Google Scholar 

  • Boon T (1992) Toward a genetic analysis of tumor rejection antigens. Adv Cancer Res 58:177–210

    Article  CAS  PubMed  Google Scholar 

  • Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K, Quintas-Cardama A, Larson SM, Sadelain M (2007) Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res 13:5426–5435

    Article  CAS  PubMed  Google Scholar 

  • Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S, Borquez-Ojeda O, Olszewska M, Bernal Y, Pegram H, Przybylowski M, Hollyman D, Usachenko Y, Pirraglia D, Hosey J, Santos E, Halton E, Maslak P, Scheinberg D, Jurcic J, Heaney M, Heller G, Frattini M, Sadelain M (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118:4817–4828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5:177ra38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronte V (2014) Tumors STING adaptive antitumor immunity. Immunity 41:679–681

    Article  CAS  PubMed  Google Scholar 

  • Bruchard M, Rebe C, Derangere V, Togbe D, Ryffel B, Boidot R, Humblin E, Hamman A, Chalmin F, Berger H, Chevriaux A, Limagne E, Apetoh L, Vegran F, Ghiringhelli F (2015) The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol 16:859–870

    Article  CAS  PubMed  Google Scholar 

  • Burnet M (1957a) Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J 1:841–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnet M (1957b) Cancer; a biological approach. I. The processes of control. Br Med J 1:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero OL, Chen YT (2009) Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci 100:2014–2021

    Article  CAS  PubMed  Google Scholar 

  • Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, Grand F, Brewer JE, Gupta M, Plesa G, Bossi G, Vuidepot A, Powlesland AS, Legg A, Adams KJ, Bennett AD, Pumphrey NJ, Williams DD, Binder-Scholl G, Kulikovskaya I, Levine BL, Riley JL, Varela-Rohena A, Stadtmauer EA, Rapoport AP, Linette GP, June CH, Hassan NJ, Kalos M, Jakobsen BK (2013) Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med 5:197ra103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascone T, McKenzie JA, Mbofung RM, Punt S, Wang Z, Xu C, Williams LJ, Wang Z, Bristow CA, Carugo A, Peoples MD, Li L, Karpinets T, Huang L, Malu S, Creasy C, Leahey SE, Chen J, Chen Y, Pelicano H, Bernatchez C, Gopal YNV, Heffernan TP, Hu J, Wang J, Amaria RN, Garraway LA, Huang P, Yang P, Wistuba II, Woodman SE, Roszik J, Davis RE, Davies MA, Heymach JV, Hwu P, Peng W (2018) Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab 27: 977–987.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castelli C, Storkus WJ, Maeurer MJ, Martin DM, Huang EC, Pramanik BN, Nagabhushan TL, Parmiani G, Lotze MT (1995) Mass spectrometric identification of a naturally processed melanoma peptide recognized by CD8+ cytotoxic T lymphocytes. J Exp Med 181:363–368

    Article  CAS  PubMed  Google Scholar 

  • Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD Jr (1996) Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med 183:283–287

    Article  CAS  PubMed  Google Scholar 

  • Chandran SS, Paria BC, Srivastava AK, Rothermel LD, Stephens DJ, Dudley ME, Somerville R, Wunderlich JR, Sherry RM, Yang JC, Rosenberg SA, Kammula US (2015) Persistence of CTL clones targeting melanocyte differentiation antigens was insufficient to mediate significant melanoma regression in humans. Clin Cancer Res 21:534–543

    Article  CAS  PubMed  Google Scholar 

  • Chandran SS, Somerville RPT, Yang JC, Sherry RM, Klebanoff CA, Goff SL, Wunderlich JR, Danforth DN, Zlott D, Paria BC, Sabesan AC, Srivastava AK, Xi L, Pham TH, Raffeld M, White DE, Toomey MA, Rosenberg SA, Kammula US (2017) Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol 18:792–802

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheever MA, Kempf RA, Fefer A (1977) Tumor neutralization, immunotherapy, and chemoimmmunotherapy of a Friend leukemia with cells secondarily sensitized in vitro. J Immunol 119:714–718

    CAS  PubMed  Google Scholar 

  • Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A 94:1914–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YT, Gure AO, Tsang S, Stockert E, Jager E, Knuth A, Old LJ (1998) Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library. Proc Natl Acad Sci U S A 95:6919–6923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhang C, Pan Y, Xu R, Xu C, Chen Z, Lu Z, Ke Y (2016) T cell receptor beta-chain repertoire analysis reveals intratumour heterogeneity of tumour-infiltrating lymphocytes in oesophageal squamous cell carcinoma. J Pathol 239:450–458

    Article  CAS  PubMed  Google Scholar 

  • Chinnasamy N, Wargo JA, Yu Z, Rao M, Frankel TL, Riley JP, Hong JJ, Parkhurst MR, Feldman SA, Schrump DS, Restifo NP, Robbins PF, Rosenberg SA, Morgan RA (2011) A TCR targeting the HLA-A*0201-restricted epitope of MAGE-A3 recognizes multiple epitopes of the MAGE-A antigen superfamily in several types of cancer. J Immunol 186:685–696

    Article  CAS  PubMed  Google Scholar 

  • Conlon KC, Miljkovic MD, Waldmann TA (2019) Cytokines in the treatment of cancer. J Interferon Cytokine Res 39(1):6–21. https://doi.org/10.1089/jir.2018.0019

    Article  CAS  Google Scholar 

  • Coulie PG, Lehmann F, Lethe B, Herman J, Lurquin C, Andrawiss M, Boon T (1995) A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci U S A 92:7976–7980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crome SQ, Nguyen LT, Lopez-Verges S, Yang SY, Martin B, Yam JY, Johnson DJ, Nie J, Pniak M, Yen PH, Milea A, Sowamber R, Katz SR, Bernardini MQ, Clarke BA, Shaw PA, Lang PA, Berman HK, Pugh TJ, Lanier LL, Ohashi PS (2017) A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat Med 23:368–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Custer MC, Lotze MT (1990) A biologic assay for IL-4. Rapid fluorescence assay for IL-4 detection in supernatants and serum. J Immunol Methods 128:109–117

    Article  CAS  PubMed  Google Scholar 

  • Daud AI (2018) Negative but not futile: MAGE-A3 immunotherapeutic for melanoma. Lancet Oncol 19:852

    Article  PubMed  Google Scholar 

  • De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T (1996) The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A 93:7149–7153

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vries TJ, Smeets M, de Graaf R, Hou-Jensen K, Brocker EB, Renard N, Eggermont AM, van Muijen GN, Ruiter DJ (2001) Expression of gp100, MART-1, tyrosinase, and S100 in paraffin-embedded primary melanomas and locoregional, lymph node, and visceral metastases: implications for diagnosis and immunotherapy. A study conducted by the EORTC Melanoma Cooperative Group. J Pathol 193:13–20

    Article  PubMed  Google Scholar 

  • Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13:4677–4685

    Article  PubMed  Google Scholar 

  • Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J, Flatz L, Gaide O, Michielin O, Hwu P, Petrova TV, Martinon F, Modlin RL, Speiser DE, Gilliet M (2015) STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci U S A 112:15408–15413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deniger DC, Kwong ML, Pasetto A, Dudley ME, Wunderlich JR, Langhan MM, Lee CR, Rosenberg SA (2017) A pilot trial of the combination of Vemurafenib with adoptive cell therapy in patients with metastatic melanoma. Clin Cancer Res 23: 351–362

    Article  CAS  PubMed  Google Scholar 

  • Derre L, Bruyninx M, Baumgaertner P, Ferber M, Schmid D, Leimgruber A, Zoete V, Romero P, Michielin O, Speiser DE, Rufer N (2008) Distinct sets of alphabeta TCRs confer similar recognition of tumor antigen NY-ESO-1157-165 by interacting with its central Met/Trp residues. Proc Natl Acad Sci U S A 105:15010–15015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvajal RD, Keohan ML, Chuang E, Sanborn RE, Lutzky J, Powderly J, Kluger H, Tejwani S, Green J, Ramakrishna V, Crocker A, Vitale L, Yellin M, Davis T, Keler T (2014) Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med 6:232ra51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doll R, Kinlen L (1970) Immunosurveillance and cancer: epidemiological evidence. Br Med J 4:420–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donia M, Junker N, Ellebaek E, Andersen MH, Straten PT, Svane IM (2012) Characterization and comparison of ‘standard’ and ‘young’ tumour-infiltrating lymphocytes for adoptive cell therapy at a Danish translational research institution. Scand J Immunol 75:157–167

    Article  CAS  PubMed  Google Scholar 

  • Donia M, Hansen M, Sendrup SL, Iversen TZ, Ellebaek E, Andersen MH, Straten P, Svane IM (2013) Methods to improve adoptive T-cell therapy for melanoma: IFN-gamma enhances anticancer responses of cell products for infusion. J Invest Dermatol 133:545–552

    Article  CAS  PubMed  Google Scholar 

  • Donia M, Andersen R, Kjeldsen JW, Fagone P, Munir S, Nicoletti F, Andersen MH, Thor Straten P, Svane IM (2015) Aberrant expression of MHC class II in melanoma attracts inflammatory tumor-specific CD4+ T- cells, which dampen CD8+ T-cell antitumor reactivity. Cancer Res 75:3747–3759

    Article  CAS  PubMed  Google Scholar 

  • Donia M, Kjeldsen JW, Andersen R, Westergaard MCW, Bianchi V, Legut M, Attaf M, Szomolay B, Ott S, Dolton G, Lyngaa R, Hadrup SR, Sewell AK, Svane IM (2017) PD-1(+) polyfunctional T cells dominate the periphery after tumor-infiltrating lymphocyte therapy for cancer. Clin Cancer Res 23:5779–5788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreno B, Thompson JF, Smithers BM, Santinami M, Jouary T, Gutzmer R, Levchenko E, Rutkowski P, Grob JJ, Korovin S, Drucis K, Grange F, Machet L, Hersey P, Krajsova I, Testori A, Conry R, Guillot B, Kruit WHJ, Demidov L, Thompson JA, Bondarenko I, Jaroszek J, Puig S, Cinat G, Hauschild A, Goeman JJ, van Houwelingen HC, Ulloa-Montoya F, Callegaro A, Dizier B, Spiessens B, Debois M, Brichard VG, Louahed J, Therasse P, Debruyne C, Kirkwood JM (2018) MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 19:916

    Article  CAS  PubMed  Google Scholar 

  • Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, Blanchard T, McMahon D, Sidney J, Sette A, Baker BM, Mandoiu II, Srivastava PK (2014) Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med 211:2231–2248

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, Schwartzentruber DJ, Hwu P, Marincola FM, Sherry R, Leitman SF, Rosenberg SA (2001) Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24:363–373

    Article  CAS  PubMed  Google Scholar 

  • Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26:332–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357

    Article  CAS  PubMed  Google Scholar 

  • Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, Phan GQ, Kammula US, Hughes MS, Citrin DE, Restifo NP, Wunderlich JR, Prieto PA, Hong JJ, Langan RC, Zlott DA, Morton KE, White DE, Laurencot CM, Rosenberg SA (2010) CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 16:6122–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley ME, Gross CA, Somerville RP, Hong Y, Schaub NP, Rosati SF, White DE, Nathan D, Restifo NP, Steinberg SM, Wunderlich JR, Kammula US, Sherry RM, Yang JC, Phan GQ, Hughes MS, Laurencot CM, Rosenberg SA (2013) Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol 31:2152–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhen T, Duhen R, Montler R, Moses J, Moudgil T, de Miranda NF, Goodall CP, Blair TC, Fox BA, McDermott JE, Chang SC, Grunkemeier G, Leidner R, Bell RB, Weinberg AD (2018) Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun 9:2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duke WW (1983) The relation of blood platelets to hemorrhagic disease. By W.W. Duke. JAMA 250:1201–1209

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848

    Article  CAS  PubMed  Google Scholar 

  • Elder EM, Lotze MT, Whiteside TL (1996) Successful culture and selection of cytokine gene-modified human dermal fibroblasts for the biologic therapy of patients with cancer. Hum Gene Ther 7:479–487

    Article  CAS  PubMed  Google Scholar 

  • Emerson RO, Sherwood AM, Rieder MJ, Guenthoer J, Williamson DW, Carlson CS, Drescher CW, Tewari M, Bielas JH, Robins HS (2013) High-throughput sequencing of T-cell receptors reveals a homogeneous repertoire of tumour-infiltrating lymphocytes in ovarian cancer. J Pathol 231:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT, Patterson JW, Slingluff CL Jr (2012) Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 72:1070–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshhar Z, Waks T, Zinger H, Mozes E (1982) T cell hybridomas producing antigen-specific factors express heavy-chain variable-region determinants. Curr Top Microbiol Immunol 100:103–109

    CAS  PubMed  Google Scholar 

  • Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A 90:720–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fefer A (1969) Immunotherapy and chemotherapy of Moloney sarcoma virus-induced tumors in mice. Cancer Res 29:2177–2183

    CAS  PubMed  Google Scholar 

  • Fefer A, McCoy JL, Glynn JP (1967) Antigenicity of a virus-induced murine sarcoma (Moloney). Cancer Res 27:962–967

    CAS  PubMed  Google Scholar 

  • Fischer GM, Vashisht Gopal YN, McQuade JL, Peng W, DeBerardinis RJ, Davies MA (2018) Metabolic strategies of melanoma cells: mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res 31:11–30

    Article  PubMed  Google Scholar 

  • Fisher PB, Gopalkrishnan RV, Chada S, Ramesh R, Grimm EA, Rosenfeld MR, Curiel DT, Dent P (2003) mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol Ther 2:S23–S37

    Article  CAS  PubMed  Google Scholar 

  • Flajnik MF (2018) A cold-blooded view of adaptive immunity. Nat Rev Immunol 18:438–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forget MA, Haymaker C, Hess KR, Meng YJ, Creasy C, Karpinets T, Fulbright OJ, Roszik J, Woodman SE, Kim YU, Sakellariou-Thompson D, Bhatta A, Wahl A, Flores E, Thorsen ST, Tavera RJ, Ramachandran R, Gonzalez AM, Toth CL, Wardell S, Mansaray R, Patel V, Carpio DJ, Vaughn C, Farinas CM, Velasquez PG, Hwu WJ, Patel SP, Davies MA, Diab A, Glitza IC, Tawbi H, Wong MK, Cain S, Ross MI, Lee JE, Gershenwald JE, Lucci A, Royal R, Cormier JN, Wargo JA, Radvanyi LG, Torres-Cabala CA, Beroukhim R, Hwu P, Amaria RN, Bernatchez C (2018) Prospective analysis of adoptive TIL therapy in patients with metastatic melanoma: response, impact of anti-CTLA4, and biomarkers to predict clinical outcome. Clin Cancer Res 24:4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fourcade J, Sun Z, Pagliano O, Chauvin JM, Sander C, Janjic B, Tarhini AA, Tawbi HA, Kirkwood JM, Moschos S, Wang H, Guillaume P, Luescher IF, Krieg A, Anderson AC, Kuchroo VK, Zarour HM (2014) PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8(+) T cells induced by melanoma vaccines. Cancer Res 74:1045–1055

    Article  CAS  PubMed  Google Scholar 

  • Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, Cogdill AP, Morrissette JJD, DeNizio JE, Reddy S, Hwang Y, Gohil M, Kulikovskaya I, Nazimuddin F, Gupta M, Chen F, Everett JK, Alexander KA, Lin-Shiao E, Gee MH, Liu X, Young RM, Ambrose D, Wang Y, Xu J, Jordan MS, Marcucci KT, Levine BL, Garcia KC, Zhao Y, Kalos M, Porter DL, Kohli RM, Lacey SF, Berger SL, Bushman FD, June CH, Melenhorst JJ (2018) Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558:307–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman WH (2018) From cancer immune surveillance to cancer immunoediting: birth of modern immuno-oncology. J Immunol 201:825–826

    Article  CAS  PubMed  Google Scholar 

  • Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S (2017) Cancer immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-inflamed tumor microenvironment. Adv Exp Med Biol 1036:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, Lugli A, Zlobec I, Hartmann A, Bifulco C, Nagtegaal ID, Palmqvist R, Masucci GV, Botti G, Tatangelo F, Delrio P, Maio M, Laghi L, Grizzi F, Asslaber M, D’Arrigo C, Vidal-Vanaclocha F, Zavadova E, Chouchane L, Ohashi PS, Hafezi-Bakhtiari S, Wouters BG, Roehrl M, Nguyen L, Kawakami Y, Hazama S, Okuno K, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Wang Y, Kopetz S, Sinicrope FA, Scripcariu V, Ascierto PA, Marincola FM, Fox BA, Pages F (2014) Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol 232:199–209

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, Craft J, Yin Z (2003) Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med 198:433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD, Rosenberg SA, Restifo NP (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202:907–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlinger M, Quezada SA, Peggs KS, Furness AJ, Fisher R, Marafioti T, Shende VH, McGranahan N, Rowan AJ, Hazell S, Hamm D, Robins HS, Pickering L, Gore M, Nicol DL, Larkin J, Swanton C (2013) Ultra-deep T cell receptor sequencing reveals the complexity and intratumour heterogeneity of T cell clones in renal cell carcinomas. J Pathol 231:424–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnjatic S, Atanackovic D, Jager E, Matsuo M, Selvakumar A, Altorki NK, Maki RG, Dupont B, Ritter G, Chen YT, Knuth A, Old LJ (2003) Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses. Proc Natl Acad Sci U S A 100:8862–8867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goff SL, Smith FO, Klapper JA, Sherry R, Wunderlich JR, Steinberg SM, White D, Rosenberg SA, Dudley ME, Yang JC (2010) Tumor infiltrating lymphocyte therapy for metastatic melanoma: analysis of tumors resected for TIL. J Immunother 33:840–847

    Article  PubMed  PubMed Central  Google Scholar 

  • Goff SL, Dudley M, Citrin DE, Somerville R, Wunderlich JR, Danforth DN, Zlott DA, Yang JC, Sherry RM, Kammula US, Klebanoff C, Hughes MS, Restifo NP, Kwong ML, Ilyas S, Klemen N, Payabyab E, Steinberg SM, White DE, Rosenberg SA (2016) A randomized, prospective evaluation comparing intensity of lymphodepletion prior to adoptive transfer of tumor infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 34:2389

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorochov G, Lustgarten J, Waks T, Gross G, Eshhar Z (1992) Functional assembly of chimeric T-cell receptor chains. Int J Cancer Suppl 7:53–57

    CAS  PubMed  Google Scholar 

  • Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen AG, Fujimura T, Rehwinkel J, Iskarpatyoti JA, Barchet W, Ludwig J, Dermody TS, Hartmann G, Reis e Sousa C (2014) Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 514:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, Hanada K, Almeida JR, Darko S, Douek DC, Yang JC, Rosenberg SA (2014) PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest 124:2246–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross G, Eshhar Z (1992) Endowing T cells with antibody specificity using chimeric T cell receptors. FASEB J 6:3370–3378

    Article  CAS  PubMed  Google Scholar 

  • Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, Dronca R, Gangadhar TC, Patnaik A, Zarour H, Joshua AM, Gergich K, Elassaiss-Schaap J, Algazi A, Mateus C, Boasberg P, Tumeh PC, Chmielowski B, Ebbinghaus SW, Li XN, Kang SP, Ribas A (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada M, Li YF, El-Gamil M, Ohnmacht GA, Rosenberg SA, Robbins PF (2001) Melanoma-Reactive CD8+ T cells recognize a novel tumor antigen expressed in a wide variety of tumor types. J Immunother 24:323–333

    Article  CAS  PubMed  Google Scholar 

  • Harbour JW (2012) The genetics of uveal melanoma: an emerging framework for targeted therapy. Pigment Cell Melanoma Res 25:171–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrer DC, Simon B, Fujii SI, Shimizu K, Uslu U, Schuler G, Gerer KF, Hoyer S, Dorrie J, Schaft N (2017) RNA-transfection of gamma/delta T cells with a chimeric antigen receptor or an alpha/beta T-cell receptor: a safer alternative to genetically engineered alpha/beta T cells for the immunotherapy of melanoma. BMC Cancer 17:551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellstrom I (1967) A colony inhibition (CI) technique for demonstration of tumor cell destruction by lymphoid cells in vitro. Int J Cancer 2:65–68

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom KE, Hellstrom I (1966) Allogeneic inhibition in vitro. Ann Med Exp Biol Fenn 44:177–180

    CAS  PubMed  Google Scholar 

  • Hellstrom I, Hellstrom KE (1967) Cell-bound immunity to autologous and syngeneic mouse tumors induced by methylcholanthrene and plastic discs. Science 156: 981–983

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom KE, Hellstrom I (1969) Cellular immunity against tumor antigens. Adv Cancer Res 12:167–223

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom I, Hellstrom KE, Pierce GE, Yang JP (1968a) Cellular and humoral immunity to different types of human neoplasms. Nature 220:1352–1354

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom IE, Hellstrom KE, Pierce GE, Bill AH (1968b) Demonstration of cell-bound and humoral immunity against neuroblastoma cells. Proc Natl Acad Sci U S A 60:1231–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higby DJ, Mishler JM, Cohen E, Rhomberg W, Nicora RW, Holland JF (1974) Increased elevation of peripheral leukocyte counts by infusion of histocompatible granulocytes. Vox Sang 27:186–189

    Article  CAS  PubMed  Google Scholar 

  • Hindley JP, Ferreira C, Jones E, Lauder SN, Ladell K, Wynn KK, Betts GJ, Singh Y, Price DA, Godkin AJ, Dyson J, Gallimore A (2011) Analysis of the T-cell receptor repertoires of tumor-infiltrating conventional and regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors. Cancer Res 71:736–746

    Article  CAS  PubMed  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann O, Caballero OL, Stevenson BJ, Chen YT, Cohen T, Chua R, Maher CA, Panji S, Schaefer U, Kruger A, Lehvaslaiho M, Carninci P, Hayashizaki Y, Jongeneel CV, Simpson AJ, Old LJ, Hide W (2008) Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci U S A 105:20422–20427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong JJ, Rosenberg SA, Dudley ME, Yang JC, White DE, Butman JA, Sherry RM (2010) Successful treatment of melanoma brain metastases with adoptive cell therapy. Clin Cancer Res 16:4892–4898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horne ZD, Jack R, Gray ZT, Siegfried JM, Wilson DO, Yousem SA, Nason KS, Landreneau RJ, Luketich JD, Schuchert MJ (2011) Increased levels of tumor-infiltrating lymphocytes are associated with improved recurrence-free survival in stage 1A non-small-cell lung cancer. J Surg Res 171:1–5

    Article  CAS  PubMed  Google Scholar 

  • Hou W, Zhang Q, Yan Z, Chen R, Zeh HJ III, Kang R, Lotze MT, Tang D (2013) Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 4:e966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton AN, Mintzer D, Cordon-Cardo C, Welt S, Fliegel B, Vadhan S, Carswell E, Melamed MR, Oettgen HF, Old LJ (1985) Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci U S A 82:1242–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Ott PA, Wu CJ (2018) Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 18:168–182

    Article  CAS  PubMed  Google Scholar 

  • Huang J, El-Gamil M, Dudley ME, Li YF, Rosenberg SA, Robbins PF (2004) T cells associated with tumor regression recognize frameshifted products of the CDKN2A tumor suppressor gene locus and a mutated HLA class I gene product. J Immunol 172:6057–6064

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Xie Y, Sun X, Zeh HJ 3rd, Kang R, Lotze MT, Tang D (2015) DAMPs, ageing, and cancer: the ‘DAMP Hypothesis’. Ageing Res Rev 24:3–16

    Article  CAS  PubMed  Google Scholar 

  • Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I, Vale RD (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355: 1428–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwu P, Shafer GE, Treisman J, Schindler DG, Gross G, Cowherd R, Rosenberg SA, Eshhar Z (1993) Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J Exp Med 178:361–366

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim EM, Al-Foheidi ME, Al-Mansour MM, Kazkaz GA (2014) The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: a meta-analysis. Breast Cancer Res Treat 148:467–476

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Shanker M, Miyahara R, Gopalan B, Patel S, Oida Y, Branch CD, Munshi A, Meyn RE, Andreeff M, Tanaka F, Mhashilkar AM, Chada S, Ramesh R (2006) MDA-7/IL-24-based cancer gene therapy: translation from the laboratory to the clinic. Curr Gene Ther 6:73–91

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Storkus WJ, Gorelik E, Lotze MT (1994) Partial purification of murine tumor-associated peptide epitopes common to histologically distinct tumors, melanoma and sarcoma, that are presented by H-2Kb molecules and recognized by CD8+ tumor-infiltrating lymphocytes. J Immunol 153:1202–1215

    CAS  PubMed  Google Scholar 

  • Jager E, Jager D, Karbach J, Chen YT, Ritter G, Nagata Y, Gnjatic S, Stockert E, Arand M, Old LJ, Knuth A (2000) Identification of NY-ESO-1 epitopes presented by human histocompatibility antigen (HLA)-DRB4*0101-0103 and recognized by CD4(+) T lymphocytes of patients with NY-ESO-1-expressing melanoma. J Exp Med 191:625–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeway C (1989) Immunogenicity signals 1,2,3 … and 0. Immunol Today 10:283–286

    Article  CAS  PubMed  Google Scholar 

  • Janeway CA Jr, Goodnow CC, Medzhitov R (1996) Danger – pathogen on the premises! Immunological tolerance. Curr Biol 6:519–522

    Article  CAS  PubMed  Google Scholar 

  • Janowski AM, Colegio OR, Hornick EE, McNiff JM, Martin MD, Badovinac VP, Norian LA, Zhang W, Cassel SL, Sutterwala FS (2016) NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest 126:3917–3928

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, Lee CCR, Restifo NP, Schwarz SL, Cogdill AP, Bishop RJ, Kim H, Brewer CC, Rudy SF, VanWaes C, Davis JL, Mathur A, Ripley RT, Nathan DA, Laurencot CM, Rosenberg SA (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonak ZL, Trulli S, Maier C, McCabe FL, Kirkpatrick R, Johanson K, Ho YS, Elefante L, Chen YJ, Herzyk D, Lotze MT, Johnson RK (2002) High-dose recombinant interleukin-18 induces an effective Th1 immune response to murine MOPC-315 plasmacytoma. J Immunother 25(Suppl 1):S20–S27

    Article  CAS  PubMed  Google Scholar 

  • Jorritsma A, Gomez-Eerland R, Dokter M, van de Kasteele W, Zoet YM, Doxiadis II, Rufer N, Romero P, Morgan RA, Schumacher TN, Haanen JB (2007) Selecting highly affine and well-expressed TCRs for gene therapy of melanoma. Blood 110: 3564–3572

    Article  CAS  PubMed  Google Scholar 

  • Junker N, Thor Straten P, Andersen MH, Svane IM (2011) Characterization of ex vivo expanded tumor infiltrating lymphocytes from patients with malignant melanoma for clinical application. J Skin Cancer 2011:574695

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaczanowska S, Joseph AM, Davila E (2013) TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol 93:847–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kammula US, White DE, Rosenberg SA (1998) Trends in the safety of high dose bolus interleukin-2 administration in patients with metastatic cancer. Cancer 83:797–805

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Park JH, Kiyotani K, Ikeda Y, Miyoshi Y, Nakamura Y (2017) Integrated analysis of somatic mutations and immune microenvironment of multiple regions in breast cancers. Oncotarget 8:62029–62038

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaufman HL, Kirkwood JM, Hodi FS, Agarwala S, Amatruda T, Bines SD, Clark JI, Curti B, Ernstoff MS, Gajewski T, Gonzalez R, Hyde LJ, Lawson D, Lotze M, Lutzky J, Margolin K, McDermott DF, Morton D, Pavlick A, Richards JM, Sharfman W, Sondak VK, Sosman J, Steel S, Tarhini A, Thompson JA, Titze J, Urba W, White R, Atkins MB (2013) The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nat Rev Clin Oncol 10:588–598

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y, Rosenberg SA, Lotze MT (1988) Interleukin 4 promotes the growth of tumor-infiltrating lymphocytes cytotoxic for human autologous melanoma. J Exp Med 168:2183–2191

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y, Nishimura MI, Restifo NP, Topalian SL, O’Neil BH, Shilyansky J, Yannelli JR, Rosenberg SA (1993) T-cell recognition of human melanoma antigens. J Immunother Emphasis Tumor Immunol 14: 88–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA (1994) Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 180:347–352

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y, Eliyahu S, Jennings C, Sakaguchi K, Kang X, Southwood S, Robbins PF, Sette A, Appella E, Rosenberg SA (1995) Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol 154: 3961–3968

    CAS  PubMed  Google Scholar 

  • Kawakami Y, Robbins PF, Wang RF, Parkhurst M, Kang X, Rosenberg SA (1998a) The use of melanosomal proteins in the immunotherapy of melanoma. J Immunother 21:237–246

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y, Robbins PF, Wang X, Tupesis JP, Parkhurst MR, Kang X, Sakaguchi K, Appella E, Rosenberg SA (1998b) Identification of new melanoma epitopes on melanosomal proteins recognized by tumor infiltrating T lymphocytes restricted by HLA-A1, -A2, and -A3 alleles. J Immunol 161:6985–6992

    CAS  PubMed  Google Scholar 

  • Kawakami Y, Dang N, Wang X, Tupesis J, Robbins PF, Wang RF, Wunderlich JR, Yannelli JR, Rosenberg SA (2000) Recognition of shared melanoma antigens in association with major HLA-A alleles by tumor infiltrating T lymphocytes from 123 patients with melanoma. J Immunother 23:17–27

    Article  CAS  PubMed  Google Scholar 

  • Keast D (1970) Immunosurveillance and cancer. Lancet 2:710–712

    Article  CAS  PubMed  Google Scholar 

  • Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26:111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein G (1973a) Epstein-Barr virus (EBV)-induced transformation of human lymphoid cells and immunosurveillance against lymphoma development. Ann Immunol (Paris) 124:391–405

    CAS  Google Scholar 

  • Klein G (1973b) Immunological surveillance against neoplasia. Harvey Lect (69):71–102

    Google Scholar 

  • Knuth A, Wolfel T, Klehmann E, Boon T, Meyer zum Buschenfelde KH (1989) Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection. Proc Natl Acad Sci U S A 86:2804–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Yang JC, Kammula US, Devillier L, Carpenter R, Nathan DA, Morgan RA, Laurencot C, Rosenberg SA (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119:2709–2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochenderfer JN, Somerville R, Lu LL, Iwamoto A, Yang JC, Klebanoff C, Kammula U, Sherry RM, Victoria S, Yuan C, Feldman S, Feldman T, Goy A, Morton KE, Toomey MA, Rosenberg SA (2014) Anti-CD19 CAR T cells administered after low-dose chemotherapy can induce remissions of chemotherapy-refractory diffuse large B-cell lymphoma. Blood 124:550

    Google Scholar 

  • Kottschade LA, McWilliams RR, Markovic SN, Block MS, Villasboas Bisneto J, Pham AQ, Esplin BL, Dronca RS (2016) The use of pembrolizumab for the treatment of metastatic uveal melanoma. Melanoma Res 26:300

    Article  CAS  PubMed  Google Scholar 

  • Kozakova L, Vondrova L, Stejskal K, Charalabous P, Kolesar P, Lehmann AR, Uldrijan S, Sanderson CM, Zdrahal Z, Palecek JJ (2015) The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. Cell Cycle 14:920–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laggner U, Lopez JS, Perera G, Warbey VS, Sita-Lumsden A, O’Doherty MJ, Hayday A, Harries M, Nestle FO (2009) Regression of melanoma metastases following treatment with the n-bisphosphonate zoledronate and localised radiotherapy. Clin Immunol 131:367–373

    Article  CAS  PubMed  Google Scholar 

  • Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortes ML, Auclair D, Saksena G, Voet D, Noble M, Dicara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, Wu CJ, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, Mccarroll SA, Mora J, Lee RS, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CWM, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Margolin K (2012) Tumor-infiltrating lymphocytes in melanoma. Curr Oncol Rep 14:468–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AK, Potts PR (2017) A comprehensive guide to the MAGE family of ubiquitin ligases. J Mol Biol 429:1114–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, MacKall CL (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385:517–528

    Article  CAS  PubMed  Google Scholar 

  • Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, Binder-Scholl GK, Smethurst DP, Gerry AB, Pumphrey NJ, Bennett AD, Brewer JE, Dukes J, Harper J, Tayton-Martin HK, Jakobsen BK, Hassan NJ, Kalos M, June CH (2013) Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122:863–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ, Behjati S, Velds A, Hilkmann H, Atmioui DE, Visser M, Stratton MR, Haanen JB, Spits H, van der Burg SH, Schumacher TN (2015) High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med 21:81–85

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Yu JS, Zeng G, Yin D, Xie D, Black KL, Ying H (2004) AIM-2: a novel tumor antigen is expressed and presented by human glioma cells. J Immunother 27:220–226

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yang M, Kang R, Dai Y, Yu Y, Gao F, Wang H, Sun X, Li X, Li J, Wang H, Cao L, Tang D (2014) HMGB1-DNA complex-induced autophagy limits AIM2 inflammasome activation through RAGE. Biochem Biophys Res Commun 450:851–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL (2015) 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotze MT (1992) T-cell growth factors and the treatment of patients with cancer. Clin Immunol Immunopathol 62:S47–S54

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT, Rosenberg SA (1981) In vitro growth of cytotoxic human lymphocytes. III. The preparation of lectin-free T cell growth factor (TCGF) and an analysis of its activity. J Immunol 126:2215–2220

    CAS  PubMed  Google Scholar 

  • Lotze MT, Rosenberg SA (1986) Results of clinical trials with the administration of interleukin 2 and adoptive immunotherapy with activated cells in patients with cancer. Immunobiology 172:420–437

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT, Line BR, Mathisen DJ, Rosenberg SA (1980) The in vivo distribution of autologous human and murine lymphoid cells grown in T cell growth factor (TCGF): implications for the adoptive immunotherapy of tumors. J Immunol 125:1487–1493

    CAS  PubMed  Google Scholar 

  • Lotze MT, Grimm EA, Mazumder A, Strausser JL, Rosenberg SA (1981) Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res 41:4420–4425

    CAS  PubMed  Google Scholar 

  • Lotze MT, Robb RJ, Sharrow SO, Frana LW, Rosenberg SA (1984) Systemic administration of interleukin-2 in humans. J Biol Response Mod 3: 475–482

    CAS  PubMed  Google Scholar 

  • Lotze MT, Frana LW, Sharrow SO, ROBB RJ, Rosenberg SA (1985a) In vivo administration of purified human interleukin 2. I. Half-life and immunologic effects of the Jurkat cell line-derived interleukin 2. J Immunol 134:157–166

    CAS  PubMed  Google Scholar 

  • Lotze MT, Matory YL, Ettinghausen SE, Rayner AA, Sharrow SO, Seipp CA, Custer MC, Rosenberg SA (1985b) In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J Immunol 135:2865–2875

    CAS  PubMed  Google Scholar 

  • Lotze MT, Chang AE, Seipp CA, Simpson C, Vetto JT, Rosenberg SA (1986a) High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer. Responses, treatment-related morbidity, and histologic findings. JAMA 256:3117–3124

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT, Custer MC, Rosenberg SA (1986b) Intraperitoneal administration of interleukin-2 in patients with cancer. Arch Surg 121:1373–1379

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT, Matory YL, Rayner AA, Ettinghausen SE, Vetto JT, Seipp CA, Rosenberg SA (1986c) Clinical effects and toxicity of interleukin-2 in patients with cancer. Cancer 58:2764–2772

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT, Custer MC, Sharrow SO, Rubin LA, Nelson DL, Rosenberg SA (1987a) In vivo administration of purified human interleukin-2 to patients with cancer: development of interleukin-2 receptor positive cells and circulating soluble interleukin-2 receptors following interleukin-2 administration. Cancer Res 47:2188–2195

    CAS  PubMed  Google Scholar 

  • Lotze MT, Roberts K, Custer MC, Segal DA, Rosenberg SA (1987b) Specific binding and lysis of human melanoma by IL-2-activated cells coated with anti-T3 or anti-Fc receptor cross-linked to antimelanoma antibody: a possible approach to the immunotherapy of human tumors. J Surg Res 42:580–589

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT, Zeh HJ 3rd, Elder EM, Cai Q, Pippin BA, Rosenstein MM, Whiteside TL, Herberman R (1992) Use of T-cell growth factors (interleukins 2, 4, 7, 10, and 12) in the evaluation of T-cell reactivity to melanoma. J Immunother (1991) 12:212–217

    Article  CAS  Google Scholar 

  • Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundback P, Valdes-Ferrer SI, Olofsson PS, Kalb T, Roth J, Zou Y, Erlandsson-Harris H, Yang H, Ting JP, Wang H, Andersson U, Antoine DJ, Chavan SS, Hotamisligil GS, Tracey KJ (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488:670–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YC, Yao X, Li YF, El-Gamil M, Dudley ME, Yang JC, Almeida JR, Douek DC, Samuels Y, Rosenberg SA, Robbins PF (2013) Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who experienced a durable complete tumor regression. J Immunol 190:6034–6042

    Article  CAS  PubMed  Google Scholar 

  • Lu YC, Yao X, Crystal JS, Li YF, El-Gamil M, Gross C, Davis L, Dudley ME, Yang JC, Samuels Y, Rosenberg SA, Robbins PF (2014) Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res 20:3401–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukashev D, Sitkovsky M, Ohta A (2007) From “Hellstrom Paradox” to anti-adenosinergic cancer immunotherapy. Purinergic Signal 3:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccalli C, Scaramuzza S, Parmiani G (2009) TNK cells (NKG2D+ CD8+ or CD4+ T lymphocytes) in the control of human tumors. Cancer Immunol Immunother 58:801–808

    Article  CAS  PubMed  Google Scholar 

  • MacGregor GA (1973) Cancer and immunosurveillance. Lancet 1:1185

    Article  CAS  PubMed  Google Scholar 

  • Maker AV, Attia P, Rosenberg SA (2005) Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol 175:7746–7754

    Article  CAS  PubMed  Google Scholar 

  • Malathi K, Dong B, Gale M Jr, Silverman RH (2007) Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448:816–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Garcia-Prats MD, DeLeo AB, Lotze MT (1997) Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells 15: 94–103

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin CC, Wu XC, Jemal A, Martin HJ, Roche LM, Chen VW (2005) Incidence of noncutaneous melanomas in the U.S. Cancer 103:1000–1007

    Article  PubMed  Google Scholar 

  • McQuade JL, Daniel CR, Hess KR, Mak C, Wang DY, Rai RR, Park JJ, Haydu LE, Spencer C, Wongchenko M, Lane S, Lee DY, Kaper M, McKean M, Beckermann KE, Rubinstein SM, Rooney I, Musib L, Budha N, Hsu J, Nowicki TS, Avila A, Haas T, Puligandla M, Lee S, Fang S, Wargo JA, Gershenwald JE, Lee JE, Hwu P, Chapman PB, Sosman JA, Schadendorf D, Grob JJ, Flaherty KT, Walker D, Yan Y, McKenna E, Legos JJ, Carlino MS, Ribas A, Kirkwood JM, Long GV, Johnson DB, Menzies AM, Davies MA (2018) Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol 19:310–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R (2009) Damage control in host-pathogen interactions. Proc Natl Acad Sci U S A 106: 15525–15526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases – elimination, equilibrium and escape. Curr Opin Immunol 27:16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng ZL, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, Phan GQ, Hughes MS, Kammula US, Miller AD, Hessman CJ, Stewart AA, Restifo NP, Quezado MM, Alimchandani M, Rosenberg AZ, Nath A, Wang T, Bielekova B, Wuest SC, Akula N, McMahon FJ, Wilde S, Mosetter B, Schendel DJ, Laurencot CM, Rosenberg SA (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36:133–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherji B, Chakraborty NG, Yamasaki S, Okino T, Yamase H, Sporn JR, Kurtzman SK, Ergin MT, Ozols J, Meehan J et al (1995) Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc Natl Acad Sci U S A 92:8078–8082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mule JJ, Ettinghausen SE, Spiess PJ, Shu S, Rosenberg SA (1986) Antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2 in vivo: survival benefit and mechanisms of tumor escape in mice undergoing immunotherapy. Cancer Res 46:676–683

    CAS  PubMed  Google Scholar 

  • Murphy JB, Morton JJ (1915) The lymphocyte as a factor in natural and induced resistance to transplanted cancer. Proc Natl Acad Sci U S A 1:435–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naing A, Papadopoulos KP, Autio KA, Ott PA, Patel MR, Wong DJ, Falchook GS, Pant S, Whiteside M, Rasco DR, Mumm JB, Chan IH, Bendell JC, Bauer TM, Colen RR, Hong DS, Van Vlasselaer P, Tannir NM, Oft M, Infante JR (2016) Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J Clin Oncol 34:3562–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, Al-Habeeb A, Easson A, Leong W, Lipa J, McCready D, Reedijk M, Hogg D, Joshua AM, Quirt I, Messner H, Shaw P, Crump M, Sharon E, Ohashi PS (2010) Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS One 5:e13940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieda M, Terunuma H, Eiraku Y, Deng X, Nicol AJ (2015) Effective induction of melanoma-antigen-specific CD8+ T cells via Vgamma9gammadeltaT cell expansion by CD56(high+) Interferon-alpha-induced dendritic cells. Exp Dermatol 24:35–41

    Article  CAS  PubMed  Google Scholar 

  • Niederkorn JY (2012) Ocular immune privilege and ocular melanoma: parallel universes or immunological plagiarism? Front Immunol 3:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063–1074

    Article  CAS  PubMed  Google Scholar 

  • North RJ, Bursuker I (1984) Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2− suppressor T cells down-regulate the generation of Ly-1−2+ effector T cells. J Exp Med 159:1295–1311

    Article  CAS  PubMed  Google Scholar 

  • North RJ, Kirstein DP (1977) T-cell-mediated concomitant immunity to syngeneic tumors. I. Activated macrophages as the expressors of nonspecific immunity to unrelated tumors and bacterial parasites. J Exp Med 145:275–292

    Article  CAS  PubMed  Google Scholar 

  • North RJ, Kirstein DP, Tuttle RL (1976) Subversion of host defense mechanisms by murine tumors. I. A circulating factor that suppresses macrophage-mediated resistance to infection. J Exp Med 143:559–573

    Article  CAS  PubMed  Google Scholar 

  • Ohmen JD, Moy RL, Zovich D, Lieberman A, Wyzykowski RJ, Sullivan L, Modlin RL, Uyemura K (1994) Selective accumulation of T cells according to T-cell receptor V beta gene usage in skin cancer. J Invest Dermatol 103:751–757

    Article  CAS  PubMed  Google Scholar 

  • Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, Chen C, Olive O, Carter TA, Li S, Lieb DJ, Eisenhaure T, Gjini E, Stevens J, Lane WJ, Javeri I, Nellaiappan K, Salazar AM, Daley H, Seaman M, Buchbinder EI, Yoon CH, Harden M, Lennon N, Gabriel S, Rodig SJ, Barouch DH, Aster JC, Getz G, Wucherpfennig K, Neuberg D, Ritz J, Lander ES, Fritsch EF, Hacohen N, Wu CJ (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547:217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page DB, Yuan J, Redmond D, Wen YH, Durack JC, Emerson R, Solomon S, Dong Z, Wong P, Comstock C, Diab A, Sung J, Maybody M, Morris E, Brogi E, Morrow M, Sacchini V, Elemento O, Robins H, Patil S, Allison JP, Wolchok JD, Hudis C, Norton L, McArthur HL (2016) Deep sequencing of T-cell receptor DNA as a biomarker of clonally expanded TILs in breast cancer after immunotherapy. Cancer Immunol Res 4:835–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palermo B, Campanelli R, Garbelli S, Mantovani S, Lantelme E, Brazzelli V, Ardigo M, Borroni G, Martinetti M, Badulli C, Necker A, Giachino C (2001) Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol 117:326–332

    Article  CAS  PubMed  Google Scholar 

  • Papatestas AE, Kark AE (1970) Immunosurveillance and cancer. Lancet 2:1092

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, Rosenberg SA (2017) Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin Cancer Res 23:2491–2505

    Article  CAS  PubMed  Google Scholar 

  • Paschen A, Sucker A, Hill B, Moll I, Zapatka M, Nguyen XD, Sim GC, Gutmann I, Hassel J, Becker JC, Steinle A, Schadendorf D, Ugurel S (2009) Differential clinical significance of individual NKG2D ligands in melanoma: soluble ULBP2 as an indicator of poor prognosis superior to S100B. Clin Cancer Res 15:5208–5215

    Article  CAS  PubMed  Google Scholar 

  • Paschen A, Baingo J, Schadendorf D (2014) Expression of stress ligands of the immunoreceptor NKG2D in melanoma: regulation and clinical significance. Eur J Cell Biol 93:49–54

    Article  CAS  PubMed  Google Scholar 

  • Passarelli A, Mannavola F, Stucci LS, Tucci M, Silvestris F (2017) Immune system and melanoma biology: a balance between immunosurveillance and immune escape. Oncotarget 8:106132–106142

    Article  PubMed  PubMed Central  Google Scholar 

  • Patidar A, Selvaraj S, Sarode A, Chauhan P, Chattopadhyay D, Saha B (2018) DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine 104:114–123

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Thomas S, Kuhn L, Ellwanger S, Janssen W, Royster E, Marzban S, Kudchadkar R, Zager J, Gibney G, Sondak VK, Weber J, Mule JJ, Sarnaik AA (2012) Efficacy of adoptive cell transfer of tumor-infiltrating lymphocytes after lymphopenia induction for metastatic melanoma. J Immunother 35:615–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollack SM, Lu H, Gnjatic S, Somaiah N, O’Malley RB, Jones RL, Hsu FJ, Ter Meulen J (2017) First-in-human treatment with a dendritic cell-targeting lentiviral vector-expressing NY-ESO-1, LV305, induces deep, durable response in refractory metastatic synovial sarcoma patient. J Immunother 40:302–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poschke I, Faryna M, Bergmann F, Flossdorf M, Lauenstein C, Hermes J, Hinz U, Hank T, Ehrenberg R, Volkmar M, Loewer M, Glimm H, Hackert T, Sprick MR, Hofer T, Trumpp A, Halama N, Hassel JC, Strobel O, Buchler M, Sahin U, Offringa R (2016a) Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncoimmunology 5:e1240859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poschke I, Flossdorf M, Offringa R (2016b) Next-generation TCR sequencing – a tool to understand T-cell infiltration in human cancers. J Pathol 240:384–386

    Article  PubMed  Google Scholar 

  • Prehn RT (1971) Immunosurveillance, regeneration and oncogenesis. Prog Exp Tumor Res 14:1–24

    Article  CAS  PubMed  Google Scholar 

  • Prickett TD, Crystal JS, Cohen CJ, Pasetto A, Parkhurst MR, Gartner JJ, Yao X, Wang R, Gros A, Li YF, El-Gamil M, Trebska-McGowan K, Rosenberg SA, Robbins PF (2016) Durable complete response from metastatic melanoma after transfer of autologous T cells recognizing 10 mutated tumor antigens. Cancer Immunol Res 4:669–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puisieux I, Bain C, Merrouche Y, Malacher P, Kourilsky P, Even J, Favrot M (1996) Restriction of the T-cell repertoire in tumor-infiltrating lymphocytes from nine patients with renal-cell carcinoma. Relevance of the CDR3 length analysis for the identification of in situ clonal T-cell expansions. Int J Cancer 66:201–208

    Article  CAS  PubMed  Google Scholar 

  • Quan T, Qin Z, Xu Y, He T, Kang S, Voorhees JJ, Fisher GJ (2010) Ultraviolet irradiation induces CYR61/CCN1, a mediator of collagen homeostasis, through activation of transcription factor AP-1 in human skin fibroblasts. J Invest Dermatol 130:1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Radvanyi LG, Bernatchez C, Zhang M, Fox PS, Miller P, Chacon J, Wu R, Lizee G, Mahoney S, Alvarado G, Glass M, Johnson VE, McMannis JD, Shpall E, Prieto V, Papadopoulos N, Kim K, Homsi J, Bedikian A, Hwu WJ, Patel S, Ross MI, Lee JE, Gershenwald JE, Lucci A, Royal R, Cormier JN, Davies MA, Mansaray R, Fulbright OJ, Toth C, Ramachandran R, Wardell S, Gonzalez A, Hwu P (2012) Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res 18:6758–6770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raubitschek AA, Levin AS, Stites DP, Shaw EB, Fudenberg HH (1973) Normal granulocyte infusion therapy for aspergillosis in chronic granulomatous disease. Pediatrics 51:230–233

    CAS  PubMed  Google Scholar 

  • Riddell SR, Greenberg PD (1990) The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 128:189–201

    Article  CAS  PubMed  Google Scholar 

  • Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E, Rosenberg SA (1996) A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183:1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Robbins PF, Li YF, El-Gamil M, Zhao Y, Wargo JA, Zheng Z, Xu H, Morgan RA, Feldman SA, Johnson LA, Bennett AD, Dunn SM, Mahon TM, Jakobsen BK, Rosenberg SA (2008) Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol 180: 6116–6131

    Article  CAS  PubMed  Google Scholar 

  • Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924

    Article  PubMed  PubMed Central  Google Scholar 

  • Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19:747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, Yang JC, Dudley ME, Wunderlich JR, Sherry RM, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Li YF, El-Gamil M, Rosenberg SA (2015) A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res 21:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Robertson MJ, Cameron C, Atkins MB, Gordon MS, Lotze MT, Sherman ML, Ritz J (1999) Immunological effects of interleukin 12 administered by bolus intravenous injection to patients with cancer. Clin Cancer Res 5:9–16

    CAS  PubMed  Google Scholar 

  • Rosenberg SA, Terry WD (1977) Passive immunotherapy of cancer in animals and man. Adv Cancer Res 25: 323–388

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, White DE (1996) Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J Immunother Emphasis Tumor Immunol 19:81–84

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Schwarz S, Spiess PJ (1978a) In vitro growth of murine T cells. II. Growth of in vitro sensitized cells cytotoxic for alloantigens. J Immunol 121:1951–1955

    CAS  PubMed  Google Scholar 

  • Rosenberg SA, Spiess PJ, Schwarz S (1978b) In vitro growth of murine T cells. I. Production of factors necessary for T cell growth. J Immunol 121:1946–1950

    CAS  PubMed  Google Scholar 

  • Rosenberg SA, Schwarz S, Spiess PJ, Brown JM (1980a) In vitro growth of murine T cells. III. Method for separation of T cell growth factor (TCGF) from concanavalin A and biological activity of the resulting TCGF. J Immunol Methods 33:337–350

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Spiess PJ, Schwarz S (1980b) In vitro growth of murine T cells. IV. Use of T-cell growth factor to clone lymphoid cells. Cell Immunol 54: 293–306

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Spiess PJ, Schwarz S (1983) In vivo administration of Interleukin-2 enhances specific alloimmune responses. Transplantation 35:631–634

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Mule JJ, Spiess PJ, Reichert CM, Schwarz SL (1985) Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 161:1169–1188

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233: 1318–1321

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL et al (1990) Gene transfer into humans – immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323:570–578

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE (1994) Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 86:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, Morton KE, Laurencot CM, Steinberg SM, White DE, Dudley ME (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17: 4550–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothermel LD, Sabesan A, Stephens DJ, Chandran SS, Paria BC, Srivastava AK, Somerville RP, Wunderlich JR, Lee CR, Xi L, Pham T, Raffeld M, Jailwala P, Kasoji M, Kammula US (2015) Identification of an immunogenic subset of metastatic uveal melanoma. Clin Cancer Res 22:2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothschild LJ (1999) The influence of UV radiation on protistan evolution. J Eukaryot Microbiol 46:548–555

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Okita K, Fusaki N, Sabel MS, Chang AE, Ito F (2016) Reprogramming of melanoma tumor-infiltrating lymphocytes to induced pluripotent stem cells. Stem Cells Int 2016:8394960

    Article  CAS  PubMed  Google Scholar 

  • Sakellariou-Thompson D, Forget MA, Creasy C, Bernard V, Zhao L, Kim YU, Hurd MW, Uraoka N, Parra ER, Kang Y, Bristow CA, Rodriguez-Canales J, Fleming JB, Varadhachary G, Javle M, Overman MJ, Alvarez HA, Heffernan TP, Zhang J, Hwu P, Maitra A, Haymaker C, Bernatchez C (2017) 4-1BB Agonist focuses CD8(+) tumor-infiltrating T-cell growth into a distinct repertoire capable of tumor recognition in pancreatic cancer. Clin Cancer Res 23:7263–7275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber RD (2005) Cancer vaccines 2004 opening address: the molecular and cellular basis of cancer immunosurveillance and immunoediting. Cancer Immun 5(Suppl 1):1

    PubMed  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Zhang Y, Feng L, Wang L, Rong W, Wu F, Wu J, Zhang K, Cheng S (2017) Multi-omics study revealing the complexity and spatial heterogeneity of tumor-infiltrating lymphocytes in primary liver carcinoma. Oncotarget 8:34844–34857

    PubMed  PubMed Central  Google Scholar 

  • Shin JH, Park HB, Oh YM, Lim DP, Lee JE, Seo HH, Lee SJ, Eom HS, Kim IH, Lee SH, Choi K (2012) Positive conversion of negative signaling of CTLA4 potentiates antitumor efficacy of adoptive T-cell therapy in murine tumor models. Blood 119:5678–5687

    Article  CAS  PubMed  Google Scholar 

  • Shukla SA, Bachireddy P, Schilling B, Galonska C, Zhan Q, Bango C, Langer R, Lee PC, Gusenleitner D, Keskin DB, Babadi M, Mohammad A, Gnirke A, Clement K, Cartun ZJ, Van Allen EM, Miao D, Huang Y, Snyder A, Merghoub T, Wolchok JD, Garraway LA, Meissner A, Weber JS, Hacohen N, Neuberg D, Potts PR, Murphy GF, Lian CG, Schadendorf D, Hodi FS, Wu CJ (2018) Cancer-germline antigen expression discriminates clinical outcome to CTLA-4 blockade. Cell 173:624–633.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon S, Vignard V, Florenceau L, Dreno B, Khammari A, Lang F, Labarriere N (2016) PD-1 expression conditions T cell avidity within an antigen-specific repertoire. Oncoimmunology 5:e1104448

    Article  CAS  PubMed  Google Scholar 

  • Sims JS, Grinshpun B, Feng Y, Ung TH, Neira JA, Samanamud JL, Canoll P, Shen Y, Sims PA, Bruce JN (2016) Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire. Proc Natl Acad Sci U S A 113:E3529–E3537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spranger S, Gajewski TF (2015) A new paradigm for tumor immune escape: beta-catenin-driven immune exclusion. J Immunother Cancer 3:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Spranger S, Luke JJ, Bao R, Zha Y, Hernandez KM, Li Y, Gajewski AP, Andrade J, Gajewski TF (2016) Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc Natl Acad Sci U S A 113:E7759–E7768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steitz J, Tormo D, Schweichel D, Tuting T (2006) Comparison of recombinant adenovirus and synthetic peptide for DC-based melanoma vaccination. Cancer Gene Ther 13:318–325

    Article  CAS  PubMed  Google Scholar 

  • Storkus WJ, Zeh HJ 3rd, Maeurer MJ, Salter RD, Lotze MT (1993) Identification of human melanoma peptides recognized by class I restricted tumor infiltrating T lymphocytes. J Immunol 151:3719–3727

    CAS  PubMed  Google Scholar 

  • Stotter H, Lotze MT (1991) Human lymphokine-activated killer cell activity. Role of IL-2, IL-4, and IL-7. Arch Surg 126:1525–1530

    Article  CAS  PubMed  Google Scholar 

  • Svane IM, Verdegaal EM (2014) Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: what is needed to achieve standard of care? Cancer Immunol Immunother 63:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Tahara H, Lotze MT (1995) Antitumor effects of interleukin-12 (IL-12): applications for the immunotherapy and gene therapy of cancer. Gene Ther 2:96–106

    CAS  PubMed  Google Scholar 

  • Tang D, Lotze MT (2012) Tumor immunity times out: TIM-3 and HMGB1. Nat Immunol 13:808–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanyi JL, Stashwick C, Plesa G, Morgan MA, Porter D, Maus MV, June CH (2017) Possible compartmental cytokine release syndrome in a patient with recurrent ovarian cancer after treatment with mesothelin-targeted CAR-T cells. J Immunother 40:104–107

    Article  CAS  PubMed  Google Scholar 

  • Teng MW, Galon J, Fridman WH, Smyth MJ (2015) From mice to humans: developments in cancer immunoediting. J Clin Invest 125:3338–3346

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas ED, Ferrebee JW (1960) Irradiation and marrow transplantation: studies in Cooperstown. Lancet 1:1289–1290

    Article  CAS  PubMed  Google Scholar 

  • Thomas ED, Lochte HL Jr, Cannon JH, Sahler OD, Ferrebee JW (1959) Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest 38:1709–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toia F, Buccheri S, Anfosso A, Moschella F, Dieli F, Meraviglia S, Cordova A (2016) Skewed differentiation of circulating Vgamma9Vdelta2 T lymphocytes in melanoma and impact on clinical outcome. PLoS One 11:e0149570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran E, Ahmadzadeh M, Lu YC, Gros A, Turcotte S, Robbins PF, Gartner JJ, Zheng Z, Li YF, Ray S, Wunderlich JR, Somerville RP, Rosenberg SA (2015) Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350:1387–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran E, Robbins PF, Rosenberg SA (2017) ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol 18:255–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traversari C, van der Bruggen P, Luescher IF, Lurquin C, Chomez P, Van Pel A, De Plaen E, Amar-Costesec A, Boon T (1992) A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 176:1453–1457

    Article  CAS  PubMed  Google Scholar 

  • Vakkila J, Jaffe R, Michelow M, Lotze MT (2006) Pediatric cancers are infiltrated predominantly by macrophages and contain a paucity of dendritic cells: a major nosologic difference with adult tumors. Clin Cancer Res 12:2049–2054

    Article  CAS  PubMed  Google Scholar 

  • Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen MH, Goldinger SM, Utikal J, Hassel JC, Weide B, Kaehler KC, Loquai C, Mohr P, Gutzmer R, Dummer R, Gabriel S, Wu CJ, Schadendorf D, Garraway LA (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647

    Article  PubMed  Google Scholar 

  • Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM, Simpson EM, Barsh GS, Bastian BC (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457:599–602

    Article  CAS  PubMed  Google Scholar 

  • Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, Obenauf AC, Wackernagel W, Green G, Bouvier N, Sozen MM, Baimukanova G, Roy R, Heguy A, Dolgalev I, Khanin R, Busam K, Speicher MR, O’Brien J, Bastian BC (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363:2191–2199

    Article  PubMed  PubMed Central  Google Scholar 

  • Veatch JR, Lee SM, Fitzgibbon M, Chow IT, Jesernig B, Schmitt T, Kong YY, Kargl J, Houghton AM, Thompson JA, McIntosh M, Kwok WW, Riddell SR (2018) Tumor-infiltrating BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma. J Clin Invest 128:1563–1568

    Article  PubMed  PubMed Central  Google Scholar 

  • Walton MT (1974) The first blood transfusion: French of English? Med Hist 18:360–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Bartido S, Yang G, Qin J, Moroi Y, Panageas KS, Lewis JJ, Houghton AN (1999) A role for a melanosome transport signal in accessing the MHC class II presentation pathway and in eliciting CD4+ T cell responses. J Immunol 163:5820–5826

    CAS  PubMed  Google Scholar 

  • Wang J, Jia Y, Wang N, Zhang X, Tan B, Zhang G, Cheng Y (2014) The clinical significance of tumor-infiltrating neutrophils and neutrophil-to-CD8+ lymphocyte ratio in patients with resectable esophageal squamous cell carcinoma. J Transl Med 12:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Hu S, Chen X, Shi H, Chen C, Sun L, Chen ZJ (2017) cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci U S A 114:1637–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Luo Y, Da T, Guedan S, Ruella M, Scholler J, Keith B, Young RM, Engels B, Sorsa S, Siurala M, Havunen R, Tahtinen S, Hemminki A, June CH (2018) Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 3(7). https://doi.org/10.1172/jci.insight.99573

  • Webb JR, Milne K, Nelson BH (2014) Location, location, location: CD103 demarcates intraepithelial, prognostically favorable CD8+ tumor-infiltrating lymphocytes in ovarian cancer. Oncoimmunology 3:e27668

    Article  PubMed  PubMed Central  Google Scholar 

  • Weidmann E, Whiteside TL, Giorda R, Herberman RB, Trucco M (1992) The T-cell receptor V beta gene usage in tumor-infiltrating lymphocytes and blood of patients with hepatocellular carcinoma. Cancer Res 52: 5913–5920

    CAS  PubMed  Google Scholar 

  • Weidmann E, Logan TF, Yasumura S, Kirkwood JM, Trucco M, Whiteside TL (1993) Evidence for oligoclonal T-cell response in a metastasis of renal cell carcinoma responding to vaccination with autologous tumor cells and transfer of in vitro-sensitized vaccine-draining lymph node lymphocytes. Cancer Res 53:4745–4749

    CAS  PubMed  Google Scholar 

  • Weon JL, Potts PR (2015) The MAGE protein family and cancer. Curr Opin Cell Biol 37:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weon JL, Yang SW, Potts PR (2018) Cytosolic iron-sulfur assembly is evolutionarily tuned by a cancer-amplified ubiquitin ligase. Mol Cell 69:113–125.e6

    Article  CAS  PubMed  Google Scholar 

  • Wistuba-Hamprecht K, Martens A, Haehnel K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Demuth I, Steinhagen-Thiessen E, Larbi A, Schilling B, Schadendorf D, Wolchok JD, Blank CU, Pawelec G, Garbe C, Weide B (2016) Proportions of blood-borne Vdelta1+ and Vdelta2+ T-cells are associated with overall survival of melanoma patients treated with ipilimumab. Eur J Cancer 64:116–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde KH, Beach D (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284

    Article  CAS  PubMed  Google Scholar 

  • Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, Duggan R, Wang Y, Barber GN, Fitzgerald KA, Alegre ML, Gajewski TF (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood MA, Paralkar M, Paralkar MP, Nguyen A, Struck AJ, Ellrott K, Margolin A, Nellore A, Thompson RF (2018) Population-level distribution and putative immunogenicity of cancer neoepitopes. BMC Cancer 18:414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrzesinski C, Paulos CM, Kaiser A, Muranski P, Palmer DC, Gattinoni L, Yu Z, Rosenberg SA, Restifo NP (2010) Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother 33:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M, Kenyon K, Davis MM, Riddell SR, Greenberg PD (2000) Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J Exp Med 192:1637–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M Jr, Akira S, Yonehara S, Kato A, Fujita T (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858

    Article  CAS  PubMed  Google Scholar 

  • Yoshihama S, Roszik J, Downs I, Meissner TB, Vijayan S, Chapuy B, Sidiq T, Shipp MA, Lizee GA, Kobayashi KS (2016) NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc Natl Acad Sci U S A 113:5999–6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yron I, Wood TA Jr, Spiess PJ, Rosenberg SA (1980) In vitro growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J Immunol 125:238–245

    CAS  PubMed  Google Scholar 

  • Zakut R, Topalian SL, Kawakami Y, Mancini M, Eliyahu S, Rosenberg SA (1993) Differential expression of MAGE-1, -2, and -3 messenger RNA in transformed and normal human cell lines. Cancer Res 53:5–8

    CAS  PubMed  Google Scholar 

  • Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348: 203–213

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Maiti S, Bernatchez C, Huls H, Rabinovich B, Champlin RE, Vence LM, Hwu P, Radvanyi L, Cooper LJ (2012) A new approach to simultaneously quantify both TCR alpha- and beta-chain diversity after adoptive immunotherapy. Clin Cancer Res 18: 4733–4742

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Chikina M, Szymczak-Workman AL, Horne W, Kolls JK, Vignali KM, Normolle D, Bettini M, Workman CJ, Vignali DAA (2017) LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci Immunol 2

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Dudley ME, Rosenberg SA, Robbins PF (2005) Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother 28:53–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmer L, Vaubel J, Mohr P, Hauschild A, Utikal J, Simon J, Garbe C, Herbst R, Enk A, Kampgen E, Livingstone E, Bluhm L, Rompel R, Griewank KG, Fluck M, Schilling B, Schadendorf D (2015) Phase II DeCOG-study of ipilimumab in pretreated and treatment-naive patients with metastatic uveal melanoma. PLoS One 10:e0118564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitvogel L, Tahara H, Cai Q, Storkus WJ, Muller G, Wolf SF, Gately M, Robbins PD, Lotze MT (1994) Construction and characterization of retroviral vectors expressing biologically active human interleukin-12. Hum Gene Ther 5:1493–1506

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udai S. Kammula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kammula, U.S., Lotze, M.T. (2019). Cellular Therapy for Melanoma. In: Balch, C., et al. Cutaneous Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-46029-1_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46029-1_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46029-1

  • Online ISBN: 978-3-319-46029-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics