Skip to main content

Nanostructured Catalysts in Vehicle Exhaust Control Systems

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

This chapter gives the general overview of the current progress in application of nanocatalysts for catalytic conversion of toxic admixtures in vehicle exhaust control systems. Nanostructured materials offer broad facility to enhance the catalytic activity of traditional catalysts such as noble metals, base metal oxides, and perovskites. Many catalysts consist of precious metals in the shape of particles, and decrease of their size leads to reduction of metal consumption. On the other hand, the quantum size effects are able to explain the high chemical activity of the nanostructured catalysts. New types of catalysts based on carbon nanostructures make it possible to upgrade and improve possibilities of the vehicle exhaust control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bielaczyc P, Woodburn J, Szczotka A (2014) An assessment of regulated emissions and CO2 emissions from a European light-duty CNG-fueled vehicle in the context of Euro 6 emissions regulations. Appl Energy 117:134–141

    Article  Google Scholar 

  2. Graham LA, Rideout G, Rosenblatt D, Hendren J (2008) Greenhouse gas emissions from heavy-duty vehicles. Atmos Environ 42:4665–4681

    Article  Google Scholar 

  3. Yan F, Winijkul E, Jung S, Bond TC, Streets DG (2011) Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles. Atmos Environ 45:4830–4844

    Article  Google Scholar 

  4. Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287:1132–1141

    Article  Google Scholar 

  5. Speight JG (2014) The chemistry and technology of petroleum, 5th edn. CRC Press, New York

    Google Scholar 

  6. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624

    Article  Google Scholar 

  7. Johnson T (2016) Vehicular emissions in review. SAE Int J Engines 9:1258–1275

    Article  Google Scholar 

  8. Gerasimov G (2015) Nanomaterials in proton exchange fuel cells. J Eng Phys Thermophys 88:1554–1568

    Article  Google Scholar 

  9. Granger P, Parvulescu VI (2011) Catalytic NO x abatement systems for mobile sources: from Three-Way to Lean Burn after-treatment technologies. Chem Rev 111:3155–3207

    Article  Google Scholar 

  10. Guan B, Zhan R, Lin H, Huang Z (2015) Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J Environ Manag 154:225–258

    Article  Google Scholar 

  11. Fino D, Bensaid S, Piumetti P, Russo N (2016) A review on the catalytic combustion of soot in diesel particulate filters for automotive applications: from powder catalysts to structured reactors. Appl Catal A 509:75–96

    Article  Google Scholar 

  12. Russell A, Epling WS (2011) Diesel oxidation catalysts. Catal Rev 53:337–423

    Article  Google Scholar 

  13. Koltsakis GC, Kandylas I, Gulakhe V (2017) Synergetic DOC-DPF system optimization using advanced models. SAE Int J Engines 10:81–94

    Article  Google Scholar 

  14. Prasad R, Bella VR (2010) A review on diesel soot emission, its effect and control. Bull Chem React Eng Catal 5:69–87

    Article  Google Scholar 

  15. Guan B, Zhan R, Lin H, Huang Z (2014) Review of state of the art technologies of selective catalytic reduction of NO x from diesel engine exhaust. Appl Thermal Eng 66:395–414

    Article  Google Scholar 

  16. Roy S, Baiker A (2009) NO x storage-reduction catalysis: from mechanism and materials properties to storage-reduction performance. Chem Rev 109:4054–4091

    Article  Google Scholar 

  17. Liu G, Gao PX (2011) A review of NO x storage/reduction catalysts: mechanism, materials and degradation studies. Cat Sci Technol 1:552–568

    Article  Google Scholar 

  18. Pitkethly MJ (2004) Nanomaterials – the driving force. Mater Today 7(12):20–29

    Article  Google Scholar 

  19. Liu CJ, Burghaus U, Besenbacher F, Wang ZL (2010) Preparation and characterization of nanomaterials for sustainable energy production. ACS Nano 4:5517–5526

    Article  Google Scholar 

  20. Kharisov BI, Kharissova OV, Ortiz-Mendez U (eds) (2015) CRC concise encyclopedia of nanotechnology. CRC Press, New York

    Google Scholar 

  21. Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16:307–325

    Article  Google Scholar 

  22. Behafarid F, Ono LK, Mostafa S, Croy JR, Shafai G, Hong S, Rahman TS, Bare SR, Cuenya BR (2012) Electronic properties and charge transfer phenomena in Pt nanoparticles on γ-Al2O3: size, shape, support, and adsorbate effects. Phys Chem Chem Phys 14:11766–11779

    Article  Google Scholar 

  23. Li L, Larsen AH, Romero NA, Morozov VA, Glinsvad C, Abild-Pedersen F, Greeley J, Jacobsen KW, Nørskov JK (2013) Investigation of catalytic finite-size-effects of platinum metal clusters. J Phys Chem Lett 4:222–226

    Article  Google Scholar 

  24. Cuenya BR, Behafarid F (2015) Nanocatalysis: size- and shape-dependent chemisorption and catalytic reactivity. Surf Sci Rep 70:135–187

    Article  Google Scholar 

  25. Lizarraga L, Souentie S, Boreave A, George C, D’Anna B, Vernoux P (2011) Effect of diesel oxidation catalysts on the diesel particulate filter regeneration process. Environ Sci Technol 45:10591–10597

    Article  Google Scholar 

  26. Johnson T (2015) Review of vehicular emission trends. SAE Int J Engines 8:1152–1167

    Article  Google Scholar 

  27. Kim C, Schmid M, Schmieg S, Tan J, Li W (2011) The effect of Pt-Pd ratio on oxidation catalysts under simulated diesel exhaust. SAE Tech Paper 2011-01-1134

    Google Scholar 

  28. Xiong H, Peterson E, Qi G, Datye AK (2016) Trapping mobile Pt species by PdO in diesel oxidation catalysts: smaller is better. Catal Today 272:80–86

    Article  Google Scholar 

  29. Patterson MJ, Angove DE, Cant NW (2000) The effect of carbon monoxide on the oxidation of four C6 to C8 hydrocarbons over platinum, palladium and rhodium. Appl Catal B Environ 26:47–57

    Article  Google Scholar 

  30. Salomons S, Votsmeier M, Hayes R, Drochner A, Vogel H, Gieshof J (2006) CO and H2 oxidation on a platinum monolith diesel oxidation catalyst. CatalToday 117:491–497

    Google Scholar 

  31. Smeltz A, Getman R, Schneider W, Ribeiro F (2008) Coupled theoretical and experimental analysis of surface coverage effects in Pt-catalyzed NO and O2 reaction to NO2 on Pt(111). Catal Today 136:84–92

    Article  Google Scholar 

  32. Fayad MA, Herreros JM, Martos FJ, Tsolakis A (2015) Role of alternative fuels on particulate matter (PM) characteristics and influence of the diesel oxidation catalyst. Environ Sci Technol 49:11967–11973

    Article  Google Scholar 

  33. Maricq MM (2007) Chemical characterization of particulate emissions from diesel engines: a review. J Aerosol Sci 38:1079–1118

    Article  Google Scholar 

  34. Frank B, Schlögl R, Su DS (2013) Diesel soot toxification. Environ Sci Technol 47:3026–3027

    Google Scholar 

  35. Mathur S, Johnson JH, Naber J, Bagley ST, Shende AS (2008) Experimental studies of an advanced ceramic diesel particulate filter. SAE Tech Paper 2008-01-0622

    Google Scholar 

  36. Kamp C, Folino P, Wang Y, Sappok A, Ernstmeyer J, Saeid A, Singh R, Kharraja B, Wong V (2015) Ash accumulation and impact on sintered metal fiber diesel particulate filters. SAE Tech Paper 2015-01-1012

    Google Scholar 

  37. Twigg MV (2011) Catalytic control of emissions from cars. Catal Today 163:33–41

    Article  Google Scholar 

  38. Tsuneyoshi K, Yamamoto K (2013) Experimental study of hexagonal and square diesel particulate filters under controlled and uncontrolled catalyzed regeneration. Energy 60:325–333

    Article  Google Scholar 

  39. Di Sarli V, Di Benedetto A (2015) Modeling and simulation of soot combustion dynamics in a catalytic diesel particulate filter. Chem Eng Sci 137:69–78

    Article  Google Scholar 

  40. Warner JR, Dobson D, Cavataio G (2010) A study of active and passive regeneration using laboratory generated soot on a variety of SiC diesel particulate filter formulations. SAE Tech Paper 2010-01-0533

    Google Scholar 

  41. Neyertz CA, Banús ED, Miró EE, Querini CA (2014) Potassium-promoted Ce0.65Zr0.35O2 monolithic catalysts for diesel soot combustion. Chem Eng J 248:394–405

    Article  Google Scholar 

  42. Kandylas IP, Haralampous OA, Koltsakis GC (2002) Diesel soot oxidation with NO2: engine experiments and simulations. Ind Eng Chem Res 41:5372–5384

    Article  Google Scholar 

  43. Ramdas R, Nowicka E, Jenkins R, Sellick D, Davies C, Golunski S (2015) Using real particulate matter to evaluate combustion catalysts for direct regeneration of diesel soot filters. Appl Catal B Environ 176–177:436–443

    Article  Google Scholar 

  44. Chen P, Ibrahim U, Wang J (2014) Experimental investigation of diesel and biodiesel post injections during active diesel particulate filter regenerations. Fuel 130:286–295

    Article  Google Scholar 

  45. Palma V, Ciambelli P, Meloni E, Sin A (2015) Catalytic DPF microwave assisted active regeneration. Fuel 140:50–61

    Article  Google Scholar 

  46. Zhou Q, Zhong K, Fu W, Huang Q, Wang Z, Nie B (2015) Nanostructured platinum catalyst coating on diesel particulate filter with a low-cost electroless deposition approach. Chem Eng J 270:320–326

    Article  Google Scholar 

  47. Maunula T, Matilainen P, Louhelainen M, Juvonen P, Kinnunen T (2007) Catalyzed particulate filters for mobile diesel applications. SAE Tech Paper 2007-01-0041

    Google Scholar 

  48. Liu S, Wu X, Weng D, Ran R (2015) Ceria-based catalysts for soot oxidation: a review. J Rare Earths 33:567–590

    Article  Google Scholar 

  49. Bueno-López A (2014) Diesel soot combustion ceria catalysts. Appl Catal B:Environ 146:1–11

    Article  Google Scholar 

  50. Matsuzono Y, Kuroki K, Nishi T, Suzuki N, Yamada T, Hirota T, Zhang Z (2012) Development of advanced and low PGM TWC system for LEV2 PZ EV and LEV3 SULEV30. SAE Tech Paper 2012-01-1242

    Google Scholar 

  51. Djéga-Mariadassou G, Boudart M (2003) Classical kinetics of catalytic reactions. J Catal 216:89–97

    Article  Google Scholar 

  52. Zeng F, Hohn KL (2016) Modeling of three-way catalytic converter performance with exhaust mixture from natural gas-fueled engines. Appl Catal B Environ 182:570–579

    Article  Google Scholar 

  53. Li J, Chang H, Ma L, Hao J, Yang RT (2011) Low-temperature selective catalytic reduction of NO x with NH3 over metal oxide and zeolite catalyst – a review. Catal Today 175:147–156

    Article  Google Scholar 

  54. Putluru SSR, Schill L, Godiksen A, Poreddy R, Mossin S, Jensen AD, Fehrmann R (2016) Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B183:282–290

    Article  Google Scholar 

  55. Hu H, Cai S, Li H, Huang L, Shi L, Zhang D (2015) Mechanistic aspects of deNOx processing over TiO2 supported Co-Mn oxide catalysts: structure-activity relationships and in situ DRIFTs analysis. ACS Catal 5:6069–6077

    Article  Google Scholar 

  56. Parks J, Prikhodko V, Partridge B, Choi JS, Norman K, Chambon P, Thomas J, Huff S (2010) Lean gasoline engine reductant chemistry during Lean NO x Trap regeneration. SAE Tech Paper 2010-01-2267

    Google Scholar 

  57. Forzatti P, Castoldi L, Nova I, Lietti L, Tronconi E (2006) NOx removal catalysis under lean conditions. Catal Today 117:316–320

    Article  Google Scholar 

  58. Liu Z, Woo SI (2006) Recent advances in catalytic DeNO x science and technology. Catal Rev 48:43–89

    Article  Google Scholar 

  59. Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE (2004) Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal Rev 46:163–245

    Article  Google Scholar 

  60. Ottinger NA, Toops TJ, Nguyen K, Bunting BG, Howe J (2011) Effect of lean/rich high temperature aging on NO oxidation and NOx storage/release of a fully formulated lean NOx trap. Appl Catal B101:486–494

    Article  Google Scholar 

  61. Ji Y, Easterling V, Graham U, Fisk C, Crocker M, Choi JS (2011) Effect of aging on the NOx storage and regeneration characteristics of fully formulated lean NOx trap catalysts. Appl Catal B103:413–427

    Article  Google Scholar 

  62. Zhang ZS, Chen BB, Wang XK, Xu L, Au C, Shi C, Crocker M (2015) NO x storage and reduction properties of model manganese-based lean NOx trap catalysts. Appl Catal B165:232–244

    Article  Google Scholar 

  63. Jeong S, Youn S, Kim DH (2014) Effect of Mg/Al ratios on the NOx storage activity over Pt-BaO/Mg–Al mixed oxides. Catal Today 231:155–163

    Article  Google Scholar 

  64. Luo J, Gao F, Kim DH, Peden CHF (2014) Effects of potassium loading and thermal aging on K/Pt/Al2O3 high-temperature lean NO x trap catalysts. Catal Today 231:164–172

    Article  Google Scholar 

  65. Zhang Y, You R, Liu D, Liu C, Li X, Tian Y, Jiang Z, Zhang S, Huang Y, Zha Y, Meng M (2015) Carbonates-based noble metal-free lean NOx trap catalysts MO x –K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) with superior catalytic performance. Appl Surf Sci 357:2260–2276

    Article  Google Scholar 

  66. Guo Y, Ren Z, Xiao W, Liu C, Sharma H, Gao H, Mhadeshwar A, Gao PX (2013) Robust 3-D configurated metal oxide nano-array based monolithic catalysts with ultrahigh materials usage efficiency and catalytic performance tenability. Nano Energy 2:873–881

    Article  Google Scholar 

  67. Jana R, Pathak TP, Sigman MS (2011) Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev 111:1417–1492

    Article  Google Scholar 

  68. Shiju NR, Guliants VV (2009) Recent developments in catalysis using nanostructured materials. Appl Catal A: General 356:1–17

    Article  Google Scholar 

  69. Peng Z, Yang H (2009) Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4:43–164

    Article  Google Scholar 

  70. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804

    Article  Google Scholar 

  71. Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150

    Article  Google Scholar 

  72. Ramirez E, Eradès L, Philippot K, Lecante P, Chaudret B (2007) Shape control of platinum nanoparticles. Adv Funct Mater 17:2219–2228

    Article  Google Scholar 

  73. Napolskii KS, Barczuk PJ, Vassiliev SY, Veresov AG, Tsirlina GA, Kulesza PJ (2007) Templating of electrodeposited platinum group metals as a tool to control catalytic activity. Electrochim Acta 52:7910–7919

    Article  Google Scholar 

  74. Wong AP, Kyriakidou EA, Toops TJ, Regalbuto JR (2016) The catalytic behavior of precisely synthesized Pt–Pd bimetallic catalysts for use as diesel oxidation catalysts. Catal Today 267:145–156

    Article  Google Scholar 

  75. Hazlett MJ, Moses-Debusk M, Parks JE II, Allard LF, Epling WS (2017) Kinetic and mechanistic study of bimetallic Pt-Pd/Al2O3 catalysts for CO and C3H6 oxidation. Appl Catal B202:404–417

    Article  Google Scholar 

  76. Huang H, Jiang B, Gu L, Qi Z, Lu H (2015) Promoting effect of vanadium on catalytic activity of Pt/Ce–Zr–O diesel oxidation catalysts. J Environ Sci 33:135–142

    Article  Google Scholar 

  77. Andana T, Piumetti M, Bensaid S, Veyre L, Thieuleux C, Russo N, Fino D, Quadrelli EA, Pirone R (2017) Ceria-supported small Pt and Pt3Sn nanoparticles for NOx-assisted soot oxidation. Appl Catal B209:295–310

    Article  Google Scholar 

  78. Hirata H, Kishita K, Nagai Y, Dohmae K, Shinjoh H, Matsumoto S (2011) Characterization and dynamic behavior of precious metals in automotive exhaust gas purification catalysts. Catal Today 164:67–473

    Article  Google Scholar 

  79. Wu J, Zeng L, Cheng D, Chen F, Zhan X, Gong J (2016) Synthesis of Pd nanoparticles supported on CeO2 nanotubes for CO oxidation at low temperatures. Chin J Catal 37:83–90

    Article  Google Scholar 

  80. Feng YJ, Liu LL, Wang XD (2011) Hydrothermal synthesis and automotive exhaust catalytic performance of CeO2 nanotube arrays. J Mater Chem 21:15442–15448

    Article  Google Scholar 

  81. Su DS, Perathoner S, Centi G (2013) Nanocarbons for the development of advanced catalysts. Chem Rev 113:5782–5816

    Article  Google Scholar 

  82. Julkapli NM, Bagheri S (2015) Graphene supported heterogeneous catalysts: an overview. Int J Hydrog Energy 40:948–979

    Article  Google Scholar 

  83. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2016) Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord Chem Rev 312:99–148

    Article  Google Scholar 

  84. Andersen SM, Borghei M, Lund P, Elina YR, Pasanen A, Kauppinen E, Ruiz V, Kauranen P, Skou EM (2013) Durability of carbon nanofiber (CNF) and carbon nanotube (CNT) as catalyst support for proton exchange membrane fuel cells. Solid State Ionics 231:94–101

    Article  Google Scholar 

  85. Royer S, Duprez D (2011) Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 3:24–65

    Article  Google Scholar 

  86. Castoldi L, Matarrese R, Lietti L, Forzatti P (2009) Intrinsic reactivity of alkaline and alkaline-earth metal oxide catalysts for oxidation of soot. Appl Catal B 90:278–285

    Article  Google Scholar 

  87. Andreoli S, Deorsola FA, Galletti C, Pirone R (2015) Nanostructured MnOx catalysts for low-temperature NO x SCR. Chem Eng J 278:174–182

    Article  Google Scholar 

  88. Cao C, Xing L, Yang Y, Tian Y, Ding T, Zhang J, Hu T, Zheng L, Li X (2017) The monolithic transition metal oxide crossed nanosheets used for diesel soot combustion under gravitational contact mode. Appl Surf Sci 406:245–253

    Article  Google Scholar 

  89. Cheng Y, Liu Y, Zhao Z, Song W, Wei Y (2017) Highly efficient and simultaneously catalytic removal of PM and NO x from diesel engines with 3DOM Ce0.8M0.1Zr0.1O2 (M = Mn, Co, Ni) catalysts. Chem Eng Sci 167:219–228

    Article  Google Scholar 

  90. Piumetti M, Bensaid S, Russo N, Fino D (2015) Nanostructured ceria-based catalysts for soot combustion: investigations on the surface sensitivity. Appl Catal B Environ 165:742–751

    Article  Google Scholar 

  91. Piumetti M, Bensaid S, Fino D, Russo N (2016) Nanostructured ceria-zirconia catalysts for CO oxidation: study on surface properties and reactivity. Appl Catal B Environ 197:35–46

    Article  Google Scholar 

  92. Venkataswamy P, Jampaiah D, Rao KN, Reddy BM (2014) Nanostructured Ce0.7Mn0.3O2−δ and Ce0.7Fe0.3O2−δ solid solutions for diesel soot oxidation. Appl Catal A: General 488:1–10

    Article  Google Scholar 

  93. Tang K, Liu W, Li J, Guo J, Zhang J, Wang S, Niu S, Yang Y (2015) The effect of exposed facets of ceria to the nickel species in nickel-ceria catalysts and their performance in a NO + CO reaction. ACS Appl Mater Interfaces 7:26839–26849

    Article  Google Scholar 

  94. Weng D, Li J, Wu X, Si Z (2011) Modification of CeO2-ZrO2 catalyst by potassium for NOx-assisted soot oxidation. J Environ Sci 23:145–150

    Article  Google Scholar 

  95. Ozawa M, Takahashi-Morita M, Kobayashi K, Haneda M (2017) Core-shell type ceria zirconia support for platinum and rhodium three way catalysts. Catal Today 281:482–489

    Article  Google Scholar 

  96. Yamazaki K, Kayama T, Dong F, Shinjoh H (2011) A mechanistic study on soot oxidation over CeO2–Ag catalyst with ‘rice-ball’ morphology. J Catal 282:289–298

    Article  Google Scholar 

  97. Cheng K, Liu J, Zhang T, Li J, Zhao Z, Wei Y, Jiang G, Duan A (2014) Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5–WO3/CeO2–TiO2 catalyst. J Environ Sci 26:2106–2113

    Article  Google Scholar 

  98. Song L, Chao J, Fang Y, He H, Li J, Qiu W, Zhang G (2016) Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction. Chem Eng J 303:275–281

    Article  Google Scholar 

  99. Wang HF, Kavanagh R, Guo YL, Guo Y, Lu G, Hu P (2012) Origin of extraordinarily high catalytic activity of Co3O4 and its morphological chemistry for CO oxidation at low temperature. J Catal 296:110–119

    Article  Google Scholar 

  100. Christensen JM, Grunwaldt JD, Jensen AD (2016) Importance of the oxygen bond strength for catalytic activity in soot oxidation. Appl Catal B188:235–244

    Article  Google Scholar 

  101. Xu J, Lu G, Guo Y, Guo Y, Gong XQ (2017) A highly effective catalyst of Co-CeO2 for the oxidation of diesel soot: the excellent NO oxidation activity and NOx storage capacity. Appl Catal A535:1–8

    Google Scholar 

  102. Cauda E, Mescia D, Fino D, Saracco G, Specchia V (2005) Diesel particulate filtration and combustion in a wall-flow trap hosting a LiCrO2 catalyst. Ind Eng Chem Res 44:9549–9555

    Article  Google Scholar 

  103. Fino D, Russo N, Cauda E, Saracco G, Specchia V (2006) La–Li–Cr perovskite catalysts for diesel particulate combustion. Catal Today 114:31–39

    Article  Google Scholar 

  104. Lee DW, Sung JY, Park JH, Hong YK, Lee SH, Oh SH, Lee KY (2010) The enhancement of low-temperature combustion of diesel PM through concerted application of FBC and perovskite. Catal Today 157:432–435

    Article  Google Scholar 

  105. Alifanti M, Bueno G, Parvulescu V, Parvulescu VI, Corberán VC (2009) Oxidation of ethane on high specific surface SmCoO3 and PrCoO3 perovskites. Catal Today 143:309–314

    Article  Google Scholar 

  106. Schön A, Dujardin C, Dacquin JP, Granger P (2015) Enhancing catalytic activity of perovskite-based catalysts in three-way catalysis by surface composition optimization. Catal Today 258:543–548

    Article  Google Scholar 

  107. Glisenti A, Pacella M, Guiotto M, Natile MM, Canu P (2016) Largely Cu-doped LaCo1−xCuxO3 perovskites for TWC: toward new PGM-free catalysts. Appl Catal B180:94–105

    Article  Google Scholar 

  108. López-Suárez FE, Illan-Gómez MJ, Bueno-López A, Anderson JA (2011) NO x storage and reduction on a SrTiCuO3 perovskite catalyst studied by operando DRIFTS. Appl Catal B104:261–267

    Article  Google Scholar 

  109. Royer S, Duprez D, Can F, Courtois X, Batiot-Dupeyrat C, Laassiri S, Alamdari H (2014) Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem Rev 114:10292–10368

    Article  Google Scholar 

  110. Wang L, Fang S, Feng N, Wan H, Guan G (2016) Efficient catalytic removal of diesel soot over Mg substituted K/La0.8Ce0.2CoO3 perovskites with large surface areas. Chem Eng J 293:68–74

    Article  Google Scholar 

  111. Fan Q, Zhang S, Sun L, Dong X, Zhang L, Shan W, Zhu Z (2016) Catalytic oxidation of diesel soot particulates over Ag/LaCoO3 perovskite oxides in air and NO x . Chin J Catal 37:428–435

    Article  Google Scholar 

  112. Lee C, Jeon Y, Hata S, Park JI, Akiyoshi R, Saito H, Teraoka Y, Shul YG, Einaga H (2016) Three-dimensional arrangements of perovskite-type oxide nano-fiber webs for effective soot oxidation. Appl Catal B191:157–164

    Article  Google Scholar 

  113. Sultana A, Sasaki M, Suzuki K, Hamada H (2013) Tuning the NOx conversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR. Catal Commun 41:21–25

    Article  Google Scholar 

  114. Pereira MVL, Nicolle A, Berthout D (2015) Hydrothermal aging effects on Cu-zeolite NH3-SCR catalyst. Catal Today 258:424–431

    Article  Google Scholar 

  115. Zhang R, Liu N, Lei Z, Chen B (2016) Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts. Chem Rev 116:3658–3721

    Article  Google Scholar 

  116. Lónyi F, Solt HE, Pászti Z, Valyon J (2014) Mechanism of NO-SCR by methane over Co, H-ZSM-5 and Co, H-Mordenite catalysts. Appl Catal B150-151:218–229

    Article  Google Scholar 

  117. Feng X, Cao Y, Lan L, Lin C, Li Y, Xu H, Gong M, Chen Y (2016) The promotional effect of Ce on CuFe/beta monolith catalyst for selective catalytic reduction of NOx by ammonia. Chem Eng J 302:697–706

    Article  Google Scholar 

  118. Dai L (ed) (2006) Carbon nanotechnology. Elsevier, Amsterdam

    Google Scholar 

  119. Heimann RB, Evsvukov SE, Koga Y (1997) Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon 35:1654–1658

    Article  Google Scholar 

  120. Wang B, Huang M, Tao L, Lee SH, Jang AR, Li BW, Shin HS, Akinwande D, Ruoff RS (2016) Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 10:1404–1410

    Article  Google Scholar 

  121. Gerasimov G (2017) Graphene-based gas sensors. In: Hussain CM (ed) Advanced environmental analysis: application of nanomaterials, vol 2. Royal Society of Chemistry, London, pp 133–152

    Chapter  Google Scholar 

  122. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Carbocatalysis by graphene-based materials. Chem Rev 114:6179–6212

    Article  Google Scholar 

  123. Ying LS, Salleh MAM, Yusoff HM, Rashid SBA, Razak JA (2011) Continuous production of carbon nanotubes – a review. J Ind Eng Chem 17:367–376

    Article  Google Scholar 

  124. Vairavapandian D, Vichchulada P, Lay MD (2008) Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Analyt Chim Acta 626:119–129

    Article  Google Scholar 

  125. Serp P, Corrias M, Kalck K (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A253:337–358

    Article  Google Scholar 

  126. Wang N, Pandit S, Ye L, Edwards M, Mokkapati VRSS, Murugesan M, Kuzmenko V, Zhao C, Westerlund F, Mijakovic I, Liu J (2017) Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures. Carbon 111:402–410

    Article  Google Scholar 

  127. Serp P, Figueiredo JL (eds) (2009) Carbon materials for catalysis. Wiley, Hoboken

    Google Scholar 

  128. Wood KN, O’Hayre R, Pylypenko S (2014) Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ Sci 7:1212–1249

    Article  Google Scholar 

  129. He L, Weniger F, Neumann H, Beller M (2016) Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew Chem Int Ed 55:12582–12594

    Article  Google Scholar 

  130. Ning X, Li Y, Dong B, Wang H, Yu H, Peng F, Yang Y (2017) Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: effects of synthesis method on metal-support interaction. J Catal 348:100–109

    Article  Google Scholar 

  131. Fu T, Liu R, Lv J, Li Z (2014) Influence of acid treatment on N-doped multi-walled carbon nanotube supports for Fischer-Tropsch performance on cobalt catalyst. Fuel Process Technol 122:49–57

    Article  Google Scholar 

  132. Schulte HJ, Graf B, Xia W, Muhler M (2012) Nitrogen- and oxygen-functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer-Tropsch synthesis. ChemCatChem 4:350–355

    Article  Google Scholar 

  133. Albero J, Garcia H (2015) Doped graphenes in catalysis. J Molec Catal A408:296–309

    Article  Google Scholar 

  134. Li F, Jiang X, Zhao J, Zhang S (2015) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488–515

    Article  Google Scholar 

  135. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  136. Fampiou I, Ramasubramaniam A (2015) Influence of support effects on CO oxidation inetics on CO-saturated graphene-supported Pt13 nanoclusters. J Phys Chem C119:8703–8710

    Google Scholar 

  137. Shi H, Auerbach SM, Ramasubramaniam A (2016) First-principles predictions of structure–function relationships of graphene-supported platinum nanoclusters. J Phys Chem C120:11899–11909

    Google Scholar 

  138. Yang M, Zhou M, Zhang A, Zhang C (2012) Graphene oxide: an ideal support for gold nanocatalysts. J Phys Chem C116:22336–22340

    Google Scholar 

  139. Li Y, Yu Y, Wang JG, Song J, Li Q, Dong M, Liu CJ (2012) CO oxidation over graphene supported palladium catalyst. Appl Catal B125:189–196

    Article  Google Scholar 

  140. Moussa S, Abdelsayed V, El-Shall MS (2011) Laser synthesis of Pt, Pd, CoO and Pd–CoO nanoparticle catalysts supported on graphene. Chem Phys Lett 510:179–184

    Article  Google Scholar 

  141. Wu T, Ma J, Wang X, Liu Y, Xu H, Gao J, Wang W, Liu Y, Yan Y (2013) Graphene oxide supported Au–Ag alloy nanoparticles with different shapes and their high catalytic activities. Nanotechnology 24:125301

    Article  Google Scholar 

  142. Jia TT, Lu CH, Zhang YF, W-k C (2014) A comparative study of CO catalytic oxidation on Pd-anchored graphene oxide and Pd-embedded vacancy grapheme. J Nanopart Res 16:2206

    Article  Google Scholar 

  143. Jiang QG, Ao ZM, Li S, Wen Z (2014) Density functional theory calculations on the CO catalytic oxidation on Al-embedded grapheme. RSC Adv 4:20290–20296

    Article  Google Scholar 

  144. Esrafili MD, Nematollahi P, Abdollahpour H (2016) A comparative DFT study on the CO oxidation reaction over Al- and Ge-embedded graphene as efficient metal-free catalysts. Appl Surf Sci 378:418–425

    Article  Google Scholar 

  145. Song EH, Wen Z, Jiang Q (2011) CO catalytic oxidation on copper-embedded graphene. J Phys Chem C115:3678–3683

    Google Scholar 

  146. Li Y, Zhou Z, Yu G, Chen W, Chen Z (2010) CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J Phys Chem C114:6250–6254

    Google Scholar 

  147. Tang Y, Chen W, Shen Z, Chang S, Zhao M, Dai X (2017) Nitrogen coordinated silicon-doped graphene as a potential alternative metal-free catalyst for CO oxidation. Carbon 111:448–458

    Article  Google Scholar 

  148. Tang Y, Yang Z, Dai X, Ma D, Fu Z (2013) Formation, stabilities, and electronic and catalytic performance of platinum catalyst supported on non-metal-doped graphene. J Phys Chem C 117:5258–5268

    Article  Google Scholar 

  149. Zhang XL, Lu ZS, Tang YN, Fu ZM, Ma DW, Yang ZG (2014) A density function theory study on the NO reduction on nitrogen doped grapheme. Phys Chem Chem Phys 16:20561–20569

    Article  Google Scholar 

  150. Wang Y, Shen Y, Zhu S (2017) N-doped graphene as a potential catalyst for the direct catalytic decomposition of NO. Catal Commun 94:29–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Gerasimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Gerasimov, G., Pogosbekian, M. (2017). Nanostructured Catalysts in Vehicle Exhaust Control Systems. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_120-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_120-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics