Skip to main content

Biobased Polyamide Ecomaterials and Their Susceptibility to Biodegradation

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Widely used petrochemical polymers have negative impact on the environment, so the use of biobased material should become widespread due to growing interest in sustainability and environmental issues. The use of renewable raw materials substantially improves the carbon footprint and has a positive impact on the life-cycle assessment of plastic products; thus, the development of polyamides from renewable resources – one of the largest industrial scale engineering plastics of great significance – is very important. This review focuses on recent research and development of biobased polyamides. Environmental impact of polyamides is described in view of the potential applications in various fields. Biodegradation of polyamides and some factors affecting their biodegradability are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nguyen XH, Honda T, Wang Y, Yamamoto R (2010) Eco-materials. Module-H, University of Tokyo, pp 123–134. Retrieved from http://www.peekyou.com/x-h_nguyen

  2. Rydz J, Sikorska W, Kyulavska M, Christova D (2015) Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16(1):564–596. https://doi.org/10.3390/ijms16010564

    Article  Google Scholar 

  3. Greener INDUSTRY. Nylon. http://www.greener-industry.org.uk/index.htm. Accessed 27 Jun 2017

  4. Page IB (2000) Polyamides as engineering thermoplastic materials. Rapra Review Reports 11(1):Report 121

    Google Scholar 

  5. McMurry JE (2016) Fundamentals of organic chemistry, 6th edn. Cram101 Textbook Reviews

    Google Scholar 

  6. Polyamides. Chapter I, p 247–281. http://wpage.unina.it/avitabil/testi/Nylon.pdf. Accessed 26 Jun 2017

  7. Wypych G (2016) Handbook of Polymers, 2nd edn. Toronto 2016, Toronto

    Google Scholar 

  8. Ellis B, Smith R (eds) (2008) Polymers: a property database, 2nd edn. Boca Raton, CRC Press

    Google Scholar 

  9. Global Chemical Network. http://www.chemnet.com/. Accessed 27 Jun 2017

  10. Look for chemicals. http://www.lookchem.com/. Accessed 27 Jun 2017

  11. PubChem Compound. https://www.ncbi.nlm.nih.gov/pccompound. Accessed 27 Jun 2017

  12. Guidechem. http://www.guidechem.com/. Accessed 27 Jul 2017

  13. Ichemistry. http://search.ichemistry.cn/. Accessed 27 Jul 2017

  14. (1994) Polyamide (nylon) plastics: properties, performance, and military applications, Military handbook, MIL-HDBK-797(AR), Department of Defense, USA. http://www.everyspec.com. Accessed 27 Jun 2017

  15. polymerdatabase.com (2015) Polyamides. In: Polymer properties database. http://polymerdatabase.com/polymer%20classes/Polyamide%20type.html. Accessed 26 Jun 2017

  16. Maitz MF (2015) Applications of synthetic polymers in clinical medicine. Biosurf Biotribol 1(3):161–176. https://doi.org/10.1016/j.bsbt.2015.08.002

    Article  Google Scholar 

  17. Winnacker M, Rieger B (2016) Biobased polyamides: recent advances in basic and applied research. Macromol Rapid Commun 37:1391–1413. https://doi.org/10.1002/marc.201600181

    Article  Google Scholar 

  18. Marketsandmarkets CH 1385 (2017) Polyamide market by application (engineering plastics, fiber), type (PA 6, PA 66, bio-based & specialty polyamides), and region (Asia-Pacific, North America, Europe, Middle East & Africa, South America) – global forecast to 2021. http://www.marketsandmarkets.com/Market-Reports/global-nylon-market-930.html. Accessed 20 Jul 2017

  19. Rohan. Polyamide Market worth 30.76 Billion USD by 2021. http://www.marketsandmarkets.com/PressReleases/global-nylon.asp. Accessed 20 Jul 2017

  20. Endres HJ, Siebert-Raths A (2011) Engineering biopolymers markets, manufacturing, properties and applications. Carl Hanser Verlag, Munich, p 95

    Book  Google Scholar 

  21. Liu Z, Zhou P, Yan D (2004) Preparation and properties of nylon-1010/montmorillonite nanocomposites by melt intercalation. J Appl Polym Sci 91:1834–1841. https://doi.org/10.1002/app.13336

    Article  Google Scholar 

  22. Zeng H, Gao C, Wang Y, Watts PCP, Kong H, Cui X, Yan D (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47:113–122. https://doi.org/10.1016/j.polymer.2005.11.009

    Article  Google Scholar 

  23. Liu T, Lim KP, Tjiu WC, Pramoda KP, Chen ZK (2003) Preparation and characterization of nylon 11/organoclay nanocomposites. Polymer 44:3529–3535. https://doi.org/10.1016/S0032-3861(03)00252-0

