Skip to main content

Wax Ester and Triacylglycerol Biosynthesis in Bacteria

  • Reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

Bacteria are an extremely diverse group of organisms, some of which possess the ability to synthesize and accumulate neutral lipids, such as triacylglycerols (TAG) and wax esters (WE). Among these microorganisms, Actinobacteria are specialized in the accumulation of TAG, whereas Gram-negative Proteobacteria, such as Acinetobacter and Marinobacter, produce predominantly WE. The capability for accumulating large amounts of TAG seems to be restricted to some members of Actinobacteria, such as those belonging to Rhodococcus, Gordonia, and Streptomyces genera, and to the Gram-negative Alcanivorax borkumensis. The biosynthesis and accumulation of TAG and/or WE require the occurrence of a set of genes/proteins working in a coordinated metabolic and regulatory context in the cell. Some components of the lipid-accumulating machinery in native producers have been identified and characterized. They include genes coding for: (1) enzymes catalyzing the last reactions of TAG and/or WE synthesis; (2) enzymes involved in the reduction of fatty acids to the respective fatty alcohols for the synthesis of WE; (3) enzymes of central metabolism which generate NADPH for fatty acid synthesis; (4) a structural protein involved in the assembly and stabilization of lipid inclusion bodies; and (5) a lipid transporter protein involved in the balance and homeostasis of cellular lipids. Some of these genes identified in native producers have been used for engineering bacterial hosts, which are naturally unable to produce these lipids, in order to produce TAG/WE with bacterial strains of biotechnological relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 489.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez AF, Alvarez HM, Kalscheuer R, Wältermann M, Steinbüchel A (2008) Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Microbiology 154:2327–2335

    Article  CAS  Google Scholar 

  • Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD (2016) Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci Report 6:24985

    Article  CAS  Google Scholar 

  • Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582

    Article  CAS  Google Scholar 

  • Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H (2013) Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microb Cell Factories 12:9

    Article  CAS  Google Scholar 

  • Comba S, Sabatini M, Menendez-Bravo S, Arabolaza A, Gramajo H (2014) Engineering a Streptomyces coelicolor biosynthesis pathway into Escherichia coli for high yield triglyceride production. Biotechnol Biofuels 7:172

    Article  Google Scholar 

  • Daniel J, Deb C, Dubey VS, Sirakova T, Abomoelak MHR, Kolattukudy PE (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030

    Article  CAS  Google Scholar 

  • Daniel J, Sirakova T, Kolattukudy P (2014) An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy. PLoS One 9:e114877

    Article  Google Scholar 

  • Finkelstein DB, Brassell SC, Pratt LM (2010) Microbial biosynthesis of wax esters during desiccation: adaptation for colonization of the earliest terrestrial environments? Geology 38:247–250

    Article  CAS  Google Scholar 

  • Hernández MA, Arabolaza A, Rodríguez E, Gramajo H, Alvarez HM (2013) The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Appl Microbiol Biotechnol 97:2119

    Article  Google Scholar 

  • Hernández MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM (2015) Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol 99:2191

    Article  Google Scholar 

  • Herrero OM, Moncalián G, Alvarez HM (2016) Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production. Microbiology 162(2):384–397

    Article  CAS  Google Scholar 

  • Hetzler S, Steinbüchel A (2013) Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630. Appl Environ Microbiol 79(9):3122–3312

    Article  CAS  Google Scholar 

  • Hofvander P, Doan TT, Hamberg M (2011) A prokaryotic acyl-CoA reductase performing reduction of fatty acyl-CoA to fatty alcohol. FEBS Lett 585:3538–3543

    Article  CAS  Google Scholar 

  • Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach ALB, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW, Sinskey AJ (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7(9):e1002219

    Article  CAS  Google Scholar 

  • Holtzapple E, Schmidt-Dannert C (2007) Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. J Bacteriol 189:3804–3812

    Article  CAS  Google Scholar 

  • Huang L, Zhao L, Zan X, Song Y, Ratledge C (2016) Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases. Biotechnol Lett 38(6):999–1008

    Article  CAS  Google Scholar 

  • Indest KJ, Eberly JO, Ringelberg DB, Hancock DE (2015) The effects of putative lipase and wax ester synthase/acyl-CoA: diacylglycerol acyltransferase gene knockouts on triacylglycerol accumulation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 42(2):219–227

    Article  CAS  Google Scholar 

  • Janßen HJ, Steinbüchel A (2014) Production of triacylglycerols in Escherichia coli by deletion of the diacylglycerol kinase gene and heterologous overexpression of atfA from Acinetobacter baylyi ADP1. Appl Microbiol Biotechnol 98(4):1913–1924

    Article  Google Scholar 

  • Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A (2006) Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol 72(2):1373–1379

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928

    Article  CAS  Google Scholar 

  • Kurosawa K, Sinskey AJ (2013) Engineering xylose metabolism in triacylglycerol producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels 6:134–147

    Article  CAS  Google Scholar 

  • Lenneman EM, Ohlert JM, Palani NP, Barney BM (2013) Fatty alcohols for wax esters in Marinobacter aquaeolei VT8: two optional routes in the wax biosynthesis pathway. Appl Environ Microbiol 79:7055–7062

    Article  CAS  Google Scholar 

  • Low KL, Shui G, Natter K, Yeo WK, Kohlwein SD, Dick T, Wenk MR (2010) Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette-Guerin. J Biol Chem 285(28):21662–21670

    Article  CAS  Google Scholar 

  • MacEachran DP, Sinskey AJ (2013) The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. Microb Cell Factories 12:104

    Article  Google Scholar 

  • MacEachran DP, Prophete ME, Sinskey AJ (2010) The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. Appl Environ Microbiol 76:7217–7225

    Article  CAS  Google Scholar 

  • Plassmeier J, Li Y, Rueckert C, Sinskey AJ (2016) Metabolic engineering Corynebacterium glutamicum to produce triacylglycerols. Metab Eng 33:86–97

    Article  CAS  Google Scholar 

  • Reiser S, Somerville C (1997) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J Bacteriol 179:2969–2975

    Article  CAS  Google Scholar 

  • Rodriguez E, Navone L, Casati P, Gramajo H (2012) Impact of malic enzymes on antibiotic and triacylglycerol production in Streptomyces coelicolor. Appl Environ Microbiol 78(13):4571–4579

    Article  CAS  Google Scholar 

  • Rontani JF, Bonin PC, Volkman JK (1999) Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds. Appl Environ Microbiol 65:221–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Röttig A, Zurek PJ, Steinbüchel A (2015) Assessment of bacterial acyltransferases for an efficient lipid production in metabolically engineered strains of E. coli. Metab Eng 32:195–206

    Article  Google Scholar 

  • Rucker J, Paul J, Pfeifer BA, Lee K (2013) Engineering E. coli for triglyceride accumulation through native and heterologous metabolic reactions. Appl Microbiol Biotechnol 97:2753–2759

    Article  CAS  Google Scholar 

  • Santala S, Efimova E, Koskinen P, Karp MT, Santala V (2014) Rewiring the wax ester production pathway of Acinetobacter baylyi ADP1. ACS Synth Biol 3(3):145–151

    Article  CAS  Google Scholar 

  • Shi S, Valle-Rodríguez JO, Khoomrung S, Siewers V, Nielsen J (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7

    Article  CAS  Google Scholar 

  • Sirakova TD, Deb C, Daniel J, Singh HD, Maamar H, Dubey VS, Kolattukudy PE (2012) Wax ester synthesis is required for Mycobacterium tuberculosis to enter in vitro dormancy. PLoS One 7(12):e51641

    Article  CAS  Google Scholar 

  • Sohlenkamp C, Geiger O (2015) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159

    Article  Google Scholar 

  • Villalba MS, Alvarez HM (2014) Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1. Microbiology 160:1523–1532

    Article  CAS  Google Scholar 

  • Xiong XC, Wang X, Chen SL (2012) Engineering of a xylose metabolic pathway in Rhodococcus strains. Appl Environ Microbiol 78(16):5483–5491

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alvarez, H.M., Hernández, M.A., Herrero, O.M., Lanfranconi, M.P., Silva, R.A., Villalba, M.S. (2019). Wax Ester and Triacylglycerol Biosynthesis in Bacteria. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50430-8_30

Download citation

Publish with us

Policies and ethics