    Article  Google Scholar 

  24. Rajesh JJ, Bijwe J (2004) Influence of fillers on the low amplitude oscillating wear behaviour of polyamide 11. Wear 256(1–2):1–8. https://doi.org/10.1016/S0043-1648(03)00200-X

    Article  Google Scholar 

  25. Mark HF (2005) Encyclopedia of polymer science and technology, 3rd edn, vol. 3. John Wiley & Sons, Weinheim, p 559

    Google Scholar 

  26. Rydz J, Musioł M, Zawidlak-Węgrzyńska B, Sikorska W (2017) Present and future of (bio)degradable polymers for food packaging applications. In: Grumezescu AM, Holban AM (eds) Handbook of food bioengineering, vol. 20. Elsevier, in print

    Google Scholar 

  27. nova-Institut GmbH (2017) TOP Bio-based polymers worldwide: Ongoing growth despite difficult market environment. http://news.bio-based.eu/bio-based-polymers-worldwide-ongoing-growth-despite-difficult-market-environment/. Accessed 27 Jun 2017

  28. nova-Institut GmbH (2015) Bio-based Building Blocks and Polymers in the World, nova-Institut GmbH, Version 2015–05

    Google Scholar 

  29. Cathay Industrial Biotech Ltd. http://www.cathaybiotech.com/en/. Accessed 23 Jul 2017

  30. Jiang Y, Loos K (2016) Enzymatic synthesys of biobased polyesters and polyamides. Polymers 8:243. https://doi.org/10.3390/polym8070243

    Article  Google Scholar 

  31. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558. https://doi.org/10.1039/c1cs15147a

    Article  Google Scholar 

  32. Salimon J, Salih N, Yousif E (2012) Industrial development and applications of plant oils and their biobased oleochemicals. Arab J Chem 5(2):135–145. https://doi.org/10.1016/j.arabjc.2010.08.007

    Article  Google Scholar 

  33. De Espinosa LM, Meier MAR (2010) Plant oils: the perfect renewable resource for polymer science?! Euro Polym J 47:837–852. https://doi.org/10.1016/j.eurpolymj.2010.11.020

    Article  Google Scholar 

  34. Baumann F-E, Haeger H (2007) Polyamides from renewable feedstock – New materials versus established products, L14. Fats and oils as renewable feedstock for the chemical industry. Program Abstracts list of participants 2–3 Sep Emden, Germany

    Google Scholar 

  35. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091. https://doi.org/10.1016/j.biortech.2005.03.028

    Article  Google Scholar 

  36. Florjańczyk Z, Dębowski M, Chwojnowska E, Łokaj K, Ostrowska J (2009) Synthetic and natural polymers in modern polymeric materials. Part I. Polymers from renewable resources and polymer nanocomposites. Polimery 54:609–694

    Google Scholar 

  37. Kuciel S, Kuźniar P, Liber-Kneć A (2012) Polyamides from renewable sources as matrices of short fiber reinforced biocomposites. Polimery 57(9):627–634

    Article  Google Scholar 

  38. Biron M (ed) (2017) Industrial applications of renewable plastics: environmental, technological, and economic advances. Plastics Design Library, William Andrew, Elsevier, Oxford/Amsterdam

    Google Scholar 

  39. Thielen M (2010) Basic of bio-polyamies. Bioplastics. MAGAZINE 3:50–53

    Google Scholar 

  40. Ensinger 10/12 E9911075A011GB (2012) Engineering plastics – The Manual. https://www.ensinger-inc.com/downloads/lit_brochures/Ensinger-Manual.pdf. Accessed 20 Jul 2017

  41. Bio-based News (2014) BASF presents Ultramid® for flexible packaging films derived from renewable raw materials. http://news.bio-based.eu/basf-presents-ultramid-flexible-packaging-films-derived-renewable-raw-materials/. Accessed 23 Jul 2017

  42. Ahmadi S, Morshedian J, Hashemi SA (2010) Effects of molecular weight on the dynamic mechanical and rheological properties of anionically polymerized polyamide 6 containing nanofiber. J Vinyl Addit Technol 16:152–160. https://doi.org/10.1002/vnl.20223

    Google Scholar 

  43. Reimschuessel HK (1977) Nylon 6. Chemistry and mechanisms. J Polym Sci Macromol Rev 12:65–139. https://doi.org/10.1002/pol.1977.230120102

    Article  Google Scholar 

  44. Laredo E, Hernandez MC (1997) Moisture effect on the low- and high-temperature dielectric relaxations in nylon-6. J Polym Sci B Polym Phys 35:2879–2888. https://doi.org/10.1002/(SICI)1099-0488(199712)35:17<2879::AID-POLB11>3.0.CO;2-4

    Article  Google Scholar 

  45. Jiang Y, Loos K (2016) Polymers 8(7)243: 53 pages. doi: https://doi.org/10.3390/polym8070243

  46. Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ (2011) Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew Chem Int Ed Engl 50(31):7083–7087. https://doi.org/10.1002/anie.201102156

    Article  Google Scholar 

  47. Saskiawan I (2008) Biosynthesis of polyamide 4, a biobased and biodegradable polymer. Microbiol Indonesia 2:119–123

    Article  Google Scholar 

  48. Han J (2017) Biorenewable strategy for catalytic ε-caprolactam production using cellulose- and hemicellulose-derived γ-valerolactone. ACS Sustain Chem Eng 5(2):1892–1898. https://doi.org/10.1021/acssuschemeng.6b02616

    Article  Google Scholar 

  49. International Organization for Standardization. ISO 1110:1995. Plastics - Polyamides - Accelerated conditioning of test specimens. Technical Committee: ISO/TC 61/SC 9 Thermoplastic materials

    Google Scholar 

  50. Becker GW, Braun D, Bottenbruch L, Binsack R (1998) Polyamide. In: Kunststoff Handbuch, vol 3/4. Hanser Verlag, München-Wien

    Google Scholar 

  51. Kellie G (ed) (2016) Advances in technical nonwovens, Woodhead publishing series in textiles: number, vol 181. Woodhead Publishing, Elsevier, Oxford/Amsterdam

    Google Scholar 

  52. Carlson E, Nelson K (2003) Nylon under the hood: a history of innovation. DuPont™

    Google Scholar 

  53. Dros AB, Larue O, Reimond A, De Campoa F, Pera-Titus M (2015) Hexamethylenediamine (HMDA) from fossil- vs. bio-based routes: an economic and life cycle assessment comparative study. Green Chem 17:4760–4772. https://doi.org/10.1039/C5GC01549A

    Article  Google Scholar 

  54. Rennovia produces RENNLONTM nylon, a 100% bio-based nylon 66 polymer. https://www.rennovia.com/wp-content/uploads/2014/12/Rennovia-produces-RENNLON-28TM-29-nylon-a-100-bio-based-nylon-6-polymer-Press-Release-10.1.2013.pdf. Accessed 23 Jul 2017

  55. Arkema S.A. Arkema new high performance long chain polyamide-PA XY (Rilsan T & Hiprolon®) http://www.arkema.co.jp/export/sites/japan/.content/medias/downloads/2016-plastic-japan-rilsan-t-and-hiprolon-en.pdf. Accessed 24 Jul 2017

  56. Arkema S.A. Rilsan® Polyamide 11 resin. http://www.arkema.com/en/products/product-finder/product-viewer/Rilsan-Polyamide-11-Resin/. Accessed 24 Jul 2017

  57. Ltd P (2015) Nylon:11. http://plastimnew.websitedesigntest.co.uk/content/uploads/library/technical_datasheets/Nylon-11-Technical-Data-Sheet.pdf. Accessed 24 Jul 2017

  58. Plastim. Nylon 11. http://plastim.co.uk/nylon-11. Accessed 25 Jul 2017

  59. Agiplast. The global leader in compounding high performance polymers. http://www.agiplast-compounding.com/. Accessed 25 Jul 2017

  60. Martino L, Basilissi L, Farina H, Ortenzi M-A, Zini E, Silvestro G-D, Scandola M (2014) Bio-based polyamide 11: synthesis, rheology and solid-state properties of star structures. Eur Polym J 59:69–77

    Article  Google Scholar 

  61. biowerkstoff-kongress. High performance polyamide 12 based on a 100% renewable resource. http://www.biowerkstoff-kongress.de/media/files/Award/15EvonikIndustriesAG-AdditionaldocumentEN.pdf. Accessed 13 Jul 2017

  62. McKeen LW (2010) Polyamides (nylons), chapter 8. In: Fatigue and tribological properties of plastics and elastomers, 2nd edn. William Andrew, Elsevier, Oxford/Amsterdam, pp 175–228

    Chapter  Google Scholar 

  63. Evonik. VESTAMID® L—polyamide 12. http://www.vestamid.com/product/vestamid/en/products-services/vestamid-l/pages/default.aspx. Accessed 26 Jul 2017

  64. RTP Co. NYLON 12 (PA) — POLYAMIDE 12. https://www.rtpcompany.com/products/product-guide/nylon-12-pa-polyamide-12/. Accessed 26 Jul 2017

  65. PP Performance Plastics. Nylon 12 (PA12). http://www.performance-plastics.co.uk/product/classification/nylon-12-pa12/. Accessed 26 Jul 2017

  66. Sculpteo. 3D printing material: Grey Plastic. https://www.sculpteo.com/en/materials/grey-plastic-material/. Accessed 26 Jul 2017

  67. Cai Z, Liu X, Zhou Q, Wang Y, Zhu C, Xiao X, Fang D, Bao H (2017) The structure evolution of polyamide 1212 after stretched at different temperatures and its correlation with mechanical properties. Polymer 117:249–258. https://doi.org/10.1016/j.polymer.2017.04.037

    Article  Google Scholar 

  68. Ren M, Song J, Zhao Q, Li Y, Chen Q, Zhang H, Mo Z (2004) Primary and secondary crystallization kinetic analysis of nylon 1212. Polym Int 53:1658–1665. https://doi.org/10.1002/pi.1490

    Article  Google Scholar 

  69. Cai Z, Bao H, Zhu C, Zhu S, Huang F, Shi J, Hu J, Zhou Q (2016) Structure evolution of polyamide 1212 during the uniaxial stretching process: in situ synchrotron wide-angle X-ray diffraction and small-angle X-ray scattering analysis. Ind Eng Chem Res 55(28):7621–7627. https://doi.org/10.1021/acs.iecr.6b00643

    Article  Google Scholar 

  70. Griehl W, Ruestem D (1970) Nylon-12-preparation, properties, and applications. Ind Eng Chem 62(3):16–22. https://doi.org/10.1021/ie50723a005

    Article  Google Scholar 

  71. Glasscock D, Atolino W, Kozielski G, Martens M (2006) High performance polyamides fulfill demanding requirements for automotive thermal management components. DuPont Engineering Polymers, Wilmington, 9 pages

    Google Scholar 

  72. DSM (2016) DSM supplies Stanyl PA 46 for low-friction timing system parts on the latest generation petrol engines. https://www.dsm.com/products/stanyl/en_US/press-releases/2016/01/2016-01-11-dsm-supplies-stanyl-pa-46-for-low-friction-timing-system-parts-on-the-latest-generation-petrol-engines.html. Accessed 19 Jul 2017

  73. Matbase: the free and independent online materials properties resource. https://www.matbase.com/. Accessed 20 Jul 2017

  74. Zhang Z, Huang K, Liu Z (2011) Synthesis of high molecular weight nylon 46 in supercritical carbon dioxide. Macromolecules 44:820–825. https://doi.org/10.1021/ma102696y

    Article  Google Scholar 

  75. Tsuge Y, Kawaguchi H, Sasaki K, Kondo A (2016) Engineering cell factories for producing building block chemicals for bio-polymer synthesis. Microb Cell Factories 15(19):12 pages. https://doi.org/10.1186/s12934-016-0411-0

  76. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558. https://doi.org/10.1039/c1cs15147a

    Article  Google Scholar 

  77. Bruder U (2015) In: Smith M (ed) User’s guide to plastic. Hanser Publishers, Munich

    Chapter  Google Scholar 

  78. Materials/DSM (2009) Biobased engineering plastic. bioplastics MAGAZINE 05:26

    Google Scholar 

  79. Leszczyńska A, Kiciliński P, Pielichowsk K (2015) Biocomposites of polyamide 4.10 and surface modified microfibrillated cellulose (MFC): influence of processing parameters on structure and thermomechanical properties. Cellulose 22(4):2551–2569. https://doi.org/10.1007/s10570-015-0657-4

    Article  Google Scholar 

  80. Pagacz J, Raftopoulos KN, Leszczyńska A, Pielichowski K (2016) Bio-polyamides based on renewable raw materials glass transition and crystallinity studies. J Therm Anal Calorim 123:1225–1237. https://doi.org/10.1007/s10973-015-4929-x

    Article  Google Scholar 

  81. Janssen PGA, Ligthart GBWL, Rulkens R, (2012) Polyamide containing monomer units of 1,4-butylene diamine. Patent WO2012110413 A1

    Google Scholar 

  82. Becker B, Kopannia S, Nataniel T, Ticozzelli F, Heinrich D, Marchese L (2012) Hydrolytically stable polyamide. Patent US 20120175817 A1

    Google Scholar 

  83. Jasinska-Walc L, Dudenko D, Rozanski A, Thiyagarajan S, Sowinski P, van Es D, Shu J, Hansen MR, Koning CE (2012) Structure and molecular dynamics in renewable polyamides from dideoxy–diamino isohexide. Macromolecules 45(14):5653–5666. https://doi.org/10.1021/ma301091a

    Article  Google Scholar 

  84. Jasinska L, Villani M, Wu J, van Es D, Klop E, Rastogi S, Koning CE (2011) Novel, fully biobased semicrystalline polyamides. Macromolecules 44(9):3458–3466. https://doi.org/10.1021/ma200256v

    Article  Google Scholar 

  85. CHINAPLAS (2013) Cathay Industrial Biotech, Ltd. – a global producer of bio-based long-chain dicarboxylic acids. http://webcache.googleusercontent.com/search?q=cache:uwltNtve2DgJ:www.2456.com/physhows/12-2R61_202655_20130321035649_eng.doc+&amp;cd=1&amp;hl=pl&amp;ct=clnk&amp;gl=pl. Accessed 23 Jul 2017

  86. Ma W, Chen K, Li Y, Hao N, Wang X, Ouyang P (2017) Advances in Cadaverine bacterial production and its applications, engineering, green chemical engineering – review. Engineering 3(3):308–317. https://doi.org/10.1016/J.ENG.2017.03.012

    Article  Google Scholar 

  87. Jiang Y, Loos K (2016) Enzymatic synthesis of biobased polyesters and polyamides. Polymers 8(7)243:53 pages. doi: https://doi.org/10.3390/polym8070243

  88. Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71(9):2130–2135. https://doi.org/10.1271/bbb.60699

    Article  Google Scholar 

  89. Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Gv A, Zelder O, Wittmann C (2014) From zero to hero – production of biobased nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Engp 25:113–123. https://doi.org/10.1016/j.ymben.2014.05.007

    Article  Google Scholar 

  90. Feddersen KD (2017) AKROMID® S eco-friendly resin. Polyamide 6:10. https://akro-plastic.com/product-overview/pa-610-polyamid-610/. Accessed 23 Jul 2017

    Google Scholar 

  91. ANIDPOLYMERS. Polyamide 610 Molding (PA 610 L). http://anid.ru/en/poliamid/610. Accessed 23 Jul 2017

  92. VESTAMID® Terra. http://www.vestamid.com/product/vestamid/en/products-services/vestamid-terra/general-information/pages/default.aspx. Accessed 23 Jul 2017

  93. Armioun S, Pervaiz M, Sain M (2017) Biopolyamides and high-performance natural fiber-reinforced biocomposites biopolyamides and high-performance natural fiber-reinforced biocomposites, chapter 10. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials, physico-chemical and mechanical characterization, vol 3. Wiley, Weinheim, pp 253–270

    Chapter  Google Scholar 

  94. Evonik. VESTAMID® D-Polyamide 612. http://www.vestamid.com/product/vestamid/en/products-services/vestamid-d/pages/default.aspx. Accessed 24 Jul 2017

  95. RTP Co. NYLON 6/12 (PA) — POLYAMIDE 6/12. https://www.rtpcompany.com/products/product-guide/nylon-612-pa-polyamide-612/. Accessed 24 Jul 2017

  96. Arkema S.A. (2013) Arkema and Addiplast join forces to develop new polyamide compounds. http://www.arkema.com/export/sites/global/.content/medias/downloads/news-attachments/pr-partnership-arkema-addiplast.pdf. Accessed 24 Jul 2017

  97. Mobley DP (1999) Biosynthesis of Long-Chain Dicarboxylic Acid Monomers From Renewable Resources. Final Technical Report No. DE-FC36-95G01 0099. GE Corporate Research and Development, New York, US

    Google Scholar 

  98. Biolon™ DDDA. https://verdezyne.com/industrial/. Accessed 23 Jul 2017

  99. Biangardi H-J (1990) Brill transition of polyamide 6.12. J Polym Sci B Polym Phys 29(2–3):139–153. https://doi.org/10.1080/00222349008245770

    Google Scholar 

  100. Rennovia (2015) Company Overview for BIO Montreal. https://www.bio.org/sites/default/files/WorldCongress/Tom%20Boussie.pdf. Accessed 23 Jul 2017

  101. Castoroil.in (2009) Sebacic Acid. http://www.castoroil.in/castor/castor_seed/castor_oil/sebacic_acid/sebacic_acid.html. Accessed 23 Jul 2017

  102. FKuR. Development – Production – Distribution of biodegradable and biobased polymers. http://fkur.com/en/. Accessed 24 Jul 2017

  103. Castello Italia srl. POLYAMIDE 1012 (PA1012). http://www.castelloitalia.it/polyamidepa10-12/. Accessed 24 Jul 2017

  104. de Guzman D (2013.) https://greenchemicalsblog.com/2013/05/02/solvay-invests-in-bio-based-polyamide-610/. Accessed 24 Jul 2017

  105. Evonik (2014) Evonik polyamide PA1010 quality confirmed through FDA approval. http://corporate.evonik.com/en/media/search/pages/news-details.aspx?newsid=47708. Accessed 24 Jul 2017

  106. DuPont. A comprehensive portfolio of performance nylon resin products http://www.dupont.com/products-and-services/plastics-polymers-resins/thermoplastics/brands/zytel-nylon.html. Accessed 24 Jul 2017

  107. Evonik (2011.) http://root.evonik.com/en/media/search/pages/news-details.aspx?newsid=24139. Accessed 24 Jul 2017

  108. Nikiforov AA, Okhotina NA, Fayzullin IZ, Volfson SI, Rinberg R, Kroll L (2016) Stress-strain properties of composites based on bio-based polyamide 1010 filled with cut fibers. AIP Conference Proceedings 1785(030018). https://doi.org/10.1063/1.4967039

  109. Winnacker M, Rieger B (2016) Biobased polyamides: recent advances in basic and applied research. Macromol Rapid Commun 37(17):1391–1413. https://doi.org/10.1002/marc.201600181

    Article  Google Scholar 

  110. Wang Z, Wei T, Xue X, He M, Xue J, Song M, Wu S, Kang H, Zhang L, Jia Q (2014) Synthesis of fully bio-based polyamides with tunable properties by employing itaconic acid. Polymer 55(19):4846–4856. https://doi.org/10.1016/j.polymer.2014.07.034

    Article  Google Scholar 

  111. Cottereau V (2013) Arkema and Addiplast join forces to develop new polyamide compounds. http://www.arkema.com/en/media/news/news-details/Arkema-and-Addiplast-join-forces-to-develop-new-polyamide-compounds/. Accessed 24 Jul 2017

  112. Quiles-Carrillo L, Montanes N, Boronat T, Balart R, Torres-Giner S (2017) Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polym Test 61:421–429. https://doi.org/10.1016/j.polymertesting.2017.06.004

    Article  Google Scholar 

  113. He J, Samanta S, Selvakumar S, Lattimer J, Ulven C, Sibi M, Bahr J, Chisholm BJ (2013) Polyamides based on the renewable monomer, 1,13-tridecane diamine I: synthesis and characterization of nylon 13,T. Green Mater 1(2):114–124. https://doi.org/10.1680/gmat.12.00021

    Article  Google Scholar 

  114. Samanta S, He J, Selvakumar S, Lattimer J, Ulven C, Sibi M, Bahr J, Chisholm BJ (2013) Polyamides based on the renewable monomer, 1,13-tridecane diamine II: synthesis and characterization of nylon 13,6. Polymer 54:1141–1149

    Article  Google Scholar 

  115. Bechthold I, Bretz K, Kabasci S, Kapitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654. https://doi.org/10.1002/ceat.200800063

    Article  Google Scholar 

  116. Kohan MI, Mestemacher SA, Pagilagan RU, Redmond K (2003) Polyamides in Ullmann’s encyclopedia of industrial chemistry. John Wiley & Sons, Weinheim

    Google Scholar 

  117. WhatIs.com. 3-D printing (additive manufacturing). http://whatis.techtarget.com/definition/3-D-printing-rapid-prototyping-stereolighography-or-architectural-modeling. Accessed 26 Jul 2017

  118. Włodarczyk J, Sikorska W, Rydz J, Johnston B, Jiang G, Radecka I, Kowalczuk M (2018) 3D processing of PHA containing (bio)degradable materials. In: Koller M (ed) Current advances in Biopolymer Processing & Characterization. Nova Science Publishers, Hauppauge. under review

    Google Scholar 

  119. 3D printing from scratch. 119D Printer Filament Types Overview. http://3dprintingfromscratch.com/common/3d-printer-filament-types-overview/. Accessed 26 Jul 2017

  120. Arkema S.A. RILSAN® POLYAMIDE FAMILY. http://www.orgasolpowders.com/export/sites/orgasolpowders/.content/medias/downloads/literature/2017-Rilsan-Polyamide-Family-GRANULES-Presentation.pdf. Accessed 26 Jul 2017

  121. Arkema S.A. Rilsamid® polyamide 12 resin. http://www.arkema.com/en/products/product-finder/product-viewer/Rilsamid-Polyamide-12-Resin. Accessed 26 Jul 2017

  122. Cruz P, Shoemake ED, Adam P, Leachman J (2015) Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen, Published under licence by IOP Publishing Ltd, IOP Conference Series: Materials Science and Engineering, Vol. 102, conference 1

    Google Scholar 

  123. BASF SE (2016) Polyamide-6 powder opens a new era in 3D printing. https://www.basf.com/cn/en/company/news-and-media/BASF-Information/Innovation/Polyamide-6-powder-opens-a-new-era-in-3D-printing.html. Accessed 26 Jul 2017

  124. Prodways Group. A complete solution for polymer powders for laser sintering. http://www.prodways.com/en/type/plastic-powders/. Accessed 27 Jul 2017

  125. (2017) Ford tests large-scale 3D printing. Metal Powder Report 72(3):208–209. https://doi.org/10.1016/j.mprp.2017.04.015

  126. Brookes KJA (2015) Aviation finds that extra dimension. Metal Powder Report 70(5):239–244. https://doi.org/10.1016/j.mprp.2015.08.077

    Article  Google Scholar 

  127. So KC, Fan Y, Sze L, Kwok KW, Chan AK, Cheung GS, Lee AP (2017) Using multimaterial 3-dimensional printing for personalized planning of complex structural heart disease intervention. JACC Cardiovasc Interv 10(11):e97–e98. https://doi.org/10.1016/j.jcin.2017.02.045

    Article  Google Scholar 

  128. Marcus RP, Morris JM, Matsumoto JM, Alexander AE, Halaweish AF, Kelly JA, Fletcher JG, McCollough CH, Leng S (2017) Implementation of iterative metal artifact reduction in the pre-planning-procedure of three-dimensional physical modeling. 3D Print Med 3(5):8 pages. https://doi.org/10.1186/s41205-017-0013-4

  129. Leng S, McGee K, Morris J, Alexander A, Kuhlmann J, Vrieze T, McCollough CH, Matsumoto J (2017) Anatomic modeling using 3D printing: quality assurance and optimization. 3D Print Med 3(6). https://doi.org/10.1186/s41205-017-0014-3

  130. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219:521–529. https://doi.org/10.1038/sj.bdj.2015.914

    Article  Google Scholar 

  131. Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22(3):254–265. https://doi.org/10.1016/j.molmed.2016.01.003

    Article  Google Scholar 

  132. Dodziuk H (2016) Applications of 3D printing in healthcare. Pol J Cardio Thorac Surg 13(3):283–293. https://doi.org/10.5114/kitp.2016.62625

    Article  Google Scholar 

  133. Ng W, Zhu L, Law H, Niyomsriskul N (2017) 3D printing. Ipsos Business Consulting. https://www.ipsos.com/sites/default/files/2017-01/Ipsos-Business-Consulting-3D-Printing.pdf. Accessed 27 Jul 2017

    Google Scholar 

  134. Shivali (2016) World’s first 3D printed plane unveiled: Airbus’ windowless ‘Thor’ aircraft could pave the way for cheaper and faster flights. DailyMail. http://www.dailymail.co.uk/sciencetech/article-3627187/World-s-3D-printed-plane-unveiled-Airbus-windowless-Thor-aircraft-pave-way-cheaper-faster-flights.html. Accessed 27 Jul 2017

    Google Scholar 

  135. Mitrus M, Wojtowicz A, Moscicki L (2009) Biodegradable polymers and their practical utility (chapter 1). In: Janssen L, Moscicki L (eds) Thermoplastic starch: a green material for various industries. John Wiley & Sons, Weinheim, pp 1–34

    Google Scholar 

  136. Negoro S (2000) Biodegradation of nylon oliomers. Apply Microbiol Biotechnol 54:461–466. https://doi.org/10.1007/s002530000434

    Article  Google Scholar 

  137. Negoro S (2005) Biodegradation of nylon and other synthetic polyamides. In: Biopolymers online. Wiley, Weinheim

    Google Scholar 

  138. Negoro S, Kakudo S, Okada H (1992) A new nylon oligomer degradation gene (nylC) on plasmid pOAD2 from a Flavobacterium sp. J Bacteriol 174:7948–7953. https://doi.org/10.1128/jb.174.24.7948-7953.1992

    Article  Google Scholar 

  139. Opperman FB, Pickartz S, Steinbuchel A (1998) Biodegradation of polyamides. Polym Degrad Stab 59:337–344. https://doi.org/10.1016/S0141-3910(97)00175-4

    Article  Google Scholar 

  140. Deguchi T, Kitaoka Y, Kakezawa M, Nishida T (1998) Purification and characterization of a nylon-degrading enzyme. Appl Environ Microbiol 64(4):1366–1371

    Google Scholar 

  141. Shama G, Wase DAJ (1981) The biodegradation of ε-caprolactam and some related compounds: a review. Int Biodeterioration Bull 17:1–16

    Google Scholar 

  142. Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F (2012) Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl Chem 84(2):377–410. https://doi.org/10.1351/PAC-REC-10-12-04

    Article  Google Scholar 

  143. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742. https://doi.org/10.3390/ijms10093722

    Article  Google Scholar 

  144. Tomita K, Ikeda N, Ueno A (2003) Isolation and characterization of a thermophilic bacterium, Geobacillus thermocatenulatus, degrading nylon 12 and nylon 66. Biotechnol Lett 25:1743–1746. https://doi.org/10.1023/A:1026091711130

    Article  Google Scholar 

  145. Sudhakar M, Priyadarshini C, Doble M, Murthy PS, Venkatesan R (2007) Marine bacteria mediated degradation of nylon 66 and 6. Int Biodeterior Biodegradation 60(3):144–151. https://doi.org/10.1016/j.ibiod.2007.02.002

    Article  Google Scholar 

  146. Deguchi T, Kakezawa M, Nishida T (1997) Nylon biodegradation by lignin-degrading fungi. Appl Environ Microbiol 63:329–331

    Google Scholar 

  147. Nomura N, Deguchi T, Shigeno-Akutsu Y, Nakajima-Kambe T, Nakahara T (2001) Gene structures and catalytic mechanisms of microbial enzymes able to biodegrade the synthetic solid polymers nylon and polyester polyurethane. Biotechnol Genet Eng Rev 18:125–147. https://doi.org/10.1080/02648725.2001.10648011

    Article  Google Scholar 

  148. Tomita K, Hayashi N, Ikeda N, Kikuchi Y (2003) Isolation of a thermophilic bacterium degrading some nylons. Polym Degrad Stab 81:511–514. https://doi.org/10.1016/S0141-3910(03)00151-4

    Article  Google Scholar 

  149. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276-277(1):1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W

    Article  Google Scholar 

  150. Shonnard D, Lindner A, Nguyen N, Ramachandran PA, Fichana D, Hesketh R, Slater CS, Engler R (2012) Green engineering-integration of green chemistry, pollution prevention, and risk-based considerations. In: Kent JA (ed) Handbook of industrial chemistry and biotechnology, vol 1. Springer, New York, pp 155–199

    Chapter  Google Scholar 

  151. Rydz J, Zawidlak-Węgrzyńska B, Christova D (2015) Degradable polymers. In: Mishra MK (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. CRC Press, Boca Raton, pp 2327–2349

    Chapter  Google Scholar 

  152. Rydz J, Musioł M, Kowalczuk M (2017) Polymers tailored for controlled (bio)degradation through end-group and in-chain functionalization. Curr Org Synth 14(6). https://doi.org/10.2174/1570179414666161115151634

  153. Winnacker M, Rieger B (2016) Poly(ester amide)s: recent insights into synthesis, stability and biomedical applications. Polym Chem 7:7039–7046. https://doi.org/10.1039/C6PY01783E

    Article  Google Scholar 

  154. Toncheva-Moncheva N, Jerome R, Mateva R (2016) Impact of the structure of poly(ε-caprolactam) containing polyesteramides on mechanical properties and biodegradation. Polym Degrad Stab 123:170–177. https://doi.org/10.1016/j.polymdegradstab.2015.11.023

    Article  Google Scholar 

  155. Narayan R (2008) Bioplastics or biobased (renewable) plastic materials 101 in Q & A format. https://knowledge.ulprospector.com/1338/pe-bioplastics-biobased-narayan/. Accessed 28 Jul 2017

  156. (2016) Nylon Resins. Chemical Economics Handbook. https://www.ihs.com/products/nylon-resins-chemical-economics-handbook.html. Accessed 28 Jul 2017

  157. Klun U, Friedrich J, Kržan A (2003) Polyamide-6 fibre degradation by a lignolytic fungus. Polym Degrad Stab 79(1):99–104. https://doi.org/10.1016/S0141-3910(02)00260-4

    Article  Google Scholar 

  158. Irfan D, Prijambada ID, Negro S, Yomo T, Urabe I (1995) Emergence of nylon oligomer degradation enzymes in Pseudomonas Aeruginosa PAO through experimental evolution. Appl Environ Microbiol 61:2020–2022

    Google Scholar 

  159. Kanagawa K, Oishi M, Negoro S, Urabe I, Okada H (1993) Characterization of the 6-aminohexanoate-dimer hydrolase from pseudomonas sp. NK87. J Gen Microbiol 139:787–795. https://doi.org/10.1099/00221287-139-4-787

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Rydz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kyulavska, M., Toncheva-Moncheva, N., Rydz, J. (2017). Biobased Polyamide Ecomaterials and Their Susceptibility to Biodegradation. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_126-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_126-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